

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, Microwire, SPI, SSI, SSP, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	12К х 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc11u66jbd48e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3.Pin description

Pin functions are selected through the IOCON registers. See Table 2 for availability of USART3 and USART4 pin functions.

Symbol	LQFP48	LQFP64	LQFP100		Reset state ^[1]	Туре	Description of pin functions
PIO0_6	23	29	44	[6]	I; PU	IO	PIO0_6 — General-purpose port 0 input/output 6.
						-	R — Reserved.
						IO	SSP0_SCK — Serial clock for SSP0.
						-	R_4 — Reserved.
PIO0_7	24	30	45	[5]	I; PU	Ю	PIO0_7 — General-purpose port 0 input/output 7 (high-current output driver).
						I	U0_CTS — Clear To Send input for USART.
						-	R_5 — Reserved.
						Ю	I2C1_SCL — I ² C-bus clock input/output. This pin is not open-drain.
PIO0_8	26	37	58	[6]	I; PU	Ю	PIO0_8 — General-purpose port 0 input/output 8.
						IO	SSP0_MISO — Master In Slave Out for SSP0.
						0	CT16B0_MAT0 — Match output 0 for 16-bit timer 0.
						-	R_6 — Reserved.
PIO0_9	27	38	59	[6]	I; PU	IO	PIO0_9 — General-purpose port 0 input/output 9.
						IO	SSP0_MOSI — Master Out Slave In for SSP0.
						0	CT16B0_MAT1 — Match output 1 for 16-bit timer 0.
						-	R_7 — Reserved.
SWCLK/PIO0_10	28	39	60	[6]	I; PU	Ю	SWCLK — Serial Wire Clock. SWCLK is enabled by default on this pin. In boundary scan mode: TCK (Test Clock).
						IO	PIO0_10 — General-purpose digital input/output pin.
						IO	SSP0_SCK — Serial clock for SSP0.
						0	CT16B0_MAT2 — 16-bit timer0 MAT2
TDI/PIO0_11	30	42	64	[3]	I; PU	IO	TDI — Test Data In for JTAG interface. In boundary scan mode only.
						Ю	PIO0_11 — General-purpose digital input/output pin.
						AI	ADC_9 — A/D converter, input channel 9.
						0	CT32B0_MAT3 — Match output 3 for 32-bit timer 0.
						0	U1_RTS — Request To Send output for USART1.
						Ю	U1_SCLK — Serial clock input/output for USART1 in synchronous mode.
TMS/PIO0_12	31	43	66	[3]	I; PU	Ю	TMS — Test Mode Select for JTAG interface. In boundary scan mode only.
						Ю	PIO0_12 — General-purpose digital input/output pin.
						AI	ADC_8 — A/D converter, input channel 8.
						I	CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
						I	U1_CTS — Clear To Send input for USART1.

Table 3.Pin description

Pin functions are selected through the IOCON registers. See Table 2 for availability of USART3 and USART4 pin functions.

Symbol	LQFP48	LQFP64	LQFP100		Reset state ^[1]	Туре	Description of pin functions
PIO0_20	10	12	17	[6]	I; PU	Ю	PIO0_20 — General-purpose digital input/output pin.
						I	CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.
						I	U2_RXD — Receiver input for USART2.
PIO0_21	17	22	33	[6]	I; PU	Ю	PIO0_21 — General-purpose digital input/output pin.
						0	CT16B1_MAT0 — Match output 0 for 16-bit timer 1.
						Ю	SSP1_MOSI — Master Out Slave In for SSP1.
PIO0_22	29	40	62	[3]	I; PU	Ю	PIO0_22 — General-purpose digital input/output pin.
						AI	ADC_11 — A/D converter, input channel 11.
						I	CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.
						Ю	SSP1_MISO — Master In Slave Out for SSP1.
PIO0_23	39	52	83	[3]	I; PU	Ю	PIO0_23 — General-purpose digital input/output pin.
						AI	ADC_1 — A/D converter, input channel 1.
						-	R_9 — Reserved.
						I	U0_RI — Ring Indicator input for USART0.
						Ю	SSP1_SSEL — Slave select for SSP1.
PIO1_0	-	62	97	[6]	I; PU	IO	PIO1_0 — General-purpose digital input/output pin.
						0	CT32B1_MAT0 — Match output 0 for 32-bit timer 1.
						-	R_10 — Reserved.
						0	U2_TXD — Transmitter output for USART2.
PIO1_1	-	-	28	[6]	I; PU	Ю	PIO1_1 — General-purpose digital input/output pin.
						0	CT32B1_MAT1 — Match output 1 for 32-bit timer 1.
						-	R_11 — Reserved.
						0	U0_DTR — Data Terminal Ready output for USART0.
PIO1_2	-	-	55	[6]	I; PU	IO	PIO1_2 — General-purpose digital input/output pin.
						0	CT32B1_MAT2 — Match output 2 for 32-bit timer 1.
						-	R_12 — Reserved.
						I	U1_RXD — Receiver input for USART1.
PIO1_3	-	-	72	[3]	I; PU	Ю	PIO1_3 — General-purpose digital input/output pin.
						0	CT32B1_MAT3 — Match output 3 for 32-bit timer 1.
						-	R_13 — Reserved.
						Ю	I2C1_SDA — I ² C-bus data input/output (not open-drain).
						AI	ADC_5 — A/D converter, input channel 5.
PIO1_4	-	-	23	[6]	I; PU	Ю	PIO1_4 — General-purpose digital input/output pin.
						I	CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.
						-	R_14 — Reserved.
						I	U0_DSR — Data Set Ready input for USART0.

Table 3. Pin description

Pin functions are selected through the IOCON registers. See Table 2 for availability of USART3 and USART4 pin functions.

Symbol	LQFP48	LQFP64	LQFP100	Reset state ^[1]	Туре	Description of pin functions
VBAT	47	63	99	-	-	Battery supply. Supplies power to the RTC. If no battery is used, tie VBAT to VDD.
V _{SSA}	41	54	85	-	-	Analog ground. V_{SSA} should typically be the same voltage as V_{SS} but should be isolated to minimize noise and error. V_{SSA} should be tied to V_{SS} if the ADC is not used.
V _{SS}	43, 2, 5	57, 3, 7	91, 7, 11, 53, 70	-	-	Ground.

[1] Pin state at reset for default function: I = Input; AI = Analog Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled;

F = floating; If the pins are not used, tie floating pins to ground or power to minimize power consumption.

- [2] Special analog pad.
- [3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as analog input, digital section of the pad is disabled and the pin is not 5 V tolerant; includes digital, programmable filter.
- [4] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as analog input, digital section of the pad is disabled and the pin is not 5 V tolerant; includes digital input glitch filter. WAKEUP pin. The wake-up pin function can be disabled and the pin can be used for other purposes if the RTC is enabled for waking up the part from Deep power-down mode.
- [5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis; includes high-current output driver.
- [6] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis.
- [7] I²C-bus pin compliant with the I²C-bus specification for I²C standard mode, I²C Fast-mode, and I²C Fast-mode Plus. The pin requires an external pull-up to provide output functionality. When power is switched off, this pin is floating and does not disturb the I²C lines. Open-drain configuration applies to all functions on this pin.
- [8] 5 V tolerant pad. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode.
- [9] Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode only). This pad is not 5 V tolerant.
- [10] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog crystal oscillator connections. When configured for the crystal oscillator input/output, digital section of the pad is disabled and the pin is not 5 V tolerant; includes digital, programmable filter.

8.3 On-chip flash programming memory

The LPC11U6x contain up to 256 KB on-chip flash program memory. The flash can be programmed using In-System Programming (ISP) or In-Application Programming (IAP) via the on-chip bootloader software.

The flash memory is divided into $24 \times 4 \text{ KB}$ and $5 \times 32 \text{ KB}$ sectors. Individual pages of 256 byte each can be erased using the IAP erase page command.

8.4 EEPROM

The LPC11U6x contain 4 KB of on-chip byte-erasable and byte-programmable EEPROM data memory. The EEPROM can be programmed using In-Application Programming (IAP) via the on-chip bootloader software.

8.5 SRAM

The LPC11U6x contain a total of up to 36 KB on-chip static RAM memory. The main SRAM block contains either 8 KB, 16 KB, or 32 KB of main SRAM0. Two additional SRAM blocks of 2 KB (SRAM1 and USB SRAM) are located in separate areas of the memory map. See Figure 8.

8.6 On-chip ROM

The on-chip ROM contains the bootloader and the following Application Programming Interfaces (APIs):

- In-System Programming (ISP) and In-Application Programming (IAP) support for flash including IAP erase page command.
- IAP support for EEPROM
- USB API
- Power profiles for configuring power consumption and PLL settings
- 32-bit integer division routines
- APIs to use the following peripherals:
 - I2C
 - USART0 and USART1/2/3/4
 - DMA

8.7 Memory mapping

The LPC11U6x incorporates several distinct memory regions, shown in the following figures. <u>Figure 8</u> shows the overall map of the entire address space from the user program viewpoint following reset. The interrupt vector area supports address remapping.

The AHB (Advanced High-performance Bus) peripheral area is 2 MB in size and is divided to allow for up to 128 peripherals. The APB (Advanced Peripheral Bus) peripheral area is 512 KB in size and is divided to allow for up to 32 peripherals. Each peripheral of either type is allocated 16 KB of space. This addressing scheme allows simplifying the address decoding for each peripheral.

8.8.1 Features

- Controls system exceptions and peripheral interrupts.
- In the LPC11U6x, the NVIC supports vectored interrupts for each of the peripherals and the eight pin interrupts. The following peripheral interrupts are ORed to contribute to one interrupt in the NVIC:
 - USART1, USART4
 - USART2, USART3
 - SCTimer0/PWM, SCTimer1/PWM
 - BOD, WWDT
 - ADC end-of-sequence A interrupt, threshold crossing interrupt
 - ADC end-of-sequence B interrupt, overrun interrupt
 - Flash, EEPROM
- Four programmable interrupt priority levels with hardware priority level masking.
- Software interrupt generation.

8.8.2 Interrupt sources

Each peripheral device has at least one interrupt line connected to the NVIC but can have several interrupt flags. Individual interrupt flags can also represent more than one interrupt source.

8.9 IOCON block

The IOCON block allows selected pins of the microcontroller to have more than one function. Configuration registers control the multiplexers to allow connection between the pin and the on-chip peripherals.

Connect peripherals to the appropriate pins before activating the peripheral and before enabling any related interrupt.

Enabling an analog function disables the digital pad. However, the internal pull-up and pull-down resistors as well as the pin hysteresis must be disabled to obtain an accurate reading of the analog input.

8.9.1 Features

- Programmable pin function.
- Programmable pull-up, pull-down, or repeater mode.
- All pins (except PIO0_4 and PIO0_5) are pulled up to 3.3 V (V_{DD} = 3.3 V) if their pull-up resistor is enabled.
- Programmable pseudo open-drain mode.
- Programmable (on/off) 10 ns glitch filter on pins PIO0_22, PIO0_23, PIO0_11 to PIO0_16, PIO1_3, PIO1_9, PIO1_22, and PIO1_29. The glitch filter is turned on by default.
- Programmable hysteresis.
- Programmable input inverter.

8.12 GPIO group interrupts

The GPIO pins can be used in several ways to set pins as inputs or outputs and use the inputs as combinations of level and edge sensitive interrupts. For each port/pin connected to one of the two the GPIO Grouped Interrupt blocks (GINT0 and GINT1), the GPIO grouped interrupt registers determine which pins are enabled to generate interrupts and w the active polarities of each of those inputs.

The GPIO grouped interrupt registers also select whether the interrupt output is level or edge triggered and whether it is based on the OR or the AND of all of the enabled inputs.

When the designated pattern is detected on the selected input pins, the GPIO grouped interrupt block generates an interrupt. If the part is in a power-savings mode, it first asynchronously wakes up the part prior to asserting the interrupt request. The interrupt request line can be cleared by writing a one to the interrupt status bit in the control register.

8.12.1 Features

- Two group interrupts are supported to reflect two distinct interrupt patterns.
- The inputs from any number of digital pins can be enabled to contribute to a combined group interrupt.
- The polarity of each input enabled for the group interrupt can be configured HIGH or LOW.
- Enabled interrupts can be logically combined through an OR or AND operation.
- The grouped interrupts can wake up the part from sleep, deep-sleep or power-down modes.

8.13 DMA controller

The DMA controller can access all memories and the USART and SSP peripherals using DMA requests. DMA transfers can also be triggered by internal events like the ADC interrupts, timer match outputs, the pin interrupts (PINT0 and PINT1) and the SCTimer DMA requests.

8.13.1 Features

- 16 channels with 14 channels connected to peripheral request inputs.
- DMA operations can be triggered by on-chip events or two pin interrupts. Each DMA channel can select one trigger input from 12 sources.
- Priority is user selectable for each channel.
- Continuous priority arbitration.
- Address cache with two entries.
- Efficient use of data bus.
- Supports single transfers up to 1,024 words.
- Address increment options allow packing and/or unpacking data.

- Optional warning interrupt can be generated at a programmable time before watchdog time-out.
- Software enables the WWDT, but a hardware reset or a watchdog reset/interrupt is required to disable the WWDT.
- Incorrect feed sequence causes reset or interrupt, if enabled.
- Flag to indicate watchdog reset.
- Programmable 24-bit timer with internal prescaler.
- Selectable time period from $(T_{cy(WDCLK)} \times 256 \times 4)$ to $(T_{cy(WDCLK)} \times 2^{24} \times 4)$ in multiples of $T_{cy(WDCLK)} \times 4$.
- The WatchDog Clock (WDCLK) source can be selected from the IRC or the dedicated watchdog oscillator (WDOsc). The clock source selection provides a wide range of potential timing choices of watchdog operation under different power conditions.

8.22 Real-Time Clock (RTC)

The RTC resides in a separate always-on voltage domain with battery back-up. The RTC uses an independent oscillator, also located in the always-on voltage domain.

8.22.1 Features

- 32-bit, 1 Hz RTC counter and associated match register for alarm generation.
- Separate 16-bit high-resolution/wake-up timer clocked at 1 kHz for 1 ms resolution with a more that one minute maximum time-out period.
- RTC alarm and high-resolution/wake-up timer time-out each generate independent interrupt requests. Either time-out can wake up the part from any of the low-power modes, including Deep power-down.

8.23 Analog-to-Digital Converter (ADC)

The ADC supports a resolution of 12 bit and fast conversion rates of up to 2 MSamples/s. Sequences of analog-to-digital conversions can be triggered by multiple sources. Possible trigger sources are the counter/timer match outputs and capture inputs and the ARM TXEV.

The ADC includes a hardware threshold compare function with zero-crossing detection.

8.23.1 Features

- 12-bit successive approximation analog to digital converter.
- 12-bit conversion rate of up to 2 MSamples/s.
- Temperature sensor voltage output selectable as internal voltage source for channel 0.
- Two configurable conversion sequences with independent triggers.
- Optional automatic high/low threshold comparison and zero-crossing detection.
- Power-down mode and low-power operating mode.
- Measurement range VREFN to VREFP (typically 3 V; not to exceed V_{DDA} voltage level).
- Burst conversion mode for single or multiple inputs.

Product data sheet

8.24 Temperature sensor

The temperature sensor transducer uses an intrinsic pn-junction diode reference and outputs a CTAT voltage (Complement To Absolute Temperature). The output voltage varies inversely with device temperature with an absolute accuracy of better than ± 5 °C over the full temperature range (-40 °C to +105 °C) for typical samples. The temperature sensor is approximately linear with a slight curvature. The output voltage is measured over different ranges of temperatures and fit with linear-least-square lines.

After power-up and after switching the input channels of the ADC, the temperature sensor output must be allowed to settle to its stable value before it can be used as an accurate ADC input.

For an accurate measurement of the temperature sensor by the ADC, the ADC must be configured in single-channel burst mode. The last value of a nine-conversion (or more) burst provides an accurate result.

- CRP1 disables access to the chip via the SWD and allows partial flash update (excluding flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is required and flash field updates are needed but all sectors cannot be erased.
- 2. CRP2 disables access to the chip via the SWD and only allows full flash erase and update using a reduced set of the ISP commands.
- 3. Running an application with level CRP3 selected, fully disables any access to the chip via the SWD pins and the ISP. This mode effectively disables ISP override using PIO0_1 pin as well. If necessary, the application must provide a flash update mechanism using IAP calls or using a call to the reinvoke ISP command to enable flash update via the USART.

CAUTION

If level three Code Read Protection (CRP3) is selected, no future factory testing can be performed on the device.

In addition to the three CRP levels, sampling of pin PIO0_1 for valid user code can be disabled. For details, see the *LPC11U6x user manual*.

11.1 Power consumption

Power measurements in Active, Sleep, and Deep-sleep modes were performed under the following conditions:

- Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.
- Configure GPIO pins as outputs using the GPIO DIR register.
- Write 1 to the GPIO CLR register to drive the outputs LOW.

LPC11U6x

The power profiles optimize the chip performance for power consumption or core efficiency by controlling the flash access and core power. As shown in <u>Figure 21</u> and <u>Figure 22</u>, different power modes result in different CoreMark scores reflecting the trade-off of efficiency and power consumption. In CPU and efficiency modes, the power profiles aim to keep the core efficiency at a maximum for the given system frequency. Depending on optimal flash access parameters that change with frequency, the CoreMark score and also the power consumption change. Since the compiled code for CoreMark testing runs out of flash memory, the CoreMark score depends on the compiler version.

11.3 Peripheral power consumption

The supply current per peripheral is measured as the difference in supply current between the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both registers and no code accessing the peripheral is executed except for the ADC. Measured on a typical sample at $T_{amb} = 25$ °C. Unless noted otherwise, the system oscillator and PLL are running in both measurements.

The supply currents are shown for system clock frequencies of 12 MHz and 48 MHz.

Peripheral	Typical s	supply current	in mA	Notes		
	n/a	12 MHz	48 MHz			
IRC	0.24	-	-	System oscillator running; PLL off; independent of main clock frequency.		
System oscillator at 12 MHz	0.28	-	-	IRC running; PLL off; independent of main clock frequency.		
WatchDog oscillator at 600 kHz/2	0	-	-	System oscillator running; PLL off; independent of main clock frequency.		
BOD	0.05	-	-	Independent of main clock frequency.		
System PLL	0.25	-	-	-		
USB PLL	0.37	-	-	-		
CLKOUT	-	0.25	0.89	System PLL is source of CLKOUT.		
ROM	-	0.09	0.37	-		
FLASHREG	-	0.17	0.66	-		
FLASHARRAY	-	0.13	0.52	-		
SRAM1	-	0.15	0.59	-		
USB SRAM	-	0.14	0.56	-		
GPIO + pin interrupt/pattern match	-	0.18	0.69	GPIO pins configured as outputs and set to LOW. Direction and pin state are maintained if the GPIO is disabled in the SYSAHBCLKCFG register.		
IOCON	-	0.08	0.30	-		
SCTimer0/PWM + SCTimer1/PWM	-	0.29	1.1	-		
CT16B0	-	0.05	0.17	-		
CT16B1	-	0.04	0.16	-		
CT32B0	-	0.04	0.13	-		
CT32B1	-	0.03	0.13	-		

 Table 9.
 Power consumption for individual analog and digital blocks

LPC11U6x

All information provided in this document is subject to legal disclaimers.

LPC11U6x

32-bit ARM Cortex-M0+ microcontroller

12.6 SSP interface

Table 17.	Dynamic characteristics	of SPI pins in SPI mode
-----------	-------------------------	-------------------------

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
SPI maste	er (in SPI mode)						
T _{cy(clk)}	clock cycle time	full-duplex mode	[1]	50	-	-	ns
		when only transmitting	[1]	40			ns
t _{DS}	data set-up time	in SPI mode	[2]	15	-	-	ns
t _{DH}	data hold time	in SPI mode	[2]	0	-	-	ns
t _{v(Q)}	data output valid time	in SPI mode	[2]	-	-	10	ns
t _{h(Q)}	data output hold time	in SPI mode	[2]	0	-	-	ns
SPI slave	(in SPI mode)						
T _{cy(PCLK)}	PCLK cycle time			20	-	-	ns
t _{DS}	data set-up time	in SPI mode	[3][4]	0	-	-	ns
t _{DH}	data hold time	in SPI mode	[3][4]	$3 \times T_{cy(PCLK)}$ + 4	-	-	ns
t _{v(Q)}	data output valid time	in SPI mode	[3][4]	-	-	$3 \times T_{cy(PCLK)}$ + 11	ns
t _{h(Q)}	data output hold time	in SPI mode	[3][4]	-	-	$2 \times T_{cy(PCLK)}$ + 5	ns

[1] T_{cy(clk)} = (SSPCLKDIV × (1 + SCR) × CPSDVSR) / f_{main}. The clock cycle time derived from the SPI bit rate T_{cy(clk)} is a function of the main clock frequency f_{main}, the SPI peripheral clock divider (SSPCLKDIV), the SPI SCR parameter (specified in the SSP0CR0 register), and the SPI CPSDVSR parameter (specified in the SPI clock prescale register).

[2] T_{amb} = -40 °C to 105 °C; 2.4 V \leq V_{DD} \leq 3.6 V.

 $[3] \quad T_{cy(clk)} = 12 \times T_{cy(PCLK)}.$

[4] $T_{amb} = 25 \text{ °C}$; for normal voltage supply range: $V_{DD} = 3.3 \text{ V}$.

12.7 USART interface

The maximum USART bit rate for all USARTs is 3.125 Mbit/s in asynchronous mode and 10 Mbit/s in synchronous slave and master mode.

Table 18. USART dynamic characteristics USART0

 $T_{amb} = -40 \text{ }^{\circ}\text{C}$ to 105 $^{\circ}\text{C}$; 2.4 V <= V_{DD} <= 3.6 V; $C_L = 10 \text{ pF}$. Simulated parameters sampled at the 50 % level of the falling or rising edge; values guaranteed by design.

Symbol	Parameter	Min	Max	Unit
T _{cy(clk)}	clock cycle time [1]	100	-	ns
USART mas	ter (in synchronous mode)			
t _{su(D)}	data input set-up time	44	-	ns
t _{h(D)}	data input hold time	0	-	ns
t _{v(Q)}	data output valid time	-	10	ns
t _{h(Q)}	data output hold time	0	-	ns
USART slave	e (in synchronous mode)			
t _{su(D)}	data input set-up time	5	-	ns
t _{h(D)}	data input hold time	20	-	ns
t _{v(Q)}	data output valid time	-	40	ns
t _{h(Q)}	data output hold time	25	-	ns

 T_{cy(clk)} = (main clock cycle time)/(UARTCLKDIV x 2 x (256 x DLM + DLL)). See the LPC11U6x User manual UM10732.

Table 19. USART dynamic characteristics USART1/2/3/4

 $T_{amb} = -40 \text{ }^{\circ}\text{C}$ to 105 $^{\circ}\text{C}$; 2.4 V <= V_{DD} <= 3.6 V; $C_L = 10 \text{ pF}$. Simulated parameters sampled at the 50 % level of the falling or rising edge; values guaranteed by design.

Symbol	Parameter	Min	Max	Unit
T _{cy(clk)}	clock cycle time [1]	100	-	ns
USART ma	aster (in synchronous mode)	i.		
t _{su(D)}	data input set-up time	44	-	ns
t _{h(D)}	data input hold time	0	-	ns
t _{v(Q)}	data output valid time	-	10	ns
t _{h(Q)}	data output hold time	0	-	ns
USART sla	ive (in synchronous mode)	i.		
t _{su(D)}	data input set-up time	5	-	ns
t _{h(D)}	data input hold time	0	-	ns
t _{v(Q)}	data output valid time	-	40	ns
t _{h(Q)}	data output hold time	20	-	ns

[1] $T_{cy(clk)} = U_PCLK/BRGVAL$. See the LPC11U6x User manual UM10732.

Table 22. 12-bit ADC static characteristics

 $T_{amb} = -40$ °C to +105 °C; $V_{DD} = 2.4$ V to 3.6 V; VREFP = V_{DDA} ; $V_{SSA} = 0$; VREFN = V_{SSA} . ADC calibrated at T = 25 °C.

Symbol	Parameter	Conditions		Min	Тур [<u>1]</u>	Max	Unit
V _{IA}	analog input voltage		[2]	0	-	V _{DDA}	V
C _{ia}	analog input capacitance		[3]	-	-	0.32	pF
f _{clk(ADC)}	ADC clock	$V_{DDA} \ge 2.7 \text{ V}$				50	MHz
freque	frequency	$V_{DDA} \ge 2.4 \text{ V}$				25	MHz
f _s samp	sampling	$V_{DDA} \ge 2.7 \text{ V}$		-	-	2	Msamples/s
	frequency	$V_{DDA} \geq 2.4 \ V$		-	-	1	Msamples/s
E _D	differential linearity error		<u>[4]</u>	-	-	±2.5	LSB
E _{L(adj)}	integral non-linearity		[5]	-	-	±2.5	LSB
Eo	offset error		[6]	-	-	±4.5	LSB
V _{err(FS)}	full-scale error voltage		[7]	-	-	±0.5	%
Zi	input impedance	f _s = 2 Msamples/s	<u>[8][9]</u>	0.1	-	-	MΩ

[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

- [2] The input resistance of ADC channel 0 is higher than for all other channels.
- [3] C_{ia} represents the external capacitance on the analog input channel for sampling speeds of 2 Msamples/s.
- [4] The differential linearity error (E_D) is the difference between the actual step width and the ideal step width. See Figure 35.
- [5] The integral non-linearity (E_{L(adj)}) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 35.
- [6] The offset error (E_0) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See Figure 35.
- [7] The full-scale error voltage or gain error (E_G) is the difference between the straight-line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See <u>Figure 35</u>.
- [8] $T_{amb} = 25 \text{ °C}$; maximum sampling frequency $f_s = 2$ Msamples/s and analog input capacitance $C_{ia} = 0.32 \text{ pF}$.
- [9] Input impedance Z_i is inversely proportional to the sampling frequency and the total input capacity including C_{ia} : $Z_i \propto 1 / (f_s \times C_i)$. See Table 8 for C_{io} .

One method is to use a voltage divider to connect the USB_VBUS pin to the VBUS on the USB connector. The voltage divider ratio should be such that the USB_VBUS pin is greater than 0.7 V_{DD} to indicate a logic HIGH while below the 3.6 V allowable maximum voltage.

For the following operating conditions

 $V_{DD} = 3.6 V,$

the voltage divider should provide a reduction of 3.6 V/5.25 V or ~0.686 V.

The USB_CONNECT function can be enabled internally by setting the DCON bit in the DEVCMDSTAT register to prevent the USB from timing out when there is a significant delay between power-up and handling USB traffic. External circuitry is not required for the USB_CONNECT functionality.

LPC11U6x

14.6 RTC oscillator component selection

The 32 kHz crystal must be connected to the part via the RTCXIN and RTCXOUT pins as shown in Figure 43. If the RTC is not used, the RTCXIN pin can be grounded.

Select C_{x1} and C_{x2} based on the external 32 kHz crystal used in the application circuitry. The pad capacitance C_P of the RTCXIN and RTCXOUT pad is 3 pF. If the load capacitance of the external crystal is C_L , the optimal C_{x1} and C_{x2} can be selected as:

$$C_{x1} = C_{x2} = 2 \times C_L - C_P$$

14.7 Connecting power, clocks, and debug functions

Figure 44 shows the basic board connections used to power the LPC11U6x, connect the external crystal and the 32 kHz oscillator for the RTC, and provide debug capabilities via the serial wire port.

14.10 ElectroMagnetic Compatibility (EMC)

Radiated emission measurements according to the IEC61967-2 standard using the TEM-cell method are shown for part LPC11U68JBD100.

Table 30. ElectroMagnetic Compatibility (EMC) for part LPC11U68 (TEM-cell method) $V_{DD} = 3.3 V$; $T_{amb} = 25$ °C.

Parameter	Frequency band	System clock =				Unit
		12 MHz	24 MHz	36 MHz	48 MHz	
Input clock:	IRC (12 MHz)			<u>.</u>		<u>.</u>
maximum peak level	1 MHz to 30 MHz	-5	-5	-5	-5	dBμV
	30 MHz to 150 MHz	-1	0	+4	+4	dBμV
	150 MHz to 1 GHz	-1	0	+4	+4	dBμV
IEC level ^[1]	-	0	0	0	0	-
Input clock:	crystal oscillator (12 M	Hz)		<u>.</u>		<u>.</u>
maximum	1 MHz to 30 MHz	-2	-6	-4	-5	dBμV
peak level	30 MHz to 150 MHz	-1	0	+3	+3	dBμV
	150 MHz to 1 GHz	-2	0	+2	+5	dBμV
IEC level ^[1]	-	0	0	0	0	-

[1] IEC levels refer to Appendix D in the IEC61967-2 Specification.

LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm SOT314-2 HHHHHHHHHHHH нннннннннн Ду X Α ¥ 32 Z_E 49 ٨ -е Ė H_E ⊕wM bp 64 pin 1 index 17 detail X 1 НННН HHHHHН Н ZD = v 🕅 A е ⊕wM bp В D н_D = v M B 2.5 5 mm 0 scale DIMENSIONS (mm are the original dimensions) Α D⁽¹⁾ Z_D⁽¹⁾ E⁽¹⁾ Z_E⁽¹⁾ UNIT Lp A₁ A_2 A₃ bp с е H_{D} ${\sf H}_{\sf E}$ L v w θ у max 7° 0.20 1.45 0.27 0.18 10.1 10.1 12.15 12.15 0.75 1.45 1.45 1.6 mm 0.12 0.25 0.5 1 0.2 0.1 0[°] 0.05 1.35 0.17 0.12 9.9 9.9 11.85 11.85 0.45 1.05 1.05 Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. REFERENCES OUTLINE EUROPEAN ISSUE DATE VERSION PROJECTION IEC JEDEC JEITA 00-01-19 SOT314-2 136E10 MS-026 70 03-02-25

Fig 46. Package outline LQFP64 (SOT314-2)

LPC11U6x

18. Revision history

Table 31. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes				
LPC11U6x v.1.3	20160907	Product data sheet	-	LPC11U6x v.1.2				
Modifications:	Section 14.1	0 "ElectroMagnetic Com	patibility (EMC)"	added.				
	 Replaced CT16B0_CAP1 with CT16B0_CAP2 for pin Pl01_21. See <u>Table 3 "Pin</u> <u>description"</u>. Replaced CT32B0_CAP1 with CT32B0_CAP2 for pin PlO1_6 and pin PlO1_29. See <u>Table 3 "Pin description"</u>. Updated Figure 7 "AHB multilayer matrix": HS GPIO connects with M0+ Core. not with 							
	DMA or USE	3.	<u>allix</u> . HS GPIO C					
LPC11U6x v.1.2	20140526	Product data sheet	-	LPC11U6x v.1.1				
Modifications:	 Part marking 	updated with revision in	ndicator.					
	 Changed recommendation for VBAT connection if unused: Tie to VDD. See <u>Table 3</u> <u>"Pin description"</u>. 							
	 Section 14.7 	"Connecting power, cloo	cks, and debug fu	nctions" added.				
	 Section 14.9) "Pin states in different p	ower modes" add	led.				
	 Remark added about using the regulator in the USB bus-powered set-up. See <u>Section</u> 14.3 "Suggested USB interface solutions". 							
 Figure 39 "USB interface on a bus-powered device" changed to show L 								
	connection t	o part.						
		Draduat data abaat						
LFC1100X V.1.1	Deremeter F	FIDUUCI Udid Sheel	-					
Modifications.	 Parameter F Description ("Suggested internally by 	of the internal USB_CON USB interface solutions". software and does not re	INECT function cl INECT function cl . The USB_CONI equire external cli	e 22. larified in Section 14.3 NECT function can be set rcuitry.				
	Parameter C	Cia corrected in Table 22	"12-bit ADC station	c characteristics".				
	 Figure 36 "A 	DC input impedance" ad	lded.					
	Parameter pin capacitance added in Table 8.							
	 Pin description for VBAT updated: If no battery is used, tie VBAT to VDD or to ground. See Table 3. 							
	 Pin description for RESET/PIO0_0 updated: In deep power-down mode, this pin must be pulled HIGH externally. The RESET pin can be left unconnected or be used as a GPIO pin if an external RESET function is not needed. See Table 3. 							
	 Pin functions 	s TMS, TDI, TDO, and \overline{TI}	RST changed to o	default function in Table 3.				
	 Pin descripti 	on table updated for clar	ity (VBAT, I2C-bu	s pins, WAKEUP pin).				
	 Section 14.1 	"ADC usage notes" add	led.					
	 Use of USB Section 14.3 	_CONNECT signal expla	ined when VBUS	is not connected. See				
LPC11U6x v.1	20140117	Product data sheet	-	-				