Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Obsolete | | Core Processor | HC08 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | SCI, SPI | | Peripherals | LVD, POR, PWM | | Number of I/O | 21 | | Program Memory Size | 48KB (48K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 1.5K x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V | | Data Converters | A/D 24x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 32-LQFP | | Supplier Device Package | 32-LQFP (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc908gr48amfje | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # Chapter 4 Clock Generator Module (CGM) | 4.1 | Introduction | 71 | |--------|--|----| | 4.2 | Features | 71 | | 4.3 | Functional Description | 71 | | 4.3.1 | Crystal Oscillator Circuit | 73 | | 4.3.2 | Phase-Locked Loop Circuit (PLL) | 73 | | 4.3.3 | PLL Circuits | | | 4.3.4 | Acquisition and Tracking Modes | 74 | | 4.3.5 | Manual and Automatic PLL Bandwidth Modes | | | 4.3.6 | Programming the PLL | 75 | | 4.3.7 | Special Programming Exceptions | | | 4.3.8 | Base Clock Selector Circuit | 77 | | 4.3.9 | CGM External Connections | 78 | | 4.4 | I/O Signals | | | 4.4.1 | Crystal Amplifier Input Pin (OSC1) | 79 | | 4.4.2 | Crystal Amplifier Output Pin (OSC2) | 79 | | 4.4.3 | External Filter Capacitor Pin (CGMXFC) | 79 | | 4.4.4 | PLL Analog Power Pin (V _{DDA}) | | | 4.4.5 | PLL Analog Ground Pin (V _{SSA}) | 79 | | 4.4.6 | Oscillator Enable Signal (SIMOSCEN) | | | 4.4.7 | Oscillator Enable in Stop Mode Bit (OSCENINSTOP) | | | 4.4.8 | Crystal Output Frequency Signal (CGMXCLK) | | | 4.4.9 | CGM Base Clock Output (CGMOUT) | | | 4.4.10 | CGM CPU Interrupt (CGMINT) | | | 4.5 | CGM Registers | | | 4.5.1 | PLL Control Register | | | 4.5.2 | PLL Bandwidth Control Register | | | 4.5.3 | PLL Multiplier Select Register High | | | 4.5.4 | PLL Multiplier Select Register Low | | | 4.5.5 | PLL VCO Range Select Register | | | 4.6 | Interrupts | 85 | | 4.7 | Special Modes | 85 | | 4.7.1 | Wait Mode | | | 4.7.2 | Stop Mode | | | 4.7.3 | CGM During Break Interrupts | 86 | | 4.8 | Acquisition/Lock Time Specifications | 86 | | 4.8.1 | Acquisition/Lock Time Definitions | | | 4.8.2 | Parametric Influences on Reaction Time | 86 | | 4.8.3 | Choosing a Filter | 87 | | | Chapter 5 | | | | Configuration Register (CONFIG) | | | 5.1 | Introduction | | | 5.2 | Functional Description | 89 | | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |------------------|--|-----------------|-------|------------|----------|---------------------|------------|--------------|----------|-------| | \$0000 | Port A Data Register
(PTA) | Read:
Write: | PTA7 | PTA6 | PTA5 | PTA4 | PTA3 | PTA2 | PTA1 | PTA0 | | , | See page 135. | | | | | | | | | | | \$0001 | Port B Data Register
(PTB) | Read:
Write: | PTB7 | PTB6 | PTB5 | PTB4 | PTB3 | PTB2 | PTB1 | PTB0 | | | See page 138. | Reset: | | | l . | Unaffecte | d by reset | | l . | | | \$0002 | Port C Data Register
(PTC) | Read:
Write: | 1 | PTC6 | PTC5 | PTC4 | PTC3 | PTC2 | PTC1 | PTC0 | | | See page 140. | Reset: | | <u> </u> | <u> </u> | Unaffecte | d by reset | <u>I</u> | <u> </u> | | | \$0003 | Port D Data Register
(PTD) | Read:
Write: | PTD7 | PTD6 | PTD5 | PTD4 | PTD3 | PTD2 | PTD1 | PTD0 | | | See page 142. | Reset: | | | | Unaffecte | d by reset | | • | | | \$0004 | Data Direction Register A (DDRA) | Read:
Write: | DDRA7 | DDRA6 | DDRA5 | DDRA4 | DDRA3 | DDRA2 | DDRA1 | DDRA0 | | | See page 136. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0005 | Data Direction Register B (DDRB) | Read:
Write: | DDRB7 | DDRB6 | DDRB5 | DDRB4 | DDRB3 | DDRB2 | DDRB1 | DDRB0 | | | See page 138. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Data E
\$0006 | Data Direction Register C (DDRC) | Read:
Write: | 0 | DDRC6 | DDRC5 | DDRC4 | DDRC3 | DDRC2 | DDRC1 | DDRC0 | | | See page 140. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0007 | Data Direction Register D (DDRD) | Read:
Write: | DDRD7 | DDRD6 | DDRD5 | DDRD4 | DDRD3 | DDRD2 | DDRD1 | DDRD0 | | | See page 143. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0008 | Port E Data Register
(PTE) | Read:
Write: | 0 | 0 | PTE5 | PTE4 | PTE3 | PTE2 | PTE1 | PTE0 | | | See page 145. | Reset: | | | I | Unaffected by reset | | | | | | \$0009 | ESCI Prescaler Register (SCPSC) | Read:
Write: | PDS2 | PDS1 | PDS0 | PSSB4 | PSSB3 | PSSB2 | PSSB1 | PSSB0 | | | See page 175. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$000A | ESCI Arbiter Control
Register (SCIACTL) | Read:
Write: | AM1 | ALOST | - AMO | ACLK | AFIN | ARUN | AROVFL | ARD8 | | | See page 179. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | ESCI Arbiter Data | Read: | ARD7 | ARD6 | ARD5 | ARD4 | ARD3 | ARD2 | ARD1 | ARD0 | | \$000B | Register (SCIADAT) | Write: | | | | | | | | | | | See page 180. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | = Unimplem | ented | R = Reserve | ed | U = Unaffect | ted | | Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 9) ## MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5 ## Memory | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |--------|---|-----------------|---------|---------------------|---------|-------------|----------|--------------|---------|---------| | | Data Direction Register E | Read: | 0 | 0 | DDRE5 | DDRE4 | DDRE3 | DDRE2 | DDRE1 | DDRE0 | | \$000C | (DDRE) | Write: | | | DDNES | DDNE4 | DUNES | DDNEZ | DUNEI | DDNEO | | | See page 146. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$000D | Port A Input Pullup Enable
Register (PTAPUE) | Read:
Write: | PTAPUE7 | PTAPUE6 | PTAPUE5 | PTAPUE4 | PTAPUE3 | PTAPUE2 | PTAPUE1 | PTAPUE0 | | , | See page 137. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Port C Input Pullup Enable | Read: | 0 | | | | | | | | | \$000E | Register (PTCPUE) | Write: | | PTCPUE6 | PTCPUE5 | PTCPUE4 | PTCPUE3 | PTCPUE2 | PTCPUE1 | PTCPUE0 | | | See page 142. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$000F | Port D Input Pullup Enable
Register (PTDPUE) | Read:
Write: | PTDPUE7 | PTDPUE6 | PTDPUE5 | PTDPUE4 | PTDPUE3 | PTDPUE2 | PTDPUE1 | PTDPUE0 | | 4 | See page 145. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0010 | SPI Control Register
(SPCR) | Read:
Write: | SPRIE | R | SPMSTR | CPOL | СРНА | SPWOM | SPE | SPTIE | | | See page 217. | Reset: | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | | | SPI Status and Control | Read: | SPRF | EDDIE | OVRF | MODF | SPTE | MODEEN | 0004 | ODDO | | \$0011 | Register (SPSCR)
See page 218. | Write: | | ERRIE | | | | MODFEN | SPR1 | SPR0 | | | | Reset: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | | SPI Data Register | Read: | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | | \$0012 | (SPDR) | Write: | T7 | T6 | T5 | T4 | T3 | T2 | T1 | T0 | | | See page 220. | Reset: | | Unaffected by reset | | | | | | | | \$0013 | ESCI Control Register 1
(SCC1) | Read:
Write: | LOOPS | ENSCI | TXINV | М | WAKE | ILTY | PEN | PTY | | | See page 166. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0014 | ESCI Control Register 2
(SCC2) | Read:
Write: | SCTIE | TCIE | SCRIE | ILIE | TE | RE | RWU | SBK | | | See page 168. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0015 | ESCI Control Register 3 | Read:
Write: | R8 | Т8 | R | R | ORIE | NEIE | FEIE | PEIE | | ψοστο | (SCC3)
See page 169. | Reset: | U | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 50010: | Read: | SCTE | TC | SCRF | IDLE | OR | NF | FE | PE | | \$0016 | ESCI Status Register 1
(SCS1) | Write: | 33.1 | . • | | | . | | . – | . = | | ***** | See page 170. | Reset: | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | ESCI Status Register 2 | Read: | 0 | 0 | 0 | 0 | 0 | 0 | BKF | RPF | | \$0017 | (SCS2) | Write: | | | | | | | | | | | See page 173. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | = Unimplem | ented | R = Reserve | d | U = Unaffect | ed | | Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 9) MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5 Figure 2-10. FLASH-2 Programming Algorithm Flowchart MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5 ## **Clock Generator Module (CGM)** **Table 4-5. Example Filter Component Values** | f _{RCLK} | C _{F1} | C _{F2} | R _{F1} | C _F | |-------------------|-----------------|-----------------|-----------------|----------------| | 1 MHz | 8.2 nF | 820 pF | 2k | 18 nF | | 2 MHz | 4.7 nF | 470 pF | 2k | 6.8 nF | | 3 MHz | 3.3 nF | 330 pF | 2k | 5.6 nF | | 4 MHz | 2.2 nF | 220 pF | 2k | 4.7 nF | | 5 MHz | 1.8 nF | 180 pF | 2k | 3.9 nF | | 6 MHz | 1.5 nF | 150 pF | 2k | 3.3 nF | | 7 MHz | 1.2 nF | 120 pF | 2k | 2.7 nF | | 8 MHz | 1 nF | 100 pF | 2k | 2.2 nF | ## 6.3.6 COPD (COP Disable) The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register. See Chapter 5 Configuration Register (CONFIG). ## 6.3.7 COPRS (COP Rate Select) The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register. See Chapter 5 Configuration Register (CONFIG). ## 6.4 COP Control Register The COP control register (COPCTL) is located at address \$FFFF and overlaps the reset vector. Writing any value to \$FFFF clears the COP counter and starts a new timeout period. Reading location \$FFFF returns the low byte of the reset vector. Figure 6-2. COP Control Register (COPCTL) ## 6.5 Interrupts The COP does not generate central processor unit (CPU) interrupt requests. #### 6.6 Monitor Mode When monitor mode is entered with V_{TST} on the IRQ pin, the COP is disabled as long as V_{TST} remains on the IRQ pin or the RST pin. When monitor mode is entered by having blank reset vectors and not having V_{TST} on the IRQ pin, the COP is automatically disabled until a POR occurs. ## 6.7 Low-Power Modes The WAIT and STOP instructions put the microcontroller unit (MCU) in low power-consumption standby modes. #### 6.7.1 Wait Mode The COP remains active during wait mode. If COP is enabled, a reset will occur at COP timeout. ## 6.7.2 Stop Mode Stop mode turns off the CGMXCLK input to the COP and clears the SIM counter. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5 # **Chapter 7 Central Processor Unit (CPU)** ## 7.1 Introduction The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The *CPU08 Reference Manual* (document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture. ### 7.2 Features Features of the CPU include: - Object code fully upward-compatible with M68HC05 Family - 16-bit stack pointer with stack manipulation instructions - 16-bit index register with x-register manipulation instructions - 8-MHz CPU internal bus frequency - 64-Kbyte program/data memory space - 16 addressing modes - Memory-to-memory data moves without using accumulator - Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions - Enhanced binary-coded decimal (BCD) data handling - Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes - Low-power stop and wait modes # 7.3 CPU Registers Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory map. #### **Keyboard Interrupt Module (KBI)** - 1. Pin contains integrated pullup device. - 2. Ports are software configurable with pullup device if input port or pullup/pulldown device for keyboard input. - 3. Higher current drive port pins Figure 9-1. Block Diagram Highlighting KBI Block and Pins 117 An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. Another way to avoid a false interrupt: - 1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in data direction register A. - 2. Write 1s (or 0s) to the appropriate port A data register bits. - 3. Enable the KBI pins and polarity by setting the appropriate KBIEx bits in the keyboard interrupt enable register and the KBIPx bits in the keyboard interrupt polarity register. #### 9.5 Low-Power Modes The WAIT and STOP instructions put the microcontroller unit (MCU) in low power-consumption standby modes. #### 9.5.1 Wait Mode The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode. ## 9.5.2 Stop Mode The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode. ## 9.6 Keyboard Module During Break Interrupts The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. To allow software to clear the keyboard interrupt latch during a break interrupt, write a 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latch during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect. See 9.7.1 Keyboard Status and Control Register. # 9.7 I/O Registers These registers control and monitor operation of the keyboard module: - Keyboard status and control register (INTKBSCR) - Keyboard interrupt enable register (INTKBIER) - Keyboard interrupt polarity register (INTKBIPR) MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5 ## 13.8.5 ESCI Status Register 2 ESCI status register 2 (SCS2) contains flags to signal these conditions: - Break character detected - Incoming data Figure 13-15. ESCI Status Register 2 (SCS2) ## **BKF** — Break Flag Bit This clearable, read-only bit is set when the ESCI detects a break character on the RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the SCDR. Once cleared, BKF can become set again only after 1s again appear on the RxD pin followed by another break character. Reset clears the BKF bit. - 1 = Break character detected - 0 = No break character detected ## RPF — Reception in Progress Flag Bit This read-only bit is set when the receiver detects a 0 during the RT1 time period of the start bit search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits (usually from noise or a baud rate mismatch), or when the receiver detects an idle character. Polling RPF before disabling the ESCI module or entering stop mode can show whether a reception is in progress. - 1 = Reception in progress - 0 = No reception in progress #### 13.8.6 ESCI Data Register The ESCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit shift registers. Reset has no effect on data in the ESCI data register. Figure 13-16. ESCI Data Register (SCDR) #### R7/T7:R0/T0 — Receive/Transmit Data Bits Reading address \$0018 accesses the read-only received data bits, R7:R0. Writing to address \$0018 writes the data to be transmitted, T7:T0. Reset has no effect on the ESCI data register. #### NOTE Do not use read-modify-write instructions on the ESCI data register. MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5 **System Integration Module (SIM)** ## 14.2 SIM Bus Clock Control and Generation The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 14-3. This clock originates from either an external oscillator or from the on-chip PLL. ## 14.2.1 Bus Timing In user mode, the internal bus frequency is either the crystal oscillator output (CGMXCLK) divided by four or the PLL output (CGMVCLK) divided by four. ## 14.2.2 Clock Startup from POR or LVI Reset When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 CGMXCLK cycle POR timeout has completed. The $\overline{\rm RST}$ pin is driven low by the SIM during this entire period. The bus clocks start upon completion of the timeout. ## 14.2.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode by an interrupt or reset, the SIM allows CGMXCLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay timeout. This timeout is selectable as 4096 or 32 CGMXCLK cycles. See 14.6.2 Stop Mode. Figure 14-3. System Clock Signals In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5 ## Interrupt Status Register 1 Figure 14-12. Interrupt Status Register 1 (INT1) ## IF6-IF1 — Interrupt Flags 1-6 These flags indicate the presence of interrupt requests from the sources shown in Table 14-3. - 1 = Interrupt request present - 0 = No interrupt request present ## Bit 0 and Bit 1 — Always read 0 ### Interrupt Status Register 2 Figure 14-13. Interrupt Status Register 2 (INT2) ## IF14-IF7 — Interrupt Flags 14-7 These flags indicate the presence of interrupt requests from the sources shown in Table 14-3. - 1 = Interrupt request present - 0 = No interrupt request present #### Interrupt Status Register 3 Figure 14-14. Interrupt Status Register 3 (INT3) ## IF22-IF15 — Interrupt Flags 22-15 These flags indicate the presence of an interrupt request from the source shown in Table 14-3. - 1 = Interrupt request present - 0 = No interrupt request present MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5 - BYTE 1 SETS SPRF BIT. - (2) CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. - (3) CPU READS BYTE 1 IN SPDR, CLEARING SPRF BIT. - (4) BYTE 2 SETS SPRF BIT. - (5) CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. - (6) BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST. - 7 CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT, BUT NOT OVRF BIT. - 8 BYTE 4 FAILS TO SET SPRF BIT BECAUSE OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST. Figure 15-10. Missed Read of Overflow Condition - (1) BYTE 1 SETS SPRF BIT. - 2 CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. - 3 CPU READS BYTE 1 IN SPDR, CLEARING SPRF BIT. - 4 CPU READS SPSCR AGAIN TO CHECK OVRF BIT. - (5) BYTE 2 SETS SPRF BIT. - 6 CPU READS SPSCR WITH SPRF BIT SET AND OVRF BIT CLEAR. - 7 BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST. - 8 CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT. - 9 CPU READS SPSCR AGAIN TO CHECK OVRF BIT. - (10) CPU READS BYTE 2 SPDR, CLEARING OVRF BIT. - (11) BYTE 4 SETS SPRF BIT. - (12) CPU READS SPSCR. - (13) CPU READS BYTE 4 IN SPDR, CLEARING SPRF BIT. - 14) CPU READS SPSCR AGAIN TO CHECK OVRF BIT. Figure 15-11. Clearing SPRF When OVRF Interrupt Is Not Enabled # Chapter 16 Timebase Module (TBM) #### 16.1 Introduction This section describes the timebase module (TBM). The TBM will generate periodic interrupts at user selectable rates using a counter clocked by the external clock source. This TBM version uses 15 divider stages, eight of which are user selectable. A configuration option bit to select an additional 128 divide of the external clock source can be selected. See Chapter 5 Configuration Register (CONFIG) ## 16.2 Features Features of the TBM module include: - External clock or an additional divide-by-128 selected by configuration option bit as clock source - Software configurable periodic interrupts with divide-by: 8, 16, 32, 64, 128, 2048, 8192, and 32768 taps of the selected clock source - Configurable for operation during stop mode to allow periodic wakeup from stop ## 16.3 Functional Description This module can generate a periodic interrupt by dividing the clock source supplied from the clock generator module, CGMXCLK. The counter is initialized to all 0s when TBON bit is cleared. The counter, shown in Figure 16-1, starts counting when the TBON bit is set. When the counter overflows at the tap selected by TBR2–TBR0, the TBIF bit gets set. If the TBIE bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared by writing a 1 to the TACK bit. The first time the TBIF flag is set after enabling the timebase module, the interrupt is generated at approximately half of the overflow period. Subsequent events occur at the exact period. The timebase module may remain active after execution of the STOP instruction if the crystal oscillator has been enabled to operate during stop mode through the OSCENINSTOP bit in the configuration register. The timebase module can be used in this mode to generate a periodic wakeup from stop mode. # 16.4 Interrupts The timebase module can periodically interrupt the CPU with a rate defined by the selected TBMCLK and the select bits TBR2–TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt request. #### NOTE Interrupts must be acknowledged by writing a 1 to the TACK bit. MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5 #### **Timer Interface Module (TIM1)** - 1. Pin contains integrated pullup device. - 2. Ports are software configurable with pullup device if input port or pullup/pulldown device for keyboard input. - 3. Higher current drive port pins Figure 17-1. Block Diagram Highlighting TIM1 Block and Pins #### **Timer Interface Module (TIM1)** | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |------------|---|-----------------|---------------------------|---------------------------|--------|-------------|----------------|--------|-------|--------| | \$0023 | TIM1 Counter Modulo Register
High (T1MODH) | Read:
Write: | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | | | See page 236. | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | \$0024 | TIM1 Counter Modulo Register
\$0024 Low (T1MODL) | Read:
Write: | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | See page 236. | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | TIM1 Channel 0 Status and | Read: | CH0F | CH0IE | MS0B | MS0A | ELS0B | ELS0A | TOV0 | CH0MAX | | \$0025 | Control Register (T1SC0) | Write: | 0 | OFIOIL | MOOD | WOOA | LLOOD | LLOUA | 1000 | OHOWAX | | | See page 237. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0026 | TIM1 Channel 0 Register High (T1CH0H) | Read:
Write: | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | | | See page 240. | Reset: | Indeterminate after reset | | | | | | | | | \$0027 | TIM1 Channel 0 Register Low
(T1CH0L) | Read:
Write: | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | See page 240. | Reset: | | | | Indetermina | te after reset | | | | | | TIM1 Channel 1 Status and | Read: | CH1F | CH1IE | 0 | MS1A | ELS1B | ELS1A | TOV1 | CH1MAX | | \$0028 | 28 Control Register (T1SC1) | Write: | 0 | CHILE | | IVISTA | ELSIB | ELSTA | 1001 | CHIMAX | | | See page 237. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0029 | TIM1 Channel 1 Register High
(T1CH1H) | Read:
Write: | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | | See page 2 | | Reset: | | Indeterminate after reset | | | | | | | | \$002A | TIM1 Channel 1 Register Low
(T1CH1L) | Read:
Write: | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | | | See page 240. | Reset: | | | | Indetermina | te after reset | | | | | | | | | = Unimplen | nented | | | | | | Figure 17-3. TIM1 I/O Register Summary (Continued) #### 17.3.1 TIM1 Counter Prescaler The TIM1 clock source is one of the seven prescaler outputs. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM1 status and control register (T1SC) select the TIM1 clock source. ## 17.3.2 Input Capture With the input capture function, the TIM1 can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM1 latches the contents of the TIM1 counter into the TIM1 channel registers, T1CHxH:T1CHxL. The polarity of the active edge is programmable. Input captures can generate TIM1 central processor unit (CPU) interrupt requests. MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5 ## 17.3.3 Output Compare With the output compare function, the TIM1 can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM1 can set, clear, or toggle the channel pin. Output compares can generate TIM1 CPU interrupt requests. ### 17.3.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 17.3.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM1 channel registers. An unsynchronized write to the TIM1 channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM1 overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM1 may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: - When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. - When changing to a larger output compare value, enable TIM1 overflow interrupts and write the new value in the TIM1 overflow interrupt routine. The TIM1 overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period. #### 17.3.3.2 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the T1CH0 pin. The TIM1 channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM1 channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM1 channel 0 registers initially controls the output on the T1CH0 pin. Writing to the TIM1 channel 1 registers enables the TIM1 channel 1 registers to synchronously control the output after the TIM1 overflows. At each subsequent overflow, the TIM1 channel registers (0 or 1) that control the output are the ones written to last. T1SC0 controls and monitors the buffered output compare function, and TIM1 channel 1 status and control register (T1SC1) is unused. While the MS0B bit is set, the channel 1 pin, T1CH1, is available as a general-purpose I/O pin. #### NOTE In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares. MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5 ## 20.9.3 CGM Acquisition/Lock Time Information | Characteristic | Symbol | Min | Тур | Max | Unit | |--|-------------------|-------------------------------------|-------------------------|--|------| | Acquisition mode entry frequency tolerance ⁽¹⁾ | Δ_{ACQ} | ± 3.6 | _ | ± 7.2 | % | | Tracking mode entry frequency tolerance ⁽²⁾ | Δ_{TRK} | 0 | _ | ± 3.6 | % | | LOCK entry frequency tolerance ⁽³⁾ | Δ_{LOCK} | 0 | _ | ± 0.9 | % | | LOCK exit frequency tolerance ⁽⁴⁾ | Δ_{UNL} | ± 0.9 | _ | ± 1.8 | % | | Reference cycles per acquisition mode period | n _{ACQ} | _ | 32 | _ | | | Reference cycles per tracking mode period | n _{TRK} | _ | 128 | _ | | | Automatic mode time to stable | t _{ACQ} | n _{ACQ} /f _{RCLK} | See note ⁽⁵⁾ | _ | s | | Automatic stable to lock time | t _{AL} | n _{TRK} /f _{RCLK} | See note ⁽⁶⁾ | _ | s | | Automatic lock time (t _{ACQ} + t _{AL}) ⁽⁷⁾ | t _{LOCK} | _ | 5 | 25 | ms | | PLL jitter, deviation of average bus frequency over 2 ms period | f _J | 0 | _ | f _{RCLK} x
0.025% x
N/4 | Hz | - 1. Deviation between VCO frequency and desired frequency to enter PLL acquisition mode. - 2. Deviation between VCO frequency and desired frequency to enter PLL tracking mode (stable). - 3. Deviation between VCO frequency and desired frequency to enter locked mode. - 4. Deviation between VCO frequency and desired frequency to exit locked mode. - 5. Acquisition time is an integer multiple of reference cycles divided by reference clock. - 6. Stable to lock time is an integer multiple of reference cycles divided by reference clock. - 7. Maximum lock time depends on CGMXFC filter components, power supply filtering, and reference clock stability. PLL may not lock if improper components or poor filtering and layout are used. # A.4 Ordering Information Table A-1. MC Order Numbers | MC Order Number | Operating
Temperature Range | Package | |-----------------|--------------------------------|--------------------| | MC908GR48ACFJ | -40°C to +85°C | 32-pin low-profile | | MC908GR48AVFJ | -40°C to +105°C | quad flat package | | MC908GR48AMFJ | -40°C to +125°C | (LQFP) | | MC908GR48ACFA | -40°C to +85°C | 48-pin low-profile | | MC908GR48AVFA | -40°C to +105°C | quad flat package | | MC908GR48AMFA | -40°C to +125°C | (LQFP) | | MC908GR48ACFU | -40°C to +85°C | 64-pin quad flat | | MC908GR48AVFU | −40°C to +105°C | package | | MC908GR48AMFU | -40°C to +125°C | (QFP) | Temperature designators: $C = -40^{\circ}C$ to $+85^{\circ}C$ $V = -40^{\circ}C$ to $+105^{\circ}C$ $M = -40^{\circ}C$ to $+125^{\circ}C$ Figure A-3. Device Numbering System