

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	LVD, POR, PWM
Number of I/O	53
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x8b SAR
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc908gr60acfue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Input/Output (I/O) Section

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0		
	ESCI Data Register	Read:	R7	R6	R5	R4	R3	R2	R1	R0		
\$0018	(SCDR)	Write:	T7	T6	T5	T4	T3	T2	T1	T0		
	See page 173.	Reset:	Set: Unaffected by reset									
\$0019	ESCI Baud Rate Register (SCBR)	Read: Write:	LINT	LINR	SCP1	SCP0	R	SCR2	SCR1	SCR0		
	See page 174.	Reset:	0	0	0	0	0	0	0	0		
	Keyboard Status and Control	Read:	0	0	0	0	KEYF	0				
\$001A	Register (INTKBSCR)	Write:						ACKK	INIASKK	MODEK		
	See page 118.	Reset:	0	0	0	0	0	0	0	0		
\$001B	Keyboard Interrupt Enable Register (INTKBIER)	Read: Write:	KBIE7	KBIE6	KBIE5	KBIE4	KBIE3	KBIE2	KBIE1	KBIE0		
	See page 119.	Reset:	0	0	0	0	0	0	0	0		
	Timebase Module Control	Read:	TBIF	TBB2	TBB1	TBB0	0	TRIE		в		
\$001C	Register (TBCR)	Write:		TONE	IDITI	TEHO	TACK	IDIL	TBOIN	11		
	See page 224.	Reset:	0	0	0	0	0	0	0	0		
\$001D	IRQ Status and Control Register (INTSCR) See page 112.	Read:	0	0	0	0	IRQF	0	IMASK	MODE		
		Write:						ACK		MODE		
		Reset:	0	0	0	0	0	0	0	0		
\$001E	Configuration Register 2 (CONFIG2) ⁽¹⁾	Read: Write:	0	MCLKSEL	MCLK1	MCLK0	R	TMBCLK- SEL	OSCENIN- STOP	SCIBDSRC		
	See page 90.	Reset:	0	0	0	0	0	0	0	1		
\$001F	Configuration Register 1 (CONFIG1) ⁽¹⁾	Read: Write:	COPRS	LVISTOP	LVIRSTD	LVIPWRD	LVI50R3 [†]	SSREC	STOP	COPD		
	See page 91.	Reset:	0	0	0	0	0	0	0	0		
1. On	e-time writable register af	ter eac	h reset, ex	cept LVI5C	0R3 bit. LVI	50R3 bit is	only reset	via POR (j	power-on r	eset).		
	TIM1 Status and Control	Read:	TOF	TOIE	TSTOP	0	0	PS2	PS1	PS0		
\$0020	Register (T1SC)	Write:	0			TRST						
	See page 234.	Reset:	0	0	1	0	0	0	0	0		
	TIM1 Counter	Read:	Bit 15	14	13	12	11	10	9	Bit 8		
\$0021	Register High (T1CNTH)	Write:										
	See page 235.	Reset:	0	0	0	0	0	0	0	0		
	TIM1 Counter	Read:	Bit 7	6	5	4	3	2	1	Bit 0		
\$0022	Register Low (T1CNTL)	Write:										
	See page 235.	Reset:	0	0	0	0	0	0	0	0		
\$0023	TIM1 Counter Modulo Register High (T1MODH)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8		
	See page 236.	Docot.	- 1	1	1	1	4	1	4	1		

Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 9)

1 = Unimplemented

1

1

R = Reserved

1

1

U = Unaffected

MC68HC908GR60A • MC68HC908GR48A • MC68HC908GR32A Data Sheet, Rev. 5

See page 236. Reset:

1

1

1

FLASH-2 Memory (FLASH-2)

2.7.6 FLASH-2 Program Operation

Programming of the FLASH memory is done on a row basis. A row consists of 64 consecutive bytes with address ranges as follows:

- \$XX00 to \$XX3F
- \$XX40 to \$XX7F
- \$XX80 to \$XXBF
- \$XXC0 to \$XXFF

During the programming cycle, make sure that all addresses being written to fit within one of the ranges specified above. Attempts to program addresses in different row ranges in one programming cycle will fail.

NOTE

Only bytes which are currently \$FF may be programmed.

Use this step-by-step procedure to program a row of FLASH-2 memory:

- 1. Set the PGM bit in the FLASH-2 control register (FL2CR). This configures the memory for program operation and enables the latching of address and data programming.
- 2. Read the FLASH-2 block protect register (FL2BPR).
- 3. Write to any FLASH-2 address within the row address range desired with any data.
- 4. Wait for time, t_{NVS} (minimum 10 μ s).
- 5. Set the HVEN bit.
- 6. Wait for time, t_{PGS} (minimum 5 μ s).
- 7. Write data byte to the FLASH-2 address to be programmed.
- 8. Wait for time, t $_{PROG}$ (minimum 30 μ s).
- 9. Repeat step 7 and 8 until all the bytes within the row are programmed.
- 10. Clear the PGM bit.
- 11. Wait for time, t_{NVH} (minimum 5 μ s).
- 12. Clear the HVEN bit.
- 13. Wait for a time, t_{BCV}, (typically 1 µs) after which the memory can be accessed in normal read mode.

The FLASH programming algorithm flowchart is shown in Figure 2-10.

NOTE

- **A.** Programming and erasing of FLASH locations can not be performed by code being executed from the same FLASH array.
- **B.** While these operations must be performed in the order shown, other unrelated operations may occur between the steps. However, care must be taken to ensure that these operations do not access any address within the FLASH array memory space such as the COP control register (COPCTL) at \$FFFF.
- *C.* It is highly recommended that interrupts be disabled during program/erase operations.
- **D.** Do not exceed t_{PROG} maximum or t_{HV} maximum. t_{HV} is defined as the cumulative high voltage programming time to the same row before next erase. t_{HV} must satisfy this condition: $t_{NVS}+t_{NVH}+t_{PGS}+(t_{PROG} \times 64) \le t_{HV}$ maximum

Clock Generator Module (CGM)

4.3.4 Acquisition and Tracking Modes

The PLL filter is manually or automatically configurable into one of two operating modes:

- Acquisition mode In acquisition mode, the filter can make large frequency corrections to the VCO. This mode is used at PLL start up or when the PLL has suffered a severe noise hit and the VCO frequency is far off the desired frequency. When in acquisition mode, the ACQ bit is clear in the PLL bandwidth control register. (See 4.5.2 PLL Bandwidth Control Register.)
- Tracking mode In tracking mode, the filter makes only small corrections to the frequency of the VCO. PLL jitter is much lower in tracking mode, but the response to noise is also slower. The PLL enters tracking mode when the VCO frequency is nearly correct, such as when the PLL is selected as the base clock source. (See 4.3.8 Base Clock Selector Circuit.) The PLL is automatically in tracking mode when not in acquisition mode or when the ACQ bit is set.

4.3.5 Manual and Automatic PLL Bandwidth Modes

The PLL can change the bandwidth or operational mode of the loop filter manually or automatically. Automatic mode is recommended for most users.

In automatic bandwidth control mode (AUTO = 1), the lock detector automatically switches between acquisition and tracking modes. Automatic bandwidth control mode also is used to determine when the VCO clock, CGMVCLK, is safe to use as the source for the base clock, CGMOUT. (See 4.5.2 PLL Bandwidth Control Register.) If PLL interrupts are enabled, the software can wait for a PLL interrupt request and then check the LOCK bit. If interrupts are disabled, software can poll the LOCK bit continuously (for example, during PLL start up) or at periodic intervals. In either case, when the LOCK bit is set, the VCO clock is safe to use as the source for the base clock. (See 4.3.8 Base Clock Selector Circuit.) If the VCO is selected as the source for the base clock and the LOCK bit is clear, the PLL has suffered a severe noise hit and the software must take appropriate action, depending on the application. (See 4.6 Interrupts for information and precautions on using interrupts.)

The following conditions apply when the PLL is in automatic bandwidth control mode:

- The ACQ bit (See 4.5.2 PLL Bandwidth Control Register.) is a read-only indicator of the mode of the filter. (See 4.3.4 Acquisition and Tracking Modes.)
- The ACQ bit is set when the VCO frequency is within a certain tolerance and is cleared when the VCO frequency is out of a certain tolerance. (See 4.8 Acquisition/Lock Time Specifications for more information.)
- The LOCK bit is a read-only indicator of the locked state of the PLL.
- The LOCK bit is set when the VCO frequency is within a certain tolerance and is cleared when the VCO frequency is out of a certain tolerance. (See 4.8 Acquisition/Lock Time Specifications for more information.)
- CPU interrupts can occur if enabled (PLLIE = 1) when the PLL's lock condition changes, toggling the LOCK bit. (See 4.5.1 PLL Control Register.)

The PLL also may operate in manual mode (AUTO = 0). Manual mode is used by systems that do not require an indicator of the lock condition for proper operation. Such systems typically operate well below f_{BUSMAX} .

Clock Generator Module (CGM)

4.7.2 Stop Mode

If the OSCENINSTOP bit in the CONFIG2 register is cleared (default), then the STOP instruction disables the CGM (oscillator and phase locked loop) and holds low all CGM outputs (CGMXCLK, CGMOUT, and CGMINT).

If the OSCENINSTOP bit in the CONFIG2 register is set, then the phase locked loop is shut off but the oscillator will continue to operate in stop mode.

4.7.3 CGM During Break Interrupts

The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. (See 14.7.3 Break Flag Control Register.)

To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect the PLLF bit during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), software can read and write the PLL control register during the break state without affecting the PLLF bit.

4.8 Acquisition/Lock Time Specifications

The acquisition and lock times of the PLL are, in many applications, the most critical PLL design parameters. Proper design and use of the PLL ensures the highest stability and lowest acquisition/lock times.

4.8.1 Acquisition/Lock Time Definitions

Typical control systems refer to the acquisition time or lock time as the reaction time, within specified tolerances, of the system to a step input. In a PLL, the step input occurs when the PLL is turned on or when it suffers a noise hit. The tolerance is usually specified as a percent of the step input or when the output settles to the desired value plus or minus a percent of the frequency change. Therefore, the reaction time is constant in this definition, regardless of the size of the step input. For example, consider a system with a 5 percent acquisition time tolerance. If a command instructs the system to change from 0 Hz to 1 MHz, the acquisition time is the time taken for the frequency to reach 1 MHz \pm 50 kHz. Fifty kHz = 5% of the 1-MHz step input. If the system is operating at 1 MHz and suffers a -100-kHz noise hit, the acquisition time taken to return from 900 kHz to 1 MHz \pm 5 kHz. Five kHz = 5% of the 100-kHz step input.

Other systems refer to acquisition and lock times as the time the system takes to reduce the error between the actual output and the desired output to within specified tolerances. Therefore, the acquisition or lock time varies according to the original error in the output. Minor errors may not even be registered. Typical PLL applications prefer to use this definition because the system requires the output frequency to be within a certain tolerance of the desired frequency regardless of the size of the initial error.

4.8.2 Parametric Influences on Reaction Time

Acquisition and lock times are designed to be as short as possible while still providing the highest possible stability. These reaction times are not constant, however. Many factors directly and indirectly affect the acquisition time.

Clock Generator Module (CGM)

f _{RCLK}	C _{F1}	C _{F2}	R _{F1}	C _F
1 MHz	8.2 nF	820 pF	2k	18 nF
2 MHz	4.7 nF	470 pF	2k	6.8 nF
3 MHz	3.3 nF	330 pF	2k	5.6 nF
4 MHz	2.2 nF	220 pF	2k	4.7 nF
5 MHz	1.8 nF	180 pF	2k	3.9 nF
6 MHz	1.5 nF	150 pF	2k	3.3 nF
7 MHz	1.2 nF	120 pF	2k	2.7 nF
8 MHz	1 nF	100 pF	2k	2.2 nF

Table 4-5. Example Filter Component Values

Central Processor Unit (CPU)

Source		-		o	Effect on CCR				ess	de	and	Se
Form	m Operation Description					Ν	z	С	Addr Mode	Opco	Oper	Cycle
CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP	Clear	$\begin{array}{c} M \leftarrow \$00\\ A \leftarrow \$00\\ X \leftarrow \$00\\ H \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ M \leftarrow \$00\\ \end{array}$	0	_	_	0	1	_	DIR INH INH INH IX1 IX SP1	3F 4F 5F 8C 6F 7F 9E6F	dd ff ff	3 1 1 3 2 4
CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP	Compare A with M	(A) – (M)	t	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A1 B1 C1 E1 F1 9EE1 9ED1	ii dd hh II ee ff ff ee ff	2 3 4 4 3 2 4 5
COM opr COMA COMX COM opr,X COM ,X COM opr,SP	Complement (One's Complement)	$\begin{array}{c} M \leftarrow (\overline{M}) = \$FF - (M) \\ A \leftarrow (\overline{A}) = \$FF - (M) \\ X \leftarrow (\overline{X}) = \$FF - (M) \\ M \leftarrow (\underline{M}) = \$FF - (M) \\ M \leftarrow (\underline{M}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \end{array}$				ţ	ţ	1	DIR INH INH IX1 IX SP1	33 43 53 63 73 9E63	dd ff ff	411435
CPHX # <i>opr</i> CPHX <i>opr</i>	Compare H:X with M	(H:X) – (M:M + 1)	ţ	-	-	\$	\$	\$	IMM DIR	65 75	ii ii+1 dd	3 4
CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP	Compare X with M	(X) – (M)	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A3 B3 C3 D3 E3 F3 9EE3 9ED3	ii dd hh II ee ff ff ff ee ff	2 3 4 4 3 2 4 5
DAA	Decimal Adjust A	(A) ₁₀	U	-	-	\$	\$	t	INH	72		2
DBNZ opr,rel DBNZA rel DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel	Decrement and Branch if Not Zero	$\begin{array}{l} A \leftarrow (A) - 1 \text{ or } M \leftarrow (M) - 1 \text{ or } X \leftarrow (X) - 1 \\ PC \leftarrow (PC) + 3 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 3 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 4 + \mathit{rel} ? (\mathit{result}) \neq 0 \end{array}$	_	_	-	-	-	-	DIR INH INH IX1 IX SP1	3B 4B 5B 6B 7B 9E6B	dd rr rr rr ff rr ff rr ff rr	5 3 3 5 4 6
DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP	Decrement	$\begin{array}{c} M \leftarrow (M) - 1 \\ A \leftarrow (A) - 1 \\ X \leftarrow (X) - 1 \\ M \leftarrow (M) - 1 \end{array}$	ţ	_	_	ţ	ţ	_	DIR INH INH IX1 IX SP1	3A 4A 5A 6A 7A 9E6A	dd ff ff	4 1 1 4 3 5
DIV	Divide	$A \leftarrow (H:A)/(X)$ H \leftarrow Remainder	-	-	-	-	ţ	ţ	INH	52		7
EOR #opr EOR opr EOR opr, EOR opr,X EOR opr,X EOR X EOR opr,SP EOR opr,SP	Exclusive OR M with A	$A \leftarrow (A \oplus M)$	0	_	_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A8 B8 C8 D8 E8 F8 9EE8 9ED8	ii dd hh II ee ff ff ee ff	2 3 4 4 3 2 4 5
INC opr INCA INCX INC opr,X INC ,X INC opr,SP	Increment	$\begin{array}{c} M \leftarrow (M) + 1\\ A \leftarrow (A) + 1\\ X \leftarrow (X) + 1\\ M \leftarrow (M) + 1\\ M \leftarrow (M) + 1\\ M \leftarrow (M) + 1 \end{array}$	ţ	_	_	ţ	ţ	_	DIR INH INH IX1 IX SP1	3C 4C 5C 6C 7C 9E6C	dd ff ff	4 1 4 3 5

Table 7-1. Instruction Set Summary (Sheet 3 of 6)

Input/Output (I/O) Ports

Port	Bit	DDR	Module Control		Module Control		Pin
	0	DDRC0					PTC0
	1	DDRC1					PTC1
	2	DDRC2					PTC2
С	3	DDRC3			—	—	PTC3
	4	DDRC4					PTC4
	5	DDRC5					PTC5
	6	DDRC6					PTC6
	0	DDRD0					PTD0/SS/MCLK
	1	DDRD1	CDI	ODE			PTD1/MISO
	2	DDRD2	361	JFE			PTD2/MOSI
	3	DDRD3					PTD3/SPSCK
	4	DDRD4	TIMI	ELS0B:ELS0A		_	PTD4/T1CH0
	5	DDRD5		ELS1B:ELS1A			PTD5/T1CH1
	6	DDRD6	TIMO	ELS0B:ELS0A			PTD6/T2CH0
	7	DDRD7	T IIVIZ	ELS1B:ELS1A			PTD7/T2CH1
	0	DDRE0	901	ENSCI			PTE0/TxD
E	1	DDRE1	301	ENSCI			PTE1/RxD
	2	DDRE2					PTE2
	3	DDRE3					PTE3
	4	DDRE4					PTE4
	5	DDRE5					PTE5
	0	DDRF0					PTF0
	1	DDRF1					PTF1
	2	DDRF2					PTF2
F	3	DDRF3					PTF3
'	4	DDRF4		ELS2B:ELS2A			PTF4/T2CH2
	5	DDRF5	TIM2	ELS3B:ELS3A			PTF5/T2CH3
	6	DDRF6	11012	ELS4B:ELS4A			PTF6/T2CH4
	7	DDRF7		ELS5B:ELS5A			PTF7/T2CH5
	0	DDRG0					PTG0/AD16
	1	DDRG1					PTG1/AD17
	2	DDRG2					PTG2/AD18
G	3	DDRG3					PTG3/AD19
u	4	DDRG4	ADC	ADOI [23.10]			PTG4/AD20
	5	DDRG5					PTG5/AD21
	6	DDRG6			PTG6/AD22		
	7	DDRG7					PTG7/AD23

Table 12-1. Port Control Register Bits Summary (Continued)

Enhanced Serial Communications Interface (ESCI) Module

1. Pin contains integrated pullup device.

2. Ports are software configurable with pullup device if input port or pullup/pulldown device for keyboard input.

3. Higher current drive port pins

Figure 13-1. Block Diagram Highlighting ESCI Block and Pins

Functional Description

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0	
\$0010	SPI Control Register (SPCR)	Read: Write:	SPRIE	R	SPMSTR	CPOL	CPHA	SPWOM	SPE	SPTIE	
	See page 217.	Reset:	0	0	1	0	1	0	0	0	
\$0011	SPI Status and Control	Read:	SPRF	EDDIE	OVRF	MODF	SPTE		SPR1	SDDO	
	Register (SPSCR)	Write:	/rite:							3F NV	
	See page 218.	Reset:	0	0	0	0	1	0	0	0	
	SPI Data Register	Read:	R7	R6	R5	R4	R3	R2	R1	R0	
\$0012	(SPDR)	Write:	T7	T6	T5	T4	Т3	T2	T1	Т0	
	See page 220.	Reset:				Unaffecte	d by reset				
			R	= Reserved			= Unimplem	ented			
	Figure 15-3, SPLI/O Begister Summary										

SPRF — SPI Receiver Full Bit

This clearable, read-only flag is set each time a byte transfers from the shift register to the receive data register. SPRF generates a CPU interrupt request if the SPRIE bit in the SPI control register is set also.

During an SPRF CPU interrupt, the CPU clears SPRF by reading the SPI status and control register with SPRF set and then reading the SPI data register.

Reset clears the SPRF bit.

1 = Receive data register full

0 = Receive data register not full

ERRIE — Error Interrupt Enable Bit

This read/write bit enables the MODF and OVRF bits to generate CPU interrupt requests. Reset clears the ERRIE bit.

- 1 = MODF and OVRF can generate CPU interrupt requests
- 0 = MODF and OVRF cannot generate CPU interrupt requests

OVRF — Overflow Bit

This clearable, read-only flag is set if software does not read the byte in the receive data register before the next full byte enters the shift register. In an overflow condition, the byte already in the receive data register is unaffected, and the byte that shifted in last is lost. Clear the OVRF bit by reading the SPI status and control register with OVRF set and then reading the receive data register. Reset clears the OVRF bit.

1 = Overflow

0 = No overflow

MODF — Mode Fault Bit

This clearable, read-only flag is set in a slave SPI if the \overline{SS} pin goes high during a transmission with MODFEN set. In a master SPI, the MODF flag is set if the \overline{SS} pin goes low at any time with the MODFEN bit set. Clear MODF by reading the SPI status and control register (SPSCR) with MODF set and then writing to the SPI control register (SPCR). Reset clears the MODF bit.

 $1 = \overline{SS}$ pin at inappropriate logic level

 $0 = \overline{SS}$ pin at appropriate logic level

SPTE — SPI Transmitter Empty Bit

This clearable, read-only flag is set each time the transmit data register transfers a byte into the shift register. SPTE generates an SPTE CPU interrupt request if SPTIE in the SPI control register is set also.

NOTE

Do not write to the SPI data register unless SPTE is high.

During an SPTE CPU interrupt, the CPU clears SPTE by writing to the transmit data register.

Reset sets the SPTE bit.

1 = Transmit data register empty

0 = Transmit data register not empty

MODFEN — Mode Fault Enable Bit

This read/write bit, when set, allows the MODF flag to be set. If the MODF flag is set, clearing MODFEN does not clear the MODF flag. If the SPI is enabled as a master and the MODFEN bit is 0, then the \overline{SS} pin is available as a general-purpose I/O.

If the MODFEN bit is 1, then the \overline{SS} pin is not available as a general-purpose I/O. When the SPI is enabled as a slave, the \overline{SS} pin is not available as a general-purpose I/O regardless of the value of MODFEN. See 15.11.4 SS (Slave Select).

Chapter 16 Timebase Module (TBM)

16.1 Introduction

This section describes the timebase module (TBM). The TBM will generate periodic interrupts at user selectable rates using a counter clocked by the external clock source. This TBM version uses 15 divider stages, eight of which are user selectable. A configuration option bit to select an additional 128 divide of the external clock source can be selected. See Chapter 5 Configuration Register (CONFIG)

16.2 Features

Features of the TBM module include:

- External clock or an additional divide-by-128 selected by configuration option bit as clock source
- Software configurable periodic interrupts with divide-by: 8, 16, 32, 64, 128, 2048, 8192, and 32768 taps of the selected clock source
- Configurable for operation during stop mode to allow periodic wakeup from stop

16.3 Functional Description

This module can generate a periodic interrupt by dividing the clock source supplied from the clock generator module, CGMXCLK.

The counter is initialized to all 0s when TBON bit is cleared. The counter, shown in Figure 16-1, starts counting when the TBON bit is set. When the counter overflows at the tap selected by TBR2–TBR0, the TBIF bit gets set. If the TBIE bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared by writing a 1 to the TACK bit. The first time the TBIF flag is set after enabling the timebase module, the interrupt is generated at approximately half of the overflow period. Subsequent events occur at the exact period.

The timebase module may remain active after execution of the STOP instruction if the crystal oscillator has been enabled to operate during stop mode through the OSCENINSTOP bit in the configuration register. The timebase module can be used in this mode to generate a periodic wakeup from stop mode.

16.4 Interrupts

The timebase module can periodically interrupt the CPU with a rate defined by the selected TBMCLK and the select bits TBR2–TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt request.

NOTE

Interrupts must be acknowledged by writing a 1 to the TACK bit.

Timer Interface Module (TIM1)

1. Pin contains integrated pullup device.

2. Ports are software configurable with pullup device if input port or pullup/pulldown device for keyboard input.

3. Higher current drive port pins

Figure 17-1. Block Diagram Highlighting TIM1 Block and Pins

If TIM1 functions are not required during wait mode, reduce power consumption by stopping the TIM1 before executing the WAIT instruction.

17.6 TIM1 During Break Interrupts

A break interrupt stops the TIM1 counter and inhibits input captures.

The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. See Figure 14-21. Break Status Register (BSR).

To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the second step clears the status bit.

17.7 Input/Output Signals

Port D shares two of its pins with the TIM1. The two TIM1 channel I/O pins are PTD4/T1CH0 and PTD5/T1CH1.

Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. PTD4/T1CH0 can be configured as a buffered output compare or buffered PWM pin.

17.8 Input/Output Registers

The following I/O registers control and monitor operation of the TIM:

- TIM1 status and control register (T1SC)
- TIM1 counter registers (T1CNTH:T1CNTL)
- TIM1 counter modulo registers (T1MODH:T1MODL)
- TIM1 channel status and control registers (T1SC0 and T1SC1)
- TIM1 channel registers (T1CH0H:T1CH0L and T1CH1H:T1CH1L)

17.8.1 TIM1 Status and Control Register

The TIM1 status and control register (T1SC) does the following:

- Enables TIM1 overflow interrupts
- Flags TIM1 overflows
- Stops the TIM1 counter
- Resets the TIM1 counter
- Prescales the TIM1 counter clock

Development Support

1. Pin contains integrated pullup device.

2. Ports are software configurable with pullup device if input port or pullup/pulldown device for keyboard input.

3. Higher current drive port pins

Figure 19-1. Block Diagram Highlighting BRK and MON Blocks

19.3 Monitor Module (MON)

The monitor module allows debugging and programming of the microcontroller unit (MCU) through a single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher test voltage, V_{TST} , as long as vector addresses \$FFFE and \$FFFF are blank, thus reducing the hardware requirements for in-circuit programming.

Features of the monitor module include:

- Normal user-mode pin functionality
- One pin dedicated to serial communication between MCU and host computer
- Standard non-return-to-zero (NRZ) communication with host computer
- Standard communication baud rate (7200 @ 2-MHz bus frequency)
- Execution of code in random-access memory (RAM) or FLASH
- FLASH memory security feature⁽¹⁾
- FLASH memory programming interface
- Monitor mode entry without high voltage, V_{TST}, if reset vector is blank (\$FFFE and \$FFFF contain \$FF)
- Normal monitor mode entry if V_{TST} is applied to IRQ

19.3.1 Functional Description

Figure 19-9 shows a simplified diagram of the monitor mode.

The monitor module receives and executes commands from a host computer.

Figure 19-10 and Figure 19-11 show example circuits used to enter monitor mode and communicate with a host computer via a standard RS-232 interface.

Simple monitor commands can access any memory address. In monitor mode, the MCU can execute code downloaded into RAM by a host computer while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pullup resistor.

Table 19-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a power-on reset (POR) and will allow communication at 7200 baud provided one of the following sets of conditions is met:

- If \$FFFE and \$FFFF does not contain \$FF (programmed state):
 - The external clock is 4.0 MHz (7200 baud)
 - PTB4 = low
 - IRQ = V_{TST}
- If \$FFFE and \$FFFF do not contain \$FF (programmed state):
 - The external clock is 8.0 MHz (7200 baud)
 - PTB4 = high
 - IRQ = V_{TST}
- If \$FFFE and \$FFFF contain \$FF (erased state):
 - The external clock is 8.0 MHz (7200 baud)
 - $\overline{IRQ} = V_{DD}$ (this can be implemented through the internal \overline{IRQ} pullup) or V_{SS}

^{1.} No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users.

Chapter 20 Electrical Specifications

20.1 Introduction

This section contains electrical and timing specifications.

20.2 Absolute Maximum Ratings

Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it.

NOTE

This device is not guaranteed to operate properly at the maximum ratings. Refer to 20.5 5.0-Vdc Electrical Characteristics for guaranteed operating conditions.

Characteristic ⁽¹⁾	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to + 6.0	V
Input voltage	V _{In}	V_{SS} – 0.3 to V_{DD} + 0.3	V
Maximum current per pin excluding those specified below	I	± 15	mA
Maximum current for pins PTC0–PTC4	I _{PTC0-PTC4}	± 25	mA
Maximum current into V _{DD}	I _{mvdd}	150	mA
Maximum current out of V _{SS}	I _{mvss}	150	mA
Storage temperature	T _{stg}	-55 to +150	°C

1. Voltages referenced to $V_{\mbox{\scriptsize SS}}$

NOTE

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that V_{In} and V_{Out} be constrained to the range $V_{SS} \leq (V_{In} \text{ or } V_{Out}) \leq V_{DD}$. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either V_{SS} or V_{DD}).

Clock Generation Module (CGM) Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Acquisition mode entry frequency tolerance ⁽¹⁾	Δ_{ACQ}	± 3.6	—	± 7.2	%
Tracking mode entry frequency tolerance ⁽²⁾	Δ_{TRK}	0	—	± 3.6	%
LOCK entry frequency tolerance ⁽³⁾	ALOCK	0	—	± 0.9	%
LOCK exit frequency tolerance ⁽⁴⁾	$\Delta_{\sf UNL}$	± 0.9	—	± 1.8	%
Reference cycles per acquisition mode period	n _{ACQ}	—	32	—	
Reference cycles per tracking mode period	n _{TRK}	—	128	—	
Automatic mode time to stable	t _{ACQ}	n _{ACQ} /f _{RCLK}	See note ⁽⁵⁾	—	S
Automatic stable to lock time	t _{AL}	n _{TRK} /f _{RCLK}	See note ⁽⁶⁾	—	S
Automatic lock time $(t_{ACQ} + t_{AL})^{(7)}$	t _{LOCK}	—	5	25	ms
PLL jitter, deviation of average bus frequency over 2 ms period	fJ	0	_	f _{RCLK} x 0.025% x N/4	Hz

20.9.3 CGM Acquisition/Lock Time Information

1. Deviation between VCO frequency and desired frequency to enter PLL acquisition mode.

2. Deviation between VCO frequency and desired frequency to enter PLL tracking mode (stable).

3. Deviation between VCO frequency and desired frequency to enter locked mode.

4. Deviation between VCO frequency and desired frequency to exit locked mode.

5. Acquisition time is an integer multiple of reference cycles divided by reference clock.

6. Stable to lock time is an integer multiple of reference cycles divided by reference clock.

7. Maximum lock time depends on CGMXFC filter components, power supply filtering, and reference clock stability. PLL may not lock if improper components or poor filtering and layout are used.

20.11 3.3-Volt ADC Characteristics

Characteristic ⁽¹⁾	Symbol	Min	Мах	Unit	Comments
Supply voltage	V _{DDAD}	3.0	3.6	V	V_{DDAD} should be tied to the same potential as V_{DD} via separate traces.
Input voltages	V _{ADIN}	0	V _{DDAD}	V	V _{ADIN} <= V _{DDAD}
Resolution	B _{AD}	10	10	Bits	
Absolute accuracy	A _{AD}	-6	+6	LSB	Includes quantization
ADC internal clock	f _{ADIC}	500 k	1.048 M	Hz	$t_{AIC} = 1/f_{ADIC}$
Conversion range	R _{AD}	V _{SSAD}	V _{DDAD}	V	
Power-up time	t _{ADPU}	16	—	t _{AIC} cycles	
Conversion time	t _{ADC}	16	17	t _{AIC} cycles	
Sample time	t _{ADS}	5	—	t _{AIC} cycles	
Monotonicity	M _{AD}			Guaranteed	
Zero input reading	Z _{ADI}	000	005	Hex	$V_{ADIN} = V_{SSA}$
Full-scale reading	F _{ADI}	3FA	3FF	Hex	$V_{ADIN} = V_{DDA}$
Input capacitance	C _{ADI}	—	30	pF	Not tested
V _{DDAD} /V _{REFH} current	I _{VREF}	—	1.2	mA	
Absolute accuracy (8-bit truncation mode)	A _{AD}	-1	+1	LSB	Includes quantization
Quantization error (8-bit truncation mode)	_	-1/8	+7/8	LSB	

1. V_{DD} = 3.3 Vdc \pm 10%, V_{SS} = 0 Vdc, $V_{DDAD/}V_{REFH}$ = 3.3 Vdc \pm 10%, $V_{SSAD/}V_{REFL}$ = 0 Vdc

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NE	IT TO SCALE
TITLE:		DOCUMENT NE]: 98ASH70029A	REV: C
LOW PROFILE QUAD FLAT PA	ACK (LQFP)	CASE NUMBER	8: 873A-04	01 APR 2005
32 LEAD, 0.8 PITCH (7 X	7 X 1.4)	STANDARD: JE	DEC MS-026 BBA	

1. Pin contains integrated pullup device.

2. Ports are software configurable with pullup device if input port or pullup/pulldown device for keyboard input.

3. Higher current drive port pins

Figure B-1. MC68HC908GR32A Block Diagram