



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Betans                          |                                                                          |
|---------------------------------|--------------------------------------------------------------------------|
| Product Status                  | Obsolete                                                                 |
| Core Processor                  | PowerPC e300c2                                                           |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                           |
| Speed                           | 266MHz                                                                   |
| Co-Processors/DSP               | Communications; QUICC Engine, Security; SEC 2.2                          |
| RAM Controllers                 | DDR, DDR2                                                                |
| Graphics Acceleration           | No                                                                       |
| Display & Interface Controllers | -                                                                        |
| Ethernet                        | 10/100Mbps (3)                                                           |
| SATA                            | -                                                                        |
| USB                             | USB 2.0 (1)                                                              |
| Voltage - I/O                   | 1.8V, 2.5V, 3.3V                                                         |
| Operating Temperature           | -40°C ~ 105°C (TA)                                                       |
| Security Features               | Cryptography                                                             |
| Package / Case                  | 516-BBGA                                                                 |
| Supplier Device Package         | 516-PBGA (27x27)                                                         |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8321eczqaddc |
|                                 |                                                                          |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## 1.1.2 Serial Interfaces

The MPC8323E serial interfaces are as follows:

- Support for one UL2 interface with 31 multi-PHY addresses (MPC8323E and MPC8323 only)
- Support for up to three 10/100 Mbps Ethernet interfaces using MII or RMII
- Support for up to four T1/E1/J1/E3 or DS-3 serial interfaces (TDM)
- Support for dual UART and SPI interfaces and a single I<sup>2</sup>C interface

# 1.2 QUICC Engine Block

The QUICC Engine block is a versatile communications complex that integrates several communications peripheral controllers. It provides on-chip system design for a variety of applications, particularly in communications and networking systems. The QUICC Engine block has the following features:

- One 32-bit RISC controller for flexible support of the communications peripherals
- Serial DMA channel for receive and transmit on all serial channels
- Five universal communication controllers (UCCs) supporting the following protocols and interfaces (not all of them simultaneously):
  - 10/100 Mbps Ethernet/IEEE 802.3® standard
  - IP support for IPv4 and IPv6 packets including TOS, TTL, and header checksum processing
  - ATM protocol through UTOPIA interface (note that the MPC8321 and MPC8321E do not support the UTOPIA interface)
  - HDLC /transparent up to 70-Mbps full-duplex
  - HDLC bus up to 10 Mbps
  - Asynchronous HDLC
  - UART
  - BISYNC up to 2 Mbps
  - QUICC multi-channel controller (QMC) for 64 TDM channels
- One UTOPIA interface (UPC1) supporting 31 multi-PHYs (MPC8323E- and MPC8323-specific)
- Two serial peripheral interfaces (SPI). SPI2 is dedicated to Ethernet PHY management.
- Four TDM interfaces
- Thirteen independent baud rate generators and 19 input clock pins for supplying clocks to UCC serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers

The UCCs are similar to the PowerQUICC II peripherals: SCC (BISYNC, UART, and HDLC bus) and FCC (fast Ethernet, HDLC, transparent, and ATM).



Electrical Characteristics

## 2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

| Driver Type                           | Output Impedance<br>(Ω) | Supply<br>Voltage        |
|---------------------------------------|-------------------------|--------------------------|
| Local bus interface utilities signals | 42                      | OV <sub>DD</sub> = 3.3 V |
| PCI signals                           | 25                      |                          |
| DDR1 signal                           | 18                      | GV <sub>DD</sub> = 2.5 V |
| DDR2 signal                           | 18                      | GV <sub>DD</sub> = 1.8 V |
| DUART, system control, I2C, SPI, JTAG | 42                      | OV <sub>DD</sub> = 3.3 V |
| GPIO signals                          | 42                      | OV <sub>DD</sub> = 3.3 V |

Table 3. Output Drive Capability

## 2.1.4 Input Capacitance Specification

Table 4 describes the input capacitance for the CLKIN pin in the MPC8323E.

**Table 4. Input Capacitance Specification** 

| Parameter/Condition                         | Symbol              | Min | Max | Unit | Notes |
|---------------------------------------------|---------------------|-----|-----|------|-------|
| Input capacitance for all pins except CLKIN | CI                  | 6   | 8   | pF   | —     |
| Input capacitance for CLKIN                 | C <sub>ICLKIN</sub> | 10  | _   | pF   | 1     |

Note:

1. The external clock generator should be able to drive 10 pF.

## 2.2 Power Sequencing

The device does not require the core supply voltage  $(V_{DD})$  and IO supply voltages  $(GV_{DD} \text{ and } OV_{DD})$  to be applied in any particular order. Note that during power ramp-up, before the power supplies are stable and if the I/O voltages are supplied before the core voltage, there might be a period of time that all input and output pins are actively driven and cause contention and excessive current. In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core voltage  $(V_{DD})$  before the I/O voltage  $(GV_{DD})$  and assert PORESET before the power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal value before the I/O supplies reach 0.7 V; see Figure 3. Once both the power supplies (I/O voltage and core voltage) are stable, wait for a minimum of 32 clock cycles before negating PORESET.

Note that there is no specific power down sequence requirement for the device. I/O voltage supplies  $(GV_{DD})$  and  $OV_{DD}$ ) do not have any ordering requirements with respect to one another.



### DDR1 and DDR2 SDRAM

Figure 4 shows the input timing diagram for the DDR controller.

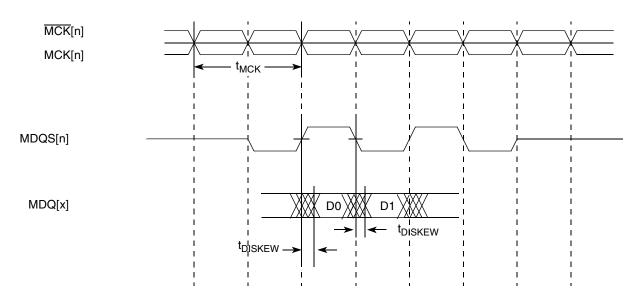



Figure 4. DDR Input Timing Diagram

## 6.2.2 DDR1 and DDR2 SDRAM Output AC Timing Specifications

Table 19 provides the output AC timing specifications for the DDR1 and DDR2 SDRAM interfaces.

### Table 19. DDR1 and DDR2 SDRAM Output AC Timing Specifications

At recommended operating conditions with  $Dn_GV_{DD}$  of (1.8 or 2.5 V)  $\pm$  5%.

| Parameter                                 | Symbol <sup>1</sup> | Min  | Мах | Unit | Notes |
|-------------------------------------------|---------------------|------|-----|------|-------|
| MCK cycle time, (MCK/MCK crossing)        | t <sub>MCK</sub>    | 7.5  | 10  | ns   | 2     |
| ADDR/CMD output setup with respect to MCK | t <sub>DDKHAS</sub> |      |     | ns   | 3     |
| 266 MHz                                   |                     | 2.5  | —   |      |       |
| 200 MHz                                   |                     | 3.5  | —   |      |       |
| ADDR/CMD output hold with respect to MCK  | t <sub>DDKHAX</sub> |      |     | ns   | 3     |
| 266 MHz                                   |                     | 2.5  | —   |      |       |
| 200 MHz                                   |                     | 3.5  | —   |      |       |
| MCS output setup with respect to MCK      | t <sub>DDKHCS</sub> |      |     | ns   | 3     |
| 266 MHz                                   |                     | 2.5  | —   |      |       |
| 200 MHz                                   |                     | 3.5  | —   |      |       |
| MCS output hold with respect to MCK       | t <sub>DDKHCX</sub> |      |     | ns   | 3     |
| 266 MHz                                   |                     | 2.5  | _   |      |       |
| 200 MHz                                   |                     | 3.5  | —   |      |       |
| MCK to MDQS Skew                          | t <sub>DDKHMH</sub> | -0.6 | 0.6 | ns   | 4     |



### Table 19. DDR1 and DDR2 SDRAM Output AC Timing Specifications (continued)

At recommended operating conditions with  $Dn_GV_{DD}$  of (1.8 or 2.5 V) ± 5%.

| Parameter                                 | Symbol <sup>1</sup>                         | Min                             | Мах                         | Unit | Notes |
|-------------------------------------------|---------------------------------------------|---------------------------------|-----------------------------|------|-------|
| MDQ/MDM output setup with respect to MDQS | <sup>t</sup> DDKHDS,<br>t <sub>DDKLDS</sub> |                                 |                             | ns   | 5     |
| 266 MHz                                   |                                             | 0.9                             | —                           |      |       |
| 200 MHz                                   |                                             | 1.0                             | —                           |      |       |
| MDQ/MDM output hold with respect to MDQS  | t <sub>DDKHDX,</sub><br>t <sub>DDKLDX</sub> |                                 |                             | ps   | 5     |
| 266 MHz                                   |                                             | 1100                            | —                           |      |       |
| 200 MHz                                   |                                             | 1200                            | —                           |      |       |
| MDQS preamble start                       | t <sub>DDKHMP</sub>                         | $-0.5\times t_{\text{MCK}}-0.6$ | $-0.5 \times t_{MCK} + 0.6$ | ns   | 6     |
| MDQS epilogue end                         | t <sub>DDKHME</sub>                         | -0.6                            | 0.6                         | ns   | 6     |

#### Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t<sub>DDKHAS</sub> symbolizes DDR timing (DD) for the time t<sub>MCK</sub> memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t<sub>DDKLDX</sub> symbolizes DDR timing (DD) for the time t<sub>MCK</sub> memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
</sub>

2. All MCK/ $\overline{MCK}$  referenced measurements are made from the crossing of the two signals  $\pm 0.1$  V.

3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied cycle.

- 4. Note that t<sub>DDKHMH</sub> follows the symbol conventions described in note 1. For example, t<sub>DDKHMH</sub> describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t<sub>DDKHMH</sub> can be modified through control of the DQSS override bits in the TIMING\_CFG\_2 register. This is typically set to the same delay as the clock adjust in the CLK\_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.
- 5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.
- 6. All outputs are referenced to the rising edge of MCK(n) at the pins of the microprocessor. Note that t<sub>DDKHMP</sub> follows the symbol conventions described in note 1.



**Ethernet and MII Management** 

(management data clock). The MII and RMII are defined for 3.3 V. The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

## 8.1.1 DC Electrical Characteristics

All MII and RMII drivers and receivers comply with the DC parametric attributes specified in Table 22.

| Parameter            | Symbol           | Conditions                   |                        | Min  | Мах                    | Unit |
|----------------------|------------------|------------------------------|------------------------|------|------------------------|------|
| Supply voltage 3.3 V | OV <sub>DD</sub> | -                            | _                      | 2.97 | 3.63                   | V    |
| Output high voltage  | V <sub>OH</sub>  | I <sub>OH</sub> = -4.0 mA    | OV <sub>DD</sub> = Min | 2.40 | OV <sub>DD</sub> + 0.3 | V    |
| Output low voltage   | V <sub>OL</sub>  | I <sub>OL</sub> = 4.0 mA     | OV <sub>DD</sub> = Min | GND  | 0.50                   | V    |
| Input high voltage   | V <sub>IH</sub>  | —                            | —                      | 2.0  | OV <sub>DD</sub> + 0.3 | V    |
| Input low voltage    | V <sub>IL</sub>  | —                            | —                      | -0.3 | 0.90                   | V    |
| Input current        | I <sub>IN</sub>  | $0 V \le V_{IN} \le OV_{DD}$ |                        | —    | ±5                     | μA   |

Table 22. MII and RMII DC Electrical Characteristics

# 8.2 MII and RMII AC Timing Specifications

The AC timing specifications for MII and RMII are presented in this section.

## 8.2.1 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

## 8.2.1.1 MII Transmit AC Timing Specifications

Table 23 provides the MII transmit AC timing specifications.

### Table 23. MII Transmit AC Timing Specifications

At recommended operating conditions with  $OV_{DD}$  of 3.3 V ± 10%.

| Parameter/Condition                             | Symbol <sup>1</sup>                 | Min | Typical | Max | Unit |
|-------------------------------------------------|-------------------------------------|-----|---------|-----|------|
| TX_CLK clock period 10 Mbps                     | t <sub>MTX</sub>                    | _   | 400     | _   | ns   |
| TX_CLK clock period 100 Mbps                    | t <sub>MTX</sub>                    | _   | 40      | _   | ns   |
| TX_CLK duty cycle                               | t <sub>MTXH</sub> /t <sub>MTX</sub> | 35  | _       | 65  | %    |
| TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay | t <sub>MTKHDX</sub>                 | 1   | 5       | 15  | ns   |
| TX_CLK data clock rise time                     | t <sub>MTXR</sub>                   | 1.0 | —       | 4.0 | ns   |



Local Bus

Figure 13 shows the MII management AC timing diagram.

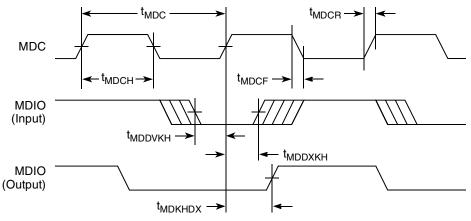



Figure 13. MII Management Interface Timing Diagram

# 9 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8323E.

# 9.1 Local Bus DC Electrical Characteristics

Table 29 provides the DC electrical characteristics for the local bus interface.

| Table 29. Local Bus DC Electrical Characteristics |
|---------------------------------------------------|
|---------------------------------------------------|

| Parameter                                          | Symbol          | Min                    | Мах                    | Unit |
|----------------------------------------------------|-----------------|------------------------|------------------------|------|
| High-level input voltage                           | V <sub>IH</sub> | 2                      | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage                            | V <sub>IL</sub> | -0.3                   | 0.8                    | V    |
| High-level output voltage, $I_{OH} = -100 \ \mu A$ | V <sub>OH</sub> | OV <sub>DD</sub> - 0.2 | _                      | V    |
| Low-level output voltage, I <sub>OL</sub> = 100 μA | V <sub>OL</sub> | —                      | 0.2                    | V    |
| Input current                                      | I <sub>IN</sub> | —                      | ±5                     | μA   |

# 9.2 Local Bus AC Electrical Specifications

Table 30 describes the general timing parameters of the local bus interface of the MPC8323E.

Table 30. Local Bus General Timing Parameters

| Parameter                                                   | Symbol <sup>1</sup>  | Min | Мах | Unit | Notes |
|-------------------------------------------------------------|----------------------|-----|-----|------|-------|
| Local bus cycle time                                        | t <sub>LBK</sub>     | 15  | —   | ns   | 2     |
| Input setup to local bus clock (LCLKn)                      | t <sub>LBIVKH</sub>  | 7   | —   | ns   | 3, 4  |
| Input hold from local bus clock (LCLKn)                     | t <sub>LBIXKH</sub>  | 1.0 | —   | ns   | 3, 4  |
| LALE output fall to LAD output transition (LATCH hold time) | t <sub>LBOTOT1</sub> | 1.5 | —   | ns   | 5     |



| Parameter                                                                              | Symbol <sup>1</sup>  | Min | Max | Unit | Notes |
|----------------------------------------------------------------------------------------|----------------------|-----|-----|------|-------|
| LALE output fall to LAD output transition (LATCH hold time)                            | t <sub>LBOTOT2</sub> | 3   | _   | ns   | 6     |
| LALE output fall to LAD output transition (LATCH hold time)                            | t <sub>LBOTOT3</sub> | 2.5 | _   | ns   | 7     |
| Local bus clock (LCLK <i>n</i> ) to output valid                                       | t <sub>LBKHOV</sub>  | —   | 3   | ns   | 3     |
| Local bus clock (LCLKn) to output high impedance for LAD/LDP                           | t <sub>LBKHOZ</sub>  | —   | 4   | ns   | 8     |
| Local bus clock (LCLK <i>n</i> ) duty cycle                                            | t <sub>LBDC</sub>    | 47  | 53  | %    | _     |
| Local bus clock (LCLKn) jitter specification                                           | t <sub>LBRJ</sub>    | —   | 400 | ps   | _     |
| Delay between the input clock (PCI_SYNC_IN) of local bus output clock (LCLK <i>n</i> ) | t <sub>lbcdl</sub>   | —   | 1.7 | ns   |       |

### Table 30. Local Bus General Timing Parameters (continued)

#### Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state)</sub> for inputs and t<sub>(first two letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>LBIXKH1</sub> symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t<sub>LBK</sub> clock reference (K) goes high (H), in this case for clock one(1).

2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of LCLK0 (for all other inputs).

All signals are measured from OV<sub>DD</sub>/2 of the rising/falling edge of LCLK0 to 0.4 × OV<sub>DD</sub> of the signal in question for 3.3-V signaling levels.

4. Input timings are measured at the pin.

5. t<sub>LBOTOT1</sub> should be used when RCWH[LALE] is not set and the load on LALE output pin is at least 10 pF less than the load on LAD output pins.

6. t<sub>LBOTOT2</sub> should be used when RCWH[LALE] is set and the load on LALE output pin is at least 10 pF less than the load on LAD output pins.

7. t<sub>LBOTOT3</sub> should be used when RCWH[LALE] is set and the load on LALE output pin equals to the load on LAD output pins.

8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

Figure 14 provides the AC test load for the local bus.

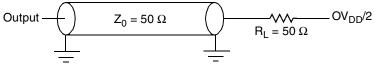



Figure 14. Local Bus C Test Load



PCI

### Table 37 shows the PCI AC timing specifications at 33 MHz.

| Table 37. PCI AC Timing S | Specifications at 33 MHz |
|---------------------------|--------------------------|
|---------------------------|--------------------------|

| Parameter                      | Symbol <sup>1</sup> | Min | Мах | Unit | Notes |
|--------------------------------|---------------------|-----|-----|------|-------|
| Clock to output valid          | <sup>t</sup> PCKHOV | _   | 11  | ns   | 2     |
| Output hold from clock         | t <sub>PCKHOX</sub> | 2   | —   | ns   | 2     |
| Clock to output high impedence | t <sub>PCKHOZ</sub> | —   | 14  | ns   | 2, 3  |
| Input setup to clock           | t <sub>PCIVKH</sub> | 3.0 | —   | ns   | 2, 4  |
| Input hold from clock          | t <sub>PCIXKH</sub> | 0   |     | ns   | 2, 4  |

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>PCIVKH</sub> symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI\_SYNC\_IN clock, t<sub>SYS</sub>, reference (K) going to the high (H) state or setup time. Also, t<sub>PCRHFV</sub> symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

Figure 25 provides the AC test load for PCI.

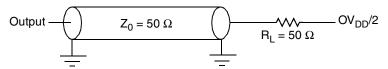



Figure 25. PCI AC Test Load

Figure 26 shows the PCI input AC timing conditions.

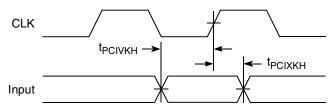



Figure 26. PCI Input AC Timing Measurement Conditions



TDM/SI

| Table 46. TDM/SI DC Electrical Characteristics (c | continued) |
|---------------------------------------------------|------------|
|---------------------------------------------------|------------|

| Characteristic    | Symbol          | Condition                        | Min  | Мах | Unit |
|-------------------|-----------------|----------------------------------|------|-----|------|
| Input low voltage | V <sub>IL</sub> | —                                | -0.3 | 0.8 | V    |
| Input current     | I <sub>IN</sub> | $0 \ V \leq V_{IN} \leq OV_{DD}$ |      | ±5  | μA   |

## 17.2 TDM/SI AC Timing Specifications

Table 47 provides the TDM/SI input and output AC timing specifications.

Table 47. TDM/SI AC Timing Specifications<sup>1</sup>

| Characteristic                                | Symbol <sup>2</sup> | Min | Мах | Unit |
|-----------------------------------------------|---------------------|-----|-----|------|
| TDM/SI outputs—External clock delay           | t <sub>SEKHOV</sub> | 2   | 12  | ns   |
| TDM/SI outputs—External clock High Impedance  | t <sub>SEKHOX</sub> | 2   | 10  | ns   |
| TDM/SI inputs—External clock input setup time | t <sub>SEIVKH</sub> | 5   | —   | ns   |
| TDM/SI inputs—External clock input hold time  | t <sub>SEIXKH</sub> | 2   | _   | ns   |

Notes:

1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

2. The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>SEKHOX</sub> symbolizes the TDM/SI outputs external timing (SE) for the time t<sub>TDM/SI</sub> memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).</sub>

Figure 33 provides the AC test load for the TDM/SI.

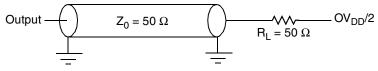



Figure 33. TDM/SI AC Test Load

Figure 34 represents the AC timing from Table 47. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

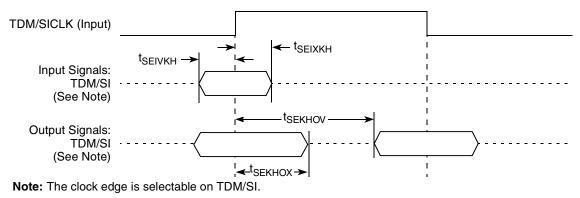
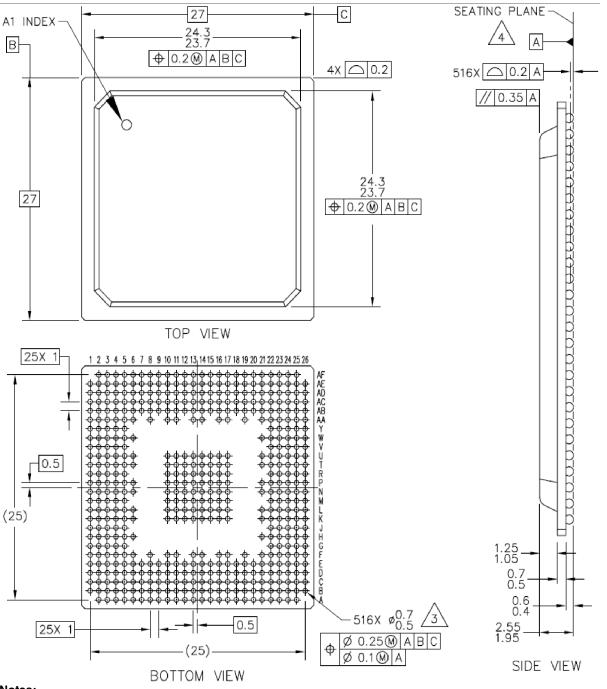



Figure 34. TDM/SI AC Timing (External Clock) Diagram



This section details package parameters, pin assignments, and dimensions. The MPC8323E is available in a thermally enhanced Plastic Ball Grid Array (PBGA); see Section 21.1, "Package Parameters for the MPC8323E PBGA," and Section 21.2, "Mechanical Dimensions of the MPC8323E PBGA," for information on the PBGA.

## 21.1 Package Parameters for the MPC8323E PBGA


The package parameters are as provided in the following list. The package type is  $27 \text{ mm} \times 27 \text{ mm}$ , 516 PBGA.

| Package outline         | $27 \text{ mm} \times 27 \text{ mm}$                             |
|-------------------------|------------------------------------------------------------------|
| Interconnects           | 516                                                              |
| Pitch                   | 1.00 mm                                                          |
| Module height (typical) | 2.25 mm                                                          |
| Solder Balls            | 62 Sn/36 Pb/2 Ag (ZQ package)<br>95.5 Sn/0.5 Cu/4Ag (VR package) |
| Ball diameter (typical) | 0.6 mm                                                           |

## 21.2 Mechanical Dimensions of the MPC8323E PBGA

Figure 42 shows the mechanical dimensions and bottom surface nomenclature of the MPC8323E, 516-PBGA package.





### Notes:

1.All dimensions are in millimeters.

2.Dimensions and tolerances per ASME Y14.5M-1994.

3.Maximum solder ball diameter measured parallel to datum A.

4.Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Figure 42. Mechanical Dimensions and Bottom Surface Nomenclature of the MPC8323E PBGA



| Signal     | Package Pin Number | Pin Type | Power<br>Supply  | Notes |
|------------|--------------------|----------|------------------|-------|
| MEMC_MDQ29 | AD20               | IO       | GV <sub>DD</sub> | _     |
| MEMC_MDQ30 | AF23               | IO       | GV <sub>DD</sub> | —     |
| MEMC_MDQ31 | AD22               | IO       | GV <sub>DD</sub> | —     |
| MEMC_MDM0  | AC9                | 0        | GV <sub>DD</sub> |       |
| MEMC_MDM1  | AD5                | 0        | GV <sub>DD</sub> |       |
| MEMC_MDM2  | AE20               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MDM3  | AE22               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MDQS0 | AE8                | IO       | GV <sub>DD</sub> | —     |
| MEMC_MDQS1 | AE5                | IO       | GV <sub>DD</sub> | —     |
| MEMC_MDQS2 | AC19               | IO       | GV <sub>DD</sub> | —     |
| MEMC_MDQS3 | AE23               | IO       | GV <sub>DD</sub> | —     |
| MEMC_MBA0  | AD16               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MBA1  | AD17               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MBA2  | AE17               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA0   | AD12               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA1   | AE12               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA2   | AF12               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA3   | AC13               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA4   | AD13               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA5   | AE13               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA6   | AF13               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA7   | AC15               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA8   | AD15               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA9   | AE15               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA10  | AF15               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA11  | AE16               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA12  | AF16               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA13  | AB16               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MWE   | AC17               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MRAS  | AE11               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MCAS  | AD11               | 0        | GV <sub>DD</sub> | —     |
| MEMC_MCS   | AC11               | 0        | GV <sub>DD</sub> | —     |

### Table 55. MPC8323E PBGA Pinout Listing (continued)

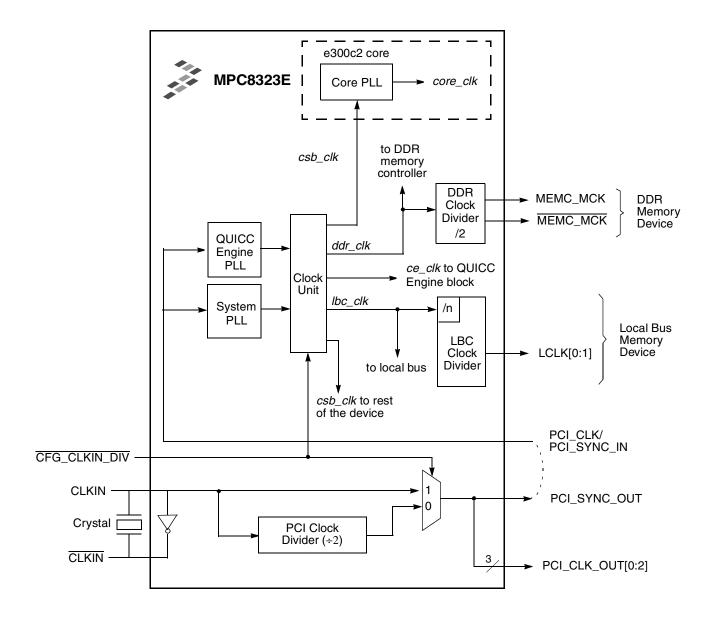


| Signal                              | Package Pin Number         | Pin Type | Power<br>Supply  | Notes    |
|-------------------------------------|----------------------------|----------|------------------|----------|
| LCS1                                | AB25                       | 0        | OV <sub>DD</sub> | 4        |
| LCS2                                | AA23                       | 0        | OV <sub>DD</sub> | 4        |
| LCS3                                | AA24                       | 0        | OV <sub>DD</sub> | 4        |
| <u>LWE0</u>                         | Y23                        | 0        | OV <sub>DD</sub> | 4        |
| LWE1                                | W25                        | 0        | OV <sub>DD</sub> | 4        |
| LBCTL                               | V25                        | 0        | OV <sub>DD</sub> | 4        |
| LALE                                | V24                        | 0        | OV <sub>DD</sub> | 7        |
| CFG_RESET_SOURCE[0]/LSDA10/LGPL0    | L23                        | IO       | OV <sub>DD</sub> | -        |
| CFG_RESET_SOURCE[1]/LSDWE/LGPL1     | K23                        | IO       | OV <sub>DD</sub> | -        |
| LSDRAS/LGPL2/LOE                    | J23                        | 0        | OV <sub>DD</sub> | 4        |
| CFG_RESET_SOURCE[2]/LSDCAS/LGPL3    | H23                        | IO       | OV <sub>DD</sub> | -        |
| LGPL4/LGTA/LUPWAIT/LPBSE            | G23                        | IO       | OV <sub>DD</sub> | 4, 8     |
| LGPL5                               | AC22                       | 0        | OV <sub>DD</sub> | 4        |
| LCLK0                               | Y24                        | 0        | OV <sub>DD</sub> | 7        |
| LCLK1                               | Y25                        | 0        | OV <sub>DD</sub> | 7        |
|                                     | DUART                      | 1        | 1                | <u>.</u> |
| UART_SOUT1/MSRCID0 (DDR ID)/LSRCID0 | G1                         | IO       | OV <sub>DD</sub> | —        |
| UART_SIN1/MSRCID1 (DDR ID)/LSRCID1  | G2                         | IO       | OV <sub>DD</sub> | —        |
| UART_CTS1/MSRCID2 (DDR ID)/LSRCID2  | H3                         | IO       | OV <sub>DD</sub> | —        |
| UART_RTS1/MSRCID3 (DDR ID)/LSRCID3  | КЗ                         | IO       | OV <sub>DD</sub> | —        |
| UART_SOUT2/MSRCID4 (DDR ID)/LSRCID4 | H2                         | IO       | OV <sub>DD</sub> | —        |
| UART_SIN2/MDVAL (DDR ID)/LDVAL      | H1                         | IO       | OV <sub>DD</sub> | —        |
| UART_CTS2                           | J3                         | IO       | OV <sub>DD</sub> | —        |
| UART_RTS2                           | K4                         | IO       | OV <sub>DD</sub> | —        |
|                                     | I <sup>2</sup> C interface | -        | •                | <u>.</u> |
| IIC_SDA/CKSTOP_OUT                  | AE24                       | IO       | OV <sub>DD</sub> | 2        |
| IIC_SCL/CKSTOP_IN                   | AF24                       | IO       | OV <sub>DD</sub> | 2        |
| Program                             | mable Interrupt Controller |          |                  | <u></u>  |
| MCP_OUT                             | AD25                       | 0        | OV <sub>DD</sub> | —        |
| IRQ0/MCP_IN                         | AD26                       | I        | OV <sub>DD</sub> | -        |
| ĪRQ1                                | K1                         | IO       | OV <sub>DD</sub> | -        |
| ĪRQ2                                | K2                         | I        | OV <sub>DD</sub> | <u> </u> |
|                                     |                            |          | i                |          |

### Table 55. MPC8323E PBGA Pinout Listing (continued)



| Signal                                | Package Pin Number | Pin Type | Power<br>Supply    | Notes |
|---------------------------------------|--------------------|----------|--------------------|-------|
| GPIO_PC10/UPC1_RxDATA[2]/SER5_RXD[2]  | B21                | IO       | OV <sub>DD</sub>   | _     |
| GPIO_PC11/UPC1_RxDATA[3]/SER5_RXD[3]  | A20 IO             |          | OV <sub>DD</sub>   | —     |
| GPIO_PC12/UPC1_RxDATA[4]              | D19                | IO       | OV <sub>DD</sub>   |       |
| GPIO_PC13/UPC1_RxDATA[5]/LSRCID0      | C18                | IO       | OV <sub>DD</sub>   |       |
| GPIO_PC14/UPC1_RxDATA[6]/LSRCID1      | D18                | IO       | OV <sub>DD</sub>   |       |
| GPIO_PC15/UPC1_RxDATA[7]/LSRCID2      | A25                | IO       | OV <sub>DD</sub>   |       |
| GPIO_PC16/UPC1_TxADDR[0]              | C21                | IO       | OV <sub>DD</sub>   |       |
| GPIO_PC17/UPC1_TxADDR[1]/LSRCID3      | D22                | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PC18/UPC1_TxADDR[2]/LSRCID4      | C23                | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PC19/UPC1_TxADDR[3]/LDVAL        | D23                | IO       | OV <sub>DD</sub>   |       |
| GPIO_PC20/UPC1_RxADDR[0]              | C17                | IO       | OV <sub>DD</sub>   | _     |
| GPIO_PC21/UPC1_RxADDR[1]              | D17                | IO       | OV <sub>DD</sub>   | _     |
| GPIO_PC22/UPC1_RxADDR[2]              | C16                | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PC23/UPC1_RxADDR[3]              | D16                | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PC24/UPC1_RxSOC/SER5_CD          | A16                | IO       | OV <sub>DD</sub> – |       |
| GPIO_PC25/UPC1_RxCLAV                 | D20                | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PC26/UPC1_RxPRTY/CE_EXT_REQ2     | E23                | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PC27/UPC1_RxEN                   | B17                | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PC28/UPC1_TxSOC                  | B22                | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PC29/UPC1_TxCLAV/SER5_CTS        | A17                | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PC30/UPC1_TxPRTY                 | A22                | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PC31/UPC1_TxEN/SER5_RTS          | C20                | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PD0/SPIMOSI                      | A2                 | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PD1/SPIMISO                      | B2                 | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PD2/SPICLK                       | B3                 | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PD3/SPISEL                       | A3                 | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PD4/SPI_MDIO/CE_MUX_MDIO         | A4                 | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PD5/SPI_MDC/CE_MUX_MDC           | B4                 | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PD6/CLK8/BRGO16/CE_EXT_REQ3      | F24                | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PD7/GTM1_TIN1/GTM2_TIN2/CLK5     | G24                | IO       | OV <sub>DD</sub>   | —     |
| GPIO_PD8/GTM1_TGATE1/GTM2_TGATE2/CLK6 | H24                | IO       | OV <sub>DD</sub>   | _     |
| GPIO_PD9/GTM1_TOUT1                   | D24                | IO       | OV <sub>DD</sub>   | -     |


### Table 55. MPC8323E PBGA Pinout Listing (continued)



### Clocking

# 22 Clocking

Figure 43 shows the internal distribution of clocks within the MPC8323E.



### Figure 43. MPC8323E Clock Subsystem

The primary clock source for the MPC8323E can be one of two inputs, CLKIN or PCI\_CLK, depending on whether the device is configured in PCI host or PCI agent mode, respectively.



(edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_B + (R_{\theta JB} \times P_D)$$

where:

 $T_J$  = junction temperature (°C)

 $T_B$  = board temperature at the package perimeter (°C)

 $R_{\theta IB}$  = junction-to-board thermal resistance (°C/W) per JESD51-8

 $P_D$  = power dissipation in package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

## 23.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter ( $\Psi_{JT}$ ) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 $T_J$  = junction temperature (°C)

 $T_T$  = thermocouple temperature on top of package (°C)

 $\Psi_{JT}$  = thermal characterization parameter (°C/W)

 $P_D$  = power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

## 23.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

In some application environments, a heat sink is required to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case to ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$



Thermal

where:

 $R_{\theta IA}$  = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$  = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$  = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$  is device related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance,  $R_{\theta CA}$ . For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device.

To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been simulated with a few commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, air flow, adjacent component power dissipation) and the physical space available. Because there is not a standard application environment, a standard heat sink is not required.

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.

Heat sink vendors include the following list:

| Aavid Thermalloy<br>80 Commercial St.<br>Concord, NH 03301<br>Internet: www.aavidthermalloy.com                              | 603-224-9988 |
|------------------------------------------------------------------------------------------------------------------------------|--------------|
| Alpha Novatech<br>473 Sapena Ct. #12<br>Santa Clara, CA 95054<br>Internet: www.alphanovatech.com                             | 408-567-8082 |
| International Electronic Research Corporation (IERC)<br>413 North Moss St.<br>Burbank, CA 91502<br>Internet: www.ctscorp.com | 818-842-7277 |
| Millennium Electronics (MEI)<br>Loroco Sites<br>671 East Brokaw Road<br>San Jose, CA 95112<br>Internet: www.mei-thermal.com  | 408-436-8770 |
| Tyco Electronics<br>Chip Coolers <sup>™</sup><br>P.O. Box 3668<br>Harrisburg, PA 17105-3668<br>Internet: www.chipcoolers.com | 800-522-2800 |



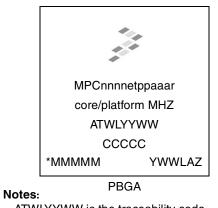


| Wakefield Engineering<br>33 Bridge St.<br>Pelham, NH 03076<br>Internet: www.wakefield.com                                             | 603-635-5102 |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Interface material vendors include the following:                                                                                     |              |
| Chomerics, Inc.<br>77 Dragon Ct.<br>Woburn, MA 01801<br>Internet: www.chomerics.com                                                   | 781-935-4850 |
| Dow-Corning Corporation<br>Dow-Corning Electronic Materials<br>P.O. Box 994<br>Midland, MI 48686-0997<br>Internet: www.dowcorning.com | 800-248-2481 |
| Shin-Etsu MicroSi, Inc.<br>10028 S. 51st St.<br>Phoenix, AZ 85044<br>Internet: www.microsi.com                                        | 888-642-7674 |
| The Bergquist Company<br>18930 West 78th St.<br>Chanhassen, MN 55317<br>Internet: www.bergquistcompany.com                            | 800-347-4572 |

## 23.3 Heat Sink Attachment

When attaching heat sinks to these devices, an interface material is required. The best method is to use thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint lifetime of the package. Recommended maximum force on the top of the package is 10 lb (4.5 kg) force. If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or plastic surfaces and its performance verified under the application requirements.

## 23.3.1 Experimental Determination of the Junction Temperature with a Heat Sink


When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back calculate the case temperature using a separate measurement of the thermal resistance of the



Document Revision History

## 25.2 Part Marking

Parts are marked as in the example shown in Figure 46.



ATWLYYWW is the traceability code. CCCCC is the country code. MMMMM is the mask number. YWWLAZ is the assembly traceability code.

Figure 46. Freescale Part Marking for PBGA Devices

# 26 Document Revision History

Table 67 provides a revision history for this hardware specification.

### Table 67. Document Revision History

| Rev.<br>No. | Date    | Substantive Change(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4           | 09/2010 | <ul> <li>Replaced all instances of "LCCR" with "LCRR" throughout.</li> <li>Added footnotes 3 and 4 in Table 2, "Recommended Operating Conditions<sup>3</sup>."</li> <li>Modified Section 8.1.1, "DC Electrical Characteristics."</li> <li>Modified Table 23, "MII Transmit AC Timing Specifications."</li> <li>Modified Table 24, "MII Receive AC Timing Specifications."</li> <li>Added footnote 7 and 8, and modified some signal names in Table 55, "MPC8323E PBGA Pinout Listing."</li> </ul>                                                                                                                                                                                                                                                                          |
| 3           | 12/2009 | <ul> <li>Removed references for note 4 from Table 1.</li> <li>Added Figure 2 in Section 2.1.2, "Power Supply Voltage Specification.</li> <li>Added symbol T<sub>A</sub> in Table 2.</li> <li>Added footnote 2 in Table 2.</li> <li>Added a note in Section 4, "Clock Input Timing for rise/fall time of QE input pins.</li> <li>Modified CLKIN, PCI_CLK rise/fall time parameters in Table 8. Modified min value of t<sub>MCK</sub> in Table 19.</li> <li>Modified Figure 43.</li> <li>Modified formula for ce_clk calculation in Section 22.3, "System Clock Domains.</li> <li>Added a note in Section 22.4, "System PLL Configuration.</li> <li>Removed the signal ECID_TMODE_IN from Table 55.</li> <li>Removed all references of RST signals from Table 55.</li> </ul> |

#### How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

#### **USA/Europe or Locations Not Listed:**

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan @freescale.com

#### Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

#### For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, and PowerQUICC are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2010 Freescale Semiconductor, Inc.

Document Number: MPC8323EEC Rev. 4 09/2010



