

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM
Number of I/O	37
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc908gr32acfaer

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.

Revision History

Date	Revision Level	Description	Page Number(s)
April, 2004	N/A	Initial release	N/A
July, 2004	1	9.7.3 Keyboard Interrupt Polarity Register — Corrected description of KBIP7–KBIP0.	119
		Table 13-6. ESCI LIN Control Bits — Corrected Functionality definitions	174
June, 2005	2	13.9.1 ESCI Arbiter Control Register — Corrected definition for ACLK bit.	179
		13.9.3 Bit Time Measurement — Corrected description of ACLK bit.	180
March, 2006	3	10.5 Clock Generator Module (CGM) — Updated description to remove erroneous information.	122
		Added 1.5.15 Unused Pin Termination	28
		12.1 Introduction — Replaced note	131
		Table 13-6. ESCI LIN Control Bits — Corrected functionality column.	174
July, 2006	4	The following sections were updated to show that a break interrupt inhibits input captures: 17.6 TIM1 During Break Interrupts 18.6 TIM2 During Break Interrupts 19.2.1.2 TIM During Break Interrupts	233 251 264
		Figure 19-10. Normal Monitor Mode Circuit and Figure 19-11. Forced Monitor Mode — Changed capacitor values	269
		20.5 5.0-Vdc Electrical Characteristics — Updated minimum value for low-voltage inhibit, trip rising voltage (V _{TRIPR}).	279
		20.9.1 CGM Component Specifications — Updated values for feedback bias resistor	284
		Figure 2-2. Control, Status, and Data Registers — Replaced TBMCLKSEL with TMBCLKSEL to be compatible with development tool nomenclature	33 90
		Chapter 5 Configuration Register (CONFIG) — Replaced COPCLK with CGMXCLK	89 91
		10.6.2 Stop Mode — Replaced COPCLK with CGMXCLK	122
		Figure 13-3. ESCI Module Block Diagram — Changed BUS_CLK to Bus Clock and deleted reference to 4x BUSCLK	154
		13.4.2 Transmitter — Changed ESCIBDSRC to SCIBDSRC	156
April, 2007	5	13.9.1 ESCI Arbiter Control Register and 13.9.3 Bit Time Measurement — Replaced one quarter with one half in the definition for ACLK = 1	179 180
		Chapter 16 Timebase Module (TBM) — Replaced TBMCLKSEL with TMBCLKSEL to be compatible with development tool nomenclature	222 223
		20.5 5.0-Vdc Electrical Characteristics and 20.6 3.3-Vdc Electrical Characteristics — Updated tables	279 281
		 20.9 Clock Generation Module (CGM) Characteristics — Updated section to include the following: 20.9.1 CGM Operating Conditions 20.9.2 CGM Component Information 20.9.3 CGM Acquisition/Lock Time Information 	284 284 285

1.4 Pin Assignments

Figure 1-2, Figure 1-3, and Figure 1-4 illustrate the pin assignments for the 32-pin LQFP, 48-pin LQFP, and 64-pin QFP respectively.

Figure 1-2. 32-Pin LQFP Pin Assignments

Figure 1-4. 64-Pin QFP Pin Assignments

1.5 Pin Functions

Descriptions of the pin functions are provided here.

1.5.1 Power Supply Pins (V_{DD} and V_{SS})

V_{DD} and V_{SS} are the power supply and ground pins. The MCU operates from a single power supply.

Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU as Figure 1-5 shows. Place the C1 bypass capacitor as close to the MCU as possible. Use a high-frequency-response ceramic capacitor for C1. C2 is an optional bulk current bypass capacitor for use in applications that require the port pins to source high current levels.

MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5

Freescale Semiconductor

Input/Output (I/O) Section

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
	ESCI Data Register	Read:	R7	R6	R5	R4	R3	R2	R1	R0
\$0018	(SCDR)	Write:	T7	T6	T5	T4	T3	T2	T1	T0
	See page 173.	Reset:				Unaffecte	d by reset			
\$0019	ESCI Baud Rate Register (SCBR)	Read: Write:	LINT	LINR	SCP1	SCP0	R	SCR2	SCR1	SCR0
	See page 174.	Reset:	0	0	0	0	0	0	0	0
	Keyboard Status and Control	Read:	0	0	0	0	KEYF	0		
\$001A	Register (INTKBSCR)	Write:						ACKK	INIASKK	MODEK
	See page 118.	Reset:	0	0	0	0	0	0	0	0
\$001B	Keyboard Interrupt Enable \$001B Register (INTKBIER)	Read: Write:	KBIE7	KBIE6	KBIE5	KBIE4	KBIE3	KBIE2	KBIE1	KBIE0
	See page 119.	Reset:	0	0	0	0	0	0	0	0
	Timebase Module Control	Read:	TBIF	TBB2	TBB1	TBB0	0	TRIE		R
\$001C	Register (TBCR)	Write:		TONE	IDITI	TEHO	TACK	IDIL	TBOIN	11
	See page 224.	Reset:	0	0	0	0	0	0	0	0
	IRQ Status and Control Register (INTSCR)	Read:	0	0	0	0	IRQF	0	IMASK	MODE
\$001D		Write:						ACK		MODE
	See page 112.	Reset:	0	0	0	0	0	0	0	0
\$001E	Configuration Register 2 (CONFIG2) ⁽¹⁾	Read: Write:	0	MCLKSEL	MCLK1	MCLK0	R	TMBCLK- SEL	OSCENIN- STOP	SCIBDSRC
	occ page so.	Reset:	0	0	0	0	0	0	0	1
\$001F	Configuration Register 1 (CONFIG1) ⁽¹⁾	Read: Write:	COPRS	LVISTOP	LVIRSTD	LVIPWRD	LVI50R3 [†]	SSREC	STOP	COPD
	See page 91.	Reset:	0	0	0	0	0	0	0	0
1. On	e-time writable register af	ter eac	h reset, ex	cept LVI5C	0R3 bit. LVI	50R3 bit is	only reset	via POR (j	power-on r	eset).
	TIM1 Status and Control	Read:	TOF	TOIE	TSTOP	0	0	PS2	PS1	PS0
\$0020	Register (T1SC)	Write:	0			TRST				
	See page 234.	Reset:	0	0	1	0	0	0	0	0
	TIM1 Counter	Read:	Bit 15	14	13	12	11	10	9	Bit 8
\$0021	Register High (T1CNTH)	Write:								
	See page 235.	Reset:	0	0	0	0	0	0	0	0
	TIM1 Counter	Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$0022	Register Low (T1CNTL)	Write:								
	See page 235.	Reset:	0	0	0	0	0	0	0	0
\$0023	TIM1 Counter Modulo Register High (T1MODH)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
	See page 236.	Docot.	- 1	1	1	1	4	1	4	1

Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 9)

1 = Unimplemented

1

1

R = Reserved

1

1

U = Unaffected

MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5

See page 236. Reset:

1

1

1

Input/Output (I/O) Section

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0			
\$0030	TIM2 Channel 0 Status and Control Register (T2SC0)	Read: Write:	CH0F 0	CH0IE	MS0B	MS0A	ELS0B	ELS0A	TOV0	CHOMAX			
	See page 237.	Reset:	0	0	0	0	0	0	0	0			
\$0031	TIM2 Channel 0 Register High (T2CH0H)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8			
	See page 240.	Reset:				Indeterminat	te after reset						
\$0032	TIM2 Channel 0 Register Low (T2CH0L)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0			
	See page 240.	Reset:		_	-	Indeterminat	te after reset	_		-			
\$0033	TIM2 Channel 1 Status and Control Register (T2SC1)	Read: Write:	CH1F 0	CH1IE	0	MS1A	ELS1B	ELS1A	TOV1	CH1MAX			
	See page 237.	Reset:	0	0	0	0	0	0	0	0			
\$0034	TIM2 Channel 1 Register High (T2CH1H)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8			
	See page 240.	Reset:		Indeterminate after reset									
\$0035	TIM2 Channel 1 Register Low (T2CH1L)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0			
	See page 240.	Reset:		_	-	Indeterminat	te after reset	_		-			
\$0036	PLL Control Register (PCTL)	Read: Write:	PLLIE	PLLF	PLLON	BCS	R	R	VPR1	VPR0			
	See page 81.	Reset:	0	0	1	0	0	0	0	0			
\$0037	PLL Bandwidth Control Register (PBWC)	Read: Write:	AUTO	LOCK	ACQ	0	0	0	0	R			
	See page 82.	Reset:	0	0	0	0	0	0	0	0			
\$0038	PLL Multiplier Select High Register (PMSH)	Read: Write:	0	0	0	0	MUL11	MUL10	MUL9	MUL8			
	See page 83.	Reset:	0	0	0	0	0	0	0	0			
\$0039	PLL Multiplier Select Low Register (PMSL)	Read: Write:	MUL7	MUL6	MUL5	MUL4	MUL3	MUL2	MUL1	MULO			
	See page 84.	Reset:	0	1	0	0	U	U	U	U			
\$003A	PLL VCO Select Range Register (PMRS)	Read: Write:	VRS7	VRS6	VRS5	VRS4	VRS3	VRS2	VRS1	VRS0			
	See page 84.	Reset:	0	1	0	0	0	0	0	0			
		Read:	0	0	0	0	P	P	P	P			
\$003B	Reserved	Write:					n	n	n	רו			
		Reset:	0	0 = Unimplem	0 nented	0 R = Reserve	0 d	0 U = Unaffect	0 ed	1			

Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 9)

2.5 Random-Access Memory (RAM)

The RAM locations are broken into two non-continuous memory blocks. The RAM addresses locations are \$0040–\$043F and \$0580–\$097F. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.

NOTE

For correct operation, the stack pointer must point only to RAM locations.

Within page zero are 192 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved from its reset location at \$00FF out of page zero, direct addressing mode instructions can efficiently access all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables.

Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers.

NOTE

For M6805 compatibility, the H register is not stacked.

During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls.

NOTE

Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation.

2.6 FLASH-1 Memory (FLASH-1)

This subsection describes the operation of the embedded FLASH-1 memory. This memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump.

2.6.1 Functional Description

The FLASH-1 memory is an array of 32,256 bytes with two bytes of block protection (one byte for protecting areas within FLASH-1 array and one byte for protecting areas within FLASH-2 array) and an additional 52 bytes of user vectors. An erased bit reads as a 1 and a programmed bit reads as a 0.

Memory in the FLASH-1 array is organized into rows within pages. There are two rows of memory per page with 64 bytes per row. The minimum erase block size is a single page,128 bytes. Programming is performed on a per-row basis, 64 bytes at a time. Program and erase operations are facilitated through control bits in the FLASH-1 control register (FL1CR). Details for these operations appear later in this subsection.

The FLASH-1 memory map consists of:

- \$8000-\$FDFF: user memory (32,256 bytes)
- \$FF80: FLASH-1 block protect register (FL1BPR)
- \$FF81: FLASH-2 block protect register (FL2BPR)
- \$FF88: FLASH-1 control register (FL1CR)
- \$FFCC-\$FFFF: these locations are reserved for user-defined interrupt and reset vectors (see Table 2-1 for details)

Central Processor Unit (CPU)

Source				0	Eff	ec CC	t R		ess	de	and	S
Form	Operation	Description	v	н	1	N	z	С	Addre	Opco	Dpera	Cycle
PULA	Pull A from Stack	$SP \leftarrow (SP + 1); Pull (A)$	-	_	_	_	_	-	INH	86	<u> </u>	2
PULH	Pull H from Stack	$SP \leftarrow (SP + 1); Pull (H)$	-	-	-	-	-	-	INH	8A		2
PULX	Pull X from Stack	$SP \leftarrow (SP + 1); Pull (X)$	-	-	-	-	-	-	INH	88		2
ROL <i>opr</i> ROLA ROLX ROL <i>opr</i> ,X ROL ,X ROL <i>opr</i> ,SP	Rotate Left through Carry		t	_	-	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	39 49 59 69 79 9E69	dd ff ff	4 1 4 3 5
ROR <i>opr</i> RORA RORX ROR <i>opr</i> ,X ROR ,X ROR <i>opr</i> ,SP	Rotate Right through Carry	b7 b0	ţ	_	_	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	36 46 56 66 76 9E66	dd ff ff	4 1 4 3 5
RSP	Reset Stack Pointer	$SP \leftarrow \$FF$	-	-	-	-	-	-	INH	9C		1
RTI	Return from Interrupt	$\begin{array}{l} SP \leftarrow (SP) + 1; \ Pull \ (CCR) \\ SP \leftarrow (SP) + 1; \ Pull \ (A) \\ SP \leftarrow (SP) + 1; \ Pull \ (X) \\ SP \leftarrow (SP) + 1; \ Pull \ (PCH) \\ SP \leftarrow (SP) + 1; \ Pull \ (PCL) \end{array}$	ţ	ţ	ţ	ţ	ţ	ţ	INH	80		7
RTS	Return from Subroutine	$SP \leftarrow SP + 1$; Pull (PCH) $SP \leftarrow SP + 1$; Pull (PCL)	-	-	-	-	-	-	INH	81		4
SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP	Subtract with Carry	$A \leftarrow (A) - (M) - (C)$	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A2 B2 C2 D2 E2 F2 9EE2 9ED2	ii dd hh II ee ff ff ff ee ff	23443245
SEC	Set Carry Bit	C ← 1	-	-	-	-	-	1	INH	99		1
SEI	Set Interrupt Mask	l ← 1	-	-	1	-	-	-	INH	9B		2
STA opr STA opr, STA opr,X STA opr,X STA opr,SP STA opr,SP	Store A in M	M ← (A)	0	_	_	ţ	ţ	_	DIR EXT IX2 IX1 IX SP1 SP2	B7 C7 D7 E7 F7 9EE7 9ED7	dd hh II ee ff ff ee ff	3 4 4 3 2 4 5
STHX opr	Store H:X in M	$(M:M+1) \leftarrow (H:X)$	0	-	-	\$	\$	-	DIR	35	dd	4
STOP	Enable Interrupts, Stop Processing, Refer to MCU Documentation	I \leftarrow 0; Stop Processing	-	-	0	-	-	-	INH	8E		1
STX opr STX opr STX opr,X STX opr,X STX,X STX opr,SP STX opr,SP	Store X in M	M ← (X)	0	_	_	ţ	ţ	_	DIR EXT IX2 IX1 IX SP1 SP2	BF CF DF EF FF 9EEF 9EDF	dd hh II ee ff ff ee ff	3 4 4 3 2 4 5
SUB #opr SUB opr SUB opr SUB opr;X SUB opr;X SUB opr;SP SUB opr;SP	Subtract	A ← (A) – (M)	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A0 B0 C0 D0 E0 F0 9EE0 9ED0	ii dd hh II ee ff ff ee ff	23443245

Table 7-1. Instruction Set Summary (Sheet 5 of 6)

Chapter 12 Input/Output (I/O) Ports

12.1 Introduction

Bidirectional input-output (I/O) pins form seven parallel ports. All I/O pins are programmable as inputs or outputs. All individual bits within port A, port C, port D and port F are software configurable with pullup devices if configured as input port bits. The pullup devices are automatically and dynamically disabled when a port bit is switched to output mode.

12.2 Unused Pin Termination

Input pins and I/O port pins that are not used in the application must be terminated. This prevents excess current caused by floating inputs, and enhances immunity during noise or transient events. Termination methods include:

- 1. Configuring unused pins as outputs and driving high or low;
- 2. Configuring unused pins as inputs and enabling internal pull-ups;
- 3. Configuring unused pins as inputs and using external pull-up or pull-down resistors.

Never connect unused pins directly to V_{DD} or V_{SS} .

Since some general-purpose I/O pins are not available on all packages, these pins must be terminated as well. Either method 1 or 2 above are appropriate.

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0	
\$0000	Port A Data Register (PTA) See page 135.	Read: Write:	PTA7	PTA6	PTA5	PTA4	PTA3	PTA2	PTA1	PTA0	
		Reset:				Unaffecte	d by reset				
\$0001	Port B Data Register 0001 (PTB) See page 138.	Read: Write:	PTB7	PTB6	PTB5	PTB4	PTB3	PTB2	PTB1	PTB0	
		Reset:	Unaffected by reset								
\$0002	Port C Data Register 0002 (PTC) See page 140.	Read: Write:	1	PTC6	PTC5	PTC4	PTC3	PTC2	PTC1	PTC0	
		Reset:				Unaffecte	d by reset				
		= Unimplemented									

Figure 12-1. I/O Port Register Summary (Sheet 1 of 3)

Input/Output (I/O) Ports

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0			
\$0003	Port D Data Register (PTD)	Read: Write:	PTD7	PTD6	PTD5	PTD4	PTD3	PTD2	PTD1	PTD0			
	See page 142.	Reset:		I	I	Unaffecte	d by reset						
Data Direction Register A \$0004 (DDRA)		Read: Write:	DDRA7	DDRA6	DDRA5	DDRA4	DDRA3	DDRA2	DDRA1	DDRA0			
	See page 136.	Reset:	0	0	0	0	0	0	0	0			
\$0005	Data Direction Register B (DDRB)	Read: Write:	DDRB7	DDRB6	DDRB5	DDRB4	DDRB3	DDRB2	DDRB1	DDRB0			
	See page 138.	Reset:	0	0	0	0	0	0	0	0			
\$0006	Data Direction Register C \$0006 (DDRC)	Read: Write:	0	DDRC6	DDRC5	DDRC4	DDRC3	DDRC2	DDRC1	DDRC0			
See pa	See page 140.	Reset:	0	0	0	0	0	0	0	0			
\$0007	Data Direction Register D (DDRD)	Read: Write:	DDRD7	DDRD6	DDRD5	DDRD4	DDRD3	DDRD2	DDRD1	DDRD0			
	See page 143.	Reset:	0	0	0	0	0	0	0	0			
	Port E Data Begister	Read:	0	0	DTEC		DTEO	DTEO	DTC1	DTEO			
\$0008	(PTE)	Write:			PIES	PIE4	PIE3	PIEZ	PIEI	PIEU			
	See page 145.	Reset:	Unaffected by reset										
\$000C	Data Direction Register E	Read: Write:	0	0	DDRE5	DDRE4	DDRE3	DDRE2	DDRE1	DDRE0			
	See page 146.	Reset:	0	0	0	0	0	0	0	0			
\$000D	Port A Input Pullup Enable Register (PTAPUE)	Read: Write:	PTAPUE7	PTAPUE6	PTAPUE5	PTAPUE4	PTAPUE3	PTAPUE2	PTAPUE1	PTAPUE0			
	See page 137.	Reset:	0	0	0	0	0	0	0	0			
	Port C Input Pullup Enable	Read:	0										
\$000E	Register (PTCPUE)	Write:		FICFUED	FICFUED	FIGFUE4	FICFUES	FIGFUEZ	FICFUEI	FICFUEU			
	See page 142.	Reset:	0	0	0	0	0	0	0	0			
\$000F	Port D Input Pullup Enable Register (PTDPUE)	Read: Write:	PTDPUE7	PTDPUE6	PTDPUE5	PTDPUE4	PTDPUE3	PTDPUE2	PTDPUE1	PTDPUE0			
See page 1		Reset:	0	0	0	0	0	0	0	0			
			= Unimplemented										

Input/Output (I/O) Ports

When bit DDRDx is a 1, reading address \$0003 reads the PTDx data latch. When bit DDRDx is a 0, reading address \$0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 12-5 summarizes the operation of the port D pins.

Figure 12-15. Port D I/O Circuit

Table 12-5. Port D Pin Functions

PTDPUE	DDRD	PTD	I/O Pin	Accesses to DDRD	Access	ses to PTD
Bit	Bit	Bit	Mode	Read/Write	Read	Write
1	0	X ⁽¹⁾	Input, V _{DD} ⁽²⁾	DDRD7-DDRD0	Pin	PTD7–PTD0 ⁽³⁾
0	0	Х	Input, Hi-Z ⁽⁴⁾	DDRD7-DDRD0	Pin	PTD7–PTD0 ⁽³⁾
X	1	Х	Output	DDRD7-DDRD0	PTD7–PTD0	PTD7–PTD0

1. X = Don't care

I/O pin pulled up to V_{DD} by internal pullup device.
 Writing affects data register, but does not affect input.

4. Hi-Z = High imp[edance

SCTE — ESCI Transmitter Empty Bit

This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register. SCTE can generate an ESCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set, SCTE generates an ESCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit.

- 1 = SCDR data transferred to transmit shift register
- 0 = SCDR data not transferred to transmit shift register

TC — Transmission Complete Bit

This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being transmitted. TC generates an ESCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set. TC is cleared automatically when data, preamble, or break is queued and ready to be sent. There may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the transmission actually starting. Reset sets the TC bit.

- 1 = No transmission in progress
- 0 = Transmission in progress

SCRF — ESCI Receiver Full Bit

This clearable, read-only bit is set when the data in the receive shift register transfers to the ESCI data register. SCRF can generate an ESCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is set the SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF.

- 1 = Received data available in SCDR
- 0 = Data not available in SCDR

IDLE — Receiver Idle Bit

This clearable, read-only bit is set when 10 or 11 consecutive 1s appear on the receiver input. IDLE generates an ESCI receiver CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can set the IDLE bit. Reset clears the IDLE bit.

- 1 = Receiver input idle
- 0 = Receiver input active (or idle since the IDLE bit was cleared)

OR — Receiver Overrun Bit

This clearable, read-only bit is set when software fails to read the SCDR before the receive shift register receives the next character. The OR bit generates an ESCI error CPU interrupt request if the ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears the OR bit.

- 1 = Receive shift register full and SCRF = 1
- 0 = No receiver overrun

Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing sequence. Figure 13-14 shows the normal flag-clearing sequence and an example of an overrun caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.

Introduction

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
	Break Status Register	Read:	R	R	R	R	R	R	SBSW	R
\$FE00	(BSR) See page 100	Write:							Note ⁽¹⁾	
	See page 199.		0	0	0	0	0	0	0	0
1. Writing a 0 clears SBSW.										
	SIM Reset Status Register	Read:	POR	PIN	COP	ILOP	ILAD	MODRST	LVI	0
\$FE01 Se	(SRSR)	Write:								
	See page 199.	POR:	1	0	0	0	0	0	0	0
\$FE03	Break Flag Control Register (BFCR)	Read: Write:	BCFE	R	R	R	R	R	R	R
	See page 200.	Reset:	0							
	Interrunt Status Register 1	Read:	IF6	IF5	IF4	IF3	IF2	IF1	0	0
\$FE04	(INT1) See page 195.	Write:	R	R	R	R	R	R	R	R
		Reset:	0	0	0	0	0	0	0	0
	Interrupt Status Register 2	Read:	IF14	IF13	IF12	IF11	IF10	IF9	IF8	IF7
\$FE05	(INT2)	Write:	R	R	R	R	R	R	R	R
	See page 195.	Reset:	0	0	0	0	0	0	0	0
	Interrupt Status Register 3	Read:	IF22	IF32	IF20	IF19	IF18	IF17	IF16	IF15
\$FE06	(INT3)	Write:	R	R	R	R	R	R	R	R
	See page 195.	Reset:	0	0	0	0	0	0	0	0
	Interrunt Status Register 4	Read:	0	0	0	0	0	0	IF24	IF23
\$FE07	(INT4)	Write:	R	R	R	R	R	R	R	R
	See page 196.	Reset:	0	0	0	0	0	0	0	0
				= Unimplem	= Unimplemented		= Reserved			

Figure 14-2. SIM I/O Register Summary

System Integration Module (SIM)

14.6.2 Stop Mode

In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset also causes an exit from stop mode.

The SIM disables the clock generator module outputs (CGMOUT and CGMXCLK) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in CONFIG1. If SSREC is set, stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32. This is ideal for applications using canned oscillators that do not require long startup times from stop mode.

NOTE

External crystal applications should use the full stop recovery time by clearing the SSREC bit unless OSCENINSTOP bit is set in CONFIG2.

The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 14-19 shows stop mode entry timing. Figure 14-20 shows stop mode recovery time from interrupt.

NOTE To minimize stop current, all pins configured as inputs should be driven to a 1 or 0.

CPUSTOP											
IAB	STOP ADDR STOP ADDR + 1 SAME SAME										
IDB	PREVIOUS DATA NEXT OPCODE SAME SAME										
R/W	у										
Note: Previo	ous data can be operand data or the STOP opcode, depending on the last instruction.										
	Figure 14-19. Stop Mode Entry Timing										
INT/BREAK											
	STOP +1 STOP +2 STOP +2 SP SP-1 SP-2 SP-3 SP-3										

Figure 14-20. Stop Mode Recovery from Interrupt

15.5 Queuing Transmission Data

The double-buffered transmit data register allows a data byte to be queued and transmitted. For an SPI configured as a master, a queued data byte is transmitted immediately after the previous transmission has completed. The SPI transmitter empty flag (SPTE) indicates when the transmit data buffer is ready to accept new data. Write to the transmit data register only when SPTE is high. Figure 15-9 shows the timing associated with doing back-to-back transmissions with the SPI (SPSCK has CPHA: CPOL = 1:0).

- (6) CPU READS SPSCR WITH SPRF BIT SET.
 - Figure 15-9. SPRF/SPTE CPU Interrupt Timing

The transmit data buffer allows back-to-back transmissions without the slave precisely timing its writes between transmissions as in a system with a single data buffer. Also, if no new data is written to the data buffer, the last value contained in the shift register is the next data word to be transmitted.

For an idle master or idle slave that has no data loaded into its transmit buffer, the SPTE is set again no more than two bus cycles after the transmit buffer empties into the shift register. This allows the user to queue up a 16-bit value to send. For an already active slave, the load of the shift register cannot occur until the transmission is completed. This implies that a back-to-back write to the transmit data register is not possible. SPTE indicates when the next write can occur.

Timebase Module (TBM)

16.5 TBM Interrupt Rate

The interrupt rate is determined by the equation:

where:

f_{CGMXCLK} = Frequency supplied from the clock generator (CGM) module Divider = Divider value as determined by TBR2–TBR0 settings and TMBCLKSEL, see Table 16-1

If TIM1 functions are not required during wait mode, reduce power consumption by stopping the TIM1 before executing the WAIT instruction.

17.6 TIM1 During Break Interrupts

A break interrupt stops the TIM1 counter and inhibits input captures.

The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. See Figure 14-21. Break Status Register (BSR).

To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the second step clears the status bit.

17.7 Input/Output Signals

Port D shares two of its pins with the TIM1. The two TIM1 channel I/O pins are PTD4/T1CH0 and PTD5/T1CH1.

Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. PTD4/T1CH0 can be configured as a buffered output compare or buffered PWM pin.

17.8 Input/Output Registers

The following I/O registers control and monitor operation of the TIM:

- TIM1 status and control register (T1SC)
- TIM1 counter registers (T1CNTH:T1CNTL)
- TIM1 counter modulo registers (T1MODH:T1MODL)
- TIM1 channel status and control registers (T1SC0 and T1SC1)
- TIM1 channel registers (T1CH0H:T1CH0L and T1CH1H:T1CH1L)

17.8.1 TIM1 Status and Control Register

The TIM1 status and control register (T1SC) does the following:

- Enables TIM1 overflow interrupts
- Flags TIM1 overflows
- Stops the TIM1 counter
- Resets the TIM1 counter
- Prescales the TIM1 counter clock

Chapter 18 Timer Interface Module (TIM2)

18.1 Introduction

This section describes the timer interface module (TIM2). The TIM2 is a 6-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 18-2 is a block diagram of the TIM2.

18.2 Features

Features of the TIM2 include:

- Six input capture/output compare channels:
 - Rising-edge, falling-edge, or any-edge input capture trigger
 - Set, clear, or toggle output compare action
- Buffered and unbuffered pulse width modulation (PWM) signal generation
- Programmable TIM2 clock input
 - 7-frequency internal bus clock prescaler selection
 - External TIM2 clock input (4-MHz maximum frequency)
- Free-running or modulo up-count operation
- Toggle any channel pin on overflow
- TIM2 counter stop and reset bits

18.3 Functional Description

Figure 18-2 shows the TIM2 structure. The central component of the TIM2 is the 16-bit TIM2 counter that can operate as a free-running counter or a modulo up-counter. The TIM2 counter provides the timing reference for the input capture and output compare functions. The TIM2 counter modulo registers, T2MODH:T2MODL, control the modulo value of the TIM2 counter. Software can read the TIM2 counter value at any time without affecting the counting sequence.

The six TIM2 channels are programmable independently as input capture or output compare channels.

Timer Interface Module (TIM2)

channel. Writing to the active channel registers is the same as generating unbuffered output compares.

18.3.4 Pulse Width Modulation (PWM)

By using the toggle-on-overflow feature with an output compare channel, the TIM2 can generate a PWM signal. The value in the TIM2 counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM2 counter modulo registers. The time between overflows is the period of the PWM signal.

As Figure 18-4 shows, the output compare value in the TIM2 channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM2 to clear the channel pin on output compare if the polarity of the PWM pulse is 1 (ELSxA = 0). Program the TIM2 to set the pin if the polarity of the PWM pulse is 0 (ELSxA = 1).

Figure 18-4. PWM Period and Pulse Width

The value in the TIM2 counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing \$00FF (255) to the TIM2 counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is 000 (see 18.8.1 TIM2 Status and Control Register).

The value in the TIM2 channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing \$0080 (128) to the TIM2 channel registers produces a duty cycle of 128/256 or 50%.

18.3.4.1 Unbuffered PWM Signal Generation

Any output compare channel can generate unbuffered PWM pulses as described in 18.3.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the value currently in the TIM2 channel registers.

An unsynchronized write to the TIM2 channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM2 overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM2 may pass the new value before it is written to the timer channel (T2CHxH:T2CHxL) registers.

Development Support

Table 19-4. WRITE (Write Memory) Command

Table 19-6. IWRITE (Indexed Write) Command

A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full 64-Kbyte memory map.

20.15 Memory Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
RAM data retention voltage	V _{RDR}	1.3			V
FLASH program bus clock frequency	—	1	_		MHz
FLASH read bus clock frequency	f _{Read} ⁽¹⁾	0	_	8 M	Hz
FLASH page erase time <1 k cycles >1 k cycles	t _{Erase}	0.9 3.6	1 4	1.1 5.5	ms
FLASH mass erase time	t _{MErase}	4			ms
FLASH PGM/ERASE to HVEN setup time	t _{NVS}	10			μs
FLASH high-voltage hold time	t _{NVH}	5	_	_	μs
FLASH high-voltage hold time (mass erase)	t _{NVHL}	100			μs
FLASH program hold time	t _{PGS}	5	_	_	μs
FLASH program time	t _{PROG}	30	_	40	μs
FLASH return to read time	t _{RCV} ⁽²⁾	1	_	_	μs
FLASH cumulative program HV period	t _{HV} ⁽³⁾	_	_	4	ms
FLASH endurance ⁽⁴⁾	_	10 k	100 k	_	Cycles
FLASH data retention time ⁽⁵⁾		15	100		Years

1. $f_{\mbox{Read}}$ is defined as the frequency range for which the FLASH memory can be read.

2. t_{RCV} is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing HVEN to 0.

3. t_{HV} is defined as the cumulative high voltage programming time to the same row before next erase.

t_{HV} must satisfy this condition: t_{NVS} + t_{NVH} + t_{PGS} + (t_{PROG} x 32) ≤ t_{HV} maximum.
Typical endurance was evaluated for this product family. For additional information on how Freescale Semiconductor defines *Typical Endurance*, please refer to Engineering Bulletin EB619.

5. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines Typical Data Retention, please refer to Engineering Bulletin EB618.