

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300c2
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	Communications; QUICC Engine, Security; SEC 2.2
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8321evraddc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Serial Interfaces

The MPC8323E serial interfaces are as follows:

- Support for one UL2 interface with 31 multi-PHY addresses (MPC8323E and MPC8323 only)
- Support for up to three 10/100 Mbps Ethernet interfaces using MII or RMII
- Support for up to four T1/E1/J1/E3 or DS-3 serial interfaces (TDM)
- Support for dual UART and SPI interfaces and a single I²C interface

1.2 QUICC Engine Block

The QUICC Engine block is a versatile communications complex that integrates several communications peripheral controllers. It provides on-chip system design for a variety of applications, particularly in communications and networking systems. The QUICC Engine block has the following features:

- One 32-bit RISC controller for flexible support of the communications peripherals
- Serial DMA channel for receive and transmit on all serial channels
- Five universal communication controllers (UCCs) supporting the following protocols and interfaces (not all of them simultaneously):
 - 10/100 Mbps Ethernet/IEEE 802.3® standard
 - IP support for IPv4 and IPv6 packets including TOS, TTL, and header checksum processing
 - ATM protocol through UTOPIA interface (note that the MPC8321 and MPC8321E do not support the UTOPIA interface)
 - HDLC /transparent up to 70-Mbps full-duplex
 - HDLC bus up to 10 Mbps
 - Asynchronous HDLC
 - UART
 - BISYNC up to 2 Mbps
 - QUICC multi-channel controller (QMC) for 64 TDM channels
- One UTOPIA interface (UPC1) supporting 31 multi-PHYs (MPC8323E- and MPC8323-specific)
- Two serial peripheral interfaces (SPI). SPI2 is dedicated to Ethernet PHY management.
- Four TDM interfaces
- Thirteen independent baud rate generators and 19 input clock pins for supplying clocks to UCC serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers

The UCCs are similar to the PowerQUICC II peripherals: SCC (BISYNC, UART, and HDLC bus) and FCC (fast Ethernet, HDLC, transparent, and ATM).

DDR1 and DDR2 SDRAM

Table 13. DDR2 SDRAM Capacitance for Dn_GV_{DD}(typ) = 1.8 V

Delta input/output capacitance: DQ, DQS	C _{DIO}	-	0.5	pF	1

Note:

1. This parameter is sampled. $Dn_GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$, f = 1 MHz, T_A = 25 °C, V_{OUT} = $Dn_GV_{DD} \div 2$,

V_{OUT} (peak-to-peak) = 0.2 V.

Table 14 provides the recommended operating conditions for the DDR1 SDRAM component(s) of the MPC8323E when $Dn_GV_{DD}(typ) = 2.5 V.$

Parameter/Condition Symbol Min Max Unit Notes V I/O supply voltage 2.375 2.625 Dn_GV_{DD} 1 I/O reference voltage MVREF n_{REF} $0.49 \times Dn_GV_{DD}$ $0.51 \times Dn_GV_{DD}$ V 2 I/O termination voltage MVREF n_{REF} - 0.04 MVREFn_{REF} + 0.04 ٧ 3 VTT Input high voltage VIH MVREFn_{REF} + 0.15 $Dn_GV_{DD} + 0.3$ ٧ ٧ Input low voltage VIL -0.3 MVREFn_{REF} – 0.15 Output leakage current -9.9 loz -9.9 μΑ 4 Output high current (V_{OUT} = 1.95 V) -16.2 mΑ I_{OH} Output low current (V_{OUT} = 0.35 V) 16.2 mΑ I_{OL}

Table 14. DDR1 SDRAM DC Electrical Characteristics for Dn_GV_{DD}(typ) = 2.5 V

Notes:

1. Dn_GV_{DD} is expected to be within 50 mV of the DRAM Dn_GV_{DD} at all times.

2. MVREF n_{BEF} is expected to be equal to $0.5 \times Dn_{\text{GV}DD}$, and to track $Dn_{\text{GV}DD}$ DC variations as measured at the receiver. Peak-to-peak noise on MVREF nREF may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREFn_{REF}. This rail should track variations in the DC level of MVREFn_{REF}.

4. Output leakage is measured with all outputs disabled, $0 V \le V_{OUT} \le Dn_GV_{DD}$.

Table 15 provides the DDR1 capacitance $Dn_GV_{DD}(typ) = 2.5$ V.

Table 15. DDR1 SDRAM Capacitance for Dn_GV_{DD}(typ) = 2.5 V Interface

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ,DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}		0.5	pF	1

Note:

1. This parameter is sampled. $Dn_GV_{DD} = 2.5 \text{ V} \pm 0.125 \text{ V}$, f = 1 MHz, $T_A = 25^{\circ} \text{ C}$, $V_{OUT} = Dn_GV_{DD} \div 2$, V_{OUT} (peak-to-peak) = 0.2 V.

DDR1 and DDR2 SDRAM

Figure 5 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

Figure 5. Timing Diagram for t_{DDKHMH}

Figure 6 shows the DDR1 and DDR2 SDRAM output timing diagram.

Figure 6. DDR1 and DDR2 SDRAM Output Timing Diagram

Ethernet and MII Management

Table 24. MII Receive AC Timing Specifications (continued)

At recommended operating conditions with OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit
RX_CLK clock fall time	t _{MRXF}	1.0	_	4.0	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 8 provides the AC test load.

Figure 8. AC Test Load

Figure 9 shows the MII receive AC timing diagram.

Figure 9. MII Receive AC Timing Diagram

8.2.2 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.

Ethernet and MII Management

Table 26. RMII Receive AC Timing Specifications (continued)

At recommended operating conditions with OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit
REF_CLK clock fall time $V_{IH}(max)$ to $V_{IL}(min)$	t _{RMXF}	1.0		4.0	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first three letters of functional block)(signal)(state)(reference)(state)(signal)(state) for outputs. For example, t_{RMRDVKH} symbolizes RMII receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{RMX} clock reference (K) going to the high (H) state or setup time. Also, t_{RMRDXKL} symbolizes RMII receive timing (RMR) with respect to the tinvalid (X) relative to the t_{RMX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII (RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 11 provides the AC test load.

Figure 11. AC Test Load

Figure 12 shows the RMII receive AC timing diagram.

Figure 12. RMII Receive AC Timing Diagram

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for MII, and RMII are specified in Section 8.1, "Ethernet Controller (10/100 Mbps)—MII/RMII Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 27.

Parameter	Symbol	Conditions		Min	Max	Unit
Supply voltage (3.3 V)	OV _{DD}	—		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	OV _{DD} = Min	2.10	OV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	OV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	-	—		—	V
Input low voltage	V _{IL}	—		—	0.80	V
Input current	I _{IN}	0 V ≤ V _{II}	$_{\rm N} \le {\rm OV}_{\rm DD}$	—	±5	μA

Table 27. MII Management DC Electrical Characteristics When Powered at 3.3 V

8.3.2 MII Management AC Electrical Specifications

Table 28 provides the MII management AC timing specifications.

Table 28. MII Management AC Timing Specifications

At recommended operating conditions with OV_{DD} is 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit	Notes
MDC frequency	f _{MDC}	—	2.5	—	MHz	_
MDC period	t _{MDC}	—	400	—	ns	_
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	_
MDC to MDIO delay	t _{MDKHDX}	10	—	70	ns	_
MDIO to MDC setup time	t _{MDDVKH}	5	—	—	ns	_
MDIO to MDC hold time	t _{MDDXKH}	0	—	—	ns	_
MDC rise time	t _{MDCR}	—	—	10	ns	_
MDC fall time	t _{MDHF}	—	—	10	ns	

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

Local Bus

Figure 13 shows the MII management AC timing diagram.

Figure 13. MII Management Interface Timing Diagram

9 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8323E.

9.1 Local Bus DC Electrical Characteristics

Table 29 provides the DC electrical characteristics for the local bus interface.

Table 29. Local Bus DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
High-level output voltage, I _{OH} = −100 μA	V _{OH}	OV _{DD} – 0.2	—	V
Low-level output voltage, I _{OL} = 100 μA	V _{OL}	—	0.2	V
Input current	I _{IN}	—	±5	μA

9.2 Local Bus AC Electrical Specifications

Table 30 describes the general timing parameters of the local bus interface of the MPC8323E.

Table 30. Local Bus General Timing Parameters

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	t _{LBK}	15	—	ns	2
Input setup to local bus clock (LCLKn)	t _{LBIVKH}	7	—	ns	3, 4
Input hold from local bus clock (LCLKn)	t _{LBIXKH}	1.0	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	—	ns	5

Figure 17. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4

10 JTAG

This section describes the DC and AC electrical specifications for the IEEE Std. 1149.1TM (JTAG) interface of the MPC8323E.

10.1 JTAG DC Electrical Characteristics

Table 31 provides the DC electrical characteristics for the IEEE Std. 1149.1 (JTAG) interface of the MPC8323E.

Table 31. JTAG	Interface D	OC Electrical	Characteristics
----------------	-------------	---------------	-----------------

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V
Input high voltage	V _{IH}	—	2.5	OV _{DD} + 0.3	V

Figure 21 provides the boundary-scan timing diagram.

Figure 21. Boundary-Scan Timing Diagram

Figure 22. Test Access Port Timing Diagram

PCI

Table 37 shows the PCI AC timing specifications at 33 MHz.

	Table 37.	PCI AC	Timing	Specifications	at 33 MHz
--	-----------	--------	--------	----------------	-----------

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	^t PCKHOV		11	ns	2
Output hold from clock	t _{PCKHOX}	2		ns	2
Clock to output high impedence	t _{PCKHOZ}	_	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	-	ns	2, 4
Input hold from clock	t _{PCIXKH}	0	_	ns	2, 4

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

Figure 25 provides the AC test load for PCI.

Figure 25. PCI AC Test Load

Figure 26 shows the PCI input AC timing conditions.

Figure 26. PCI Input AC Timing Measurement Conditions

Figure 28 provides the AC test load for the timers.

14 GPIO

This section describes the DC and AC electrical specifications for the GPIO of the MPC8323E.

14.1 GPIO DC Electrical Characteristics

Table 11 provides the DC electrical characteristics for the MPC8323E GPIO.

Characteristic	Symbol	Condition	Min	Мах	Unit	Notes
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	—	V	1
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V	1
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V	1
Input high voltage	V _{IH}	_	2.0	OV _{DD} + 0.3	V	1
Input low voltage	V _{IL}	_	-0.3	0.8	V	—
Input current	I _{IN}	$0 \ V \leq V_{IN} \leq OV_{DD}$	_	±5	μA	—

Table 40. GPIO DC Electrical Characteristics

Note:

1. This specification applies when operating from 3.3-V supply.

14.2 GPIO AC Timing Specifications

Table 41 provides the GPIO input and output AC timing specifications.

Table 41. GPIO Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any external synchronous logic. GPIO inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation.

Figure 31 and Figure 32 represent the AC timing from Table 45. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 31 shows the SPI timing in slave mode (external clock).

Note: The clock edge is selectable on SPI.

Figure 31. SPI AC Timing in Slave Mode (External Clock) Diagram

Figure 32 shows the SPI timing in master mode (internal clock).

Note: The clock edge is selectable on SPI.

Figure 32. SPI AC Timing in Master Mode (Internal Clock) Diagram

17 TDM/SI

This section describes the DC and AC electrical specifications for the time-division-multiplexed and serial interface of the MPC8323E.

17.1 TDM/SI DC Electrical Characteristics

Table 46 provides the DC electrical characteristics for the MPC8323E TDM/SI.

Characteristic	Symbol	Condition	Min	Max	Unit
Output high voltage	V _{OH}	I _{OH} = -2.0 mA	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.5	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V

Table 46. TDM/SI DC Electrical Characteristics

21 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8323E is available in a thermally enhanced Plastic Ball Grid Array (PBGA); see Section 21.1, "Package Parameters for the MPC8323E PBGA," and Section 21.2, "Mechanical Dimensions of the MPC8323E PBGA," for information on the PBGA.

21.1 Package Parameters for the MPC8323E PBGA

The package parameters are as provided in the following list. The package type is $27 \text{ mm} \times 27 \text{ mm}$, 516 PBGA.

Package outline	$27 \text{ mm} \times 27 \text{ mm}$
Interconnects	516
Pitch	1.00 mm
Module height (typical)	2.25 mm
Solder Balls	62 Sn/36 Pb/2 Ag (ZQ package) 95.5 Sn/0.5 Cu/4Ag (VR package)
Ball diameter (typical)	0.6 mm

21.2 Mechanical Dimensions of the MPC8323E PBGA

Figure 42 shows the mechanical dimensions and bottom surface nomenclature of the MPC8323E, 516-PBGA package.

Package and Pin Listings

Table 55. MPC8323E PBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	CE/GPIO			
GPIO_PA0/SER1_TXD[0]/TDMA_TXD[0]/USBTXN	G3	IO	OV _{DD}	_
GPIO_PA1/SER1_TXD[1]/TDMA_TXD[1]/USBTXP	F3	IO	OV _{DD}	_
GPIO_PA2/SER1_TXD[2]/TDMA_TXD[2]	F2	IO	OV _{DD}	_
GPIO_PA3/SER1_TXD[3]/TDMA_TXD[3]	E3	IO	OV _{DD}	_
GPIO_PA4/SER1_RXD[0]/TDMA_RXD[0]/USBRXP	E2	IO	OV _{DD}	_
GPIO_PA5/SER1_RXD[1]/TDMA_RXD[1]/USBRXN	E1	IO	OV _{DD}	_
GPIO_PA6/SER1_RXD[2]/TDMA_RXD[2]/USBRXD	D3	IO	OV _{DD}	_
GPIO_PA7/SER1_RXD[3]/TDMA_RXD[3]	D2	IO	OV _{DD}	_
GPIO_PA8/SER1_CD/TDMA_REQ/USBOE	D1	IO	OV _{DD}	_
GPIO_PA9 TDMA_CLKO	C3	IO	OV _{DD}	_
GPIO_PA10/SER1_CTS/TDMA_RSYNC	C2	IO	OV _{DD}	—
GPIO_PA11/TDMA_STROBE	C1	IO	OV _{DD}	
GPIO_PA12/SER1_RTS/TDMA_TSYNC	B1	IO	OV _{DD}	_
GPIO_PA13/CLK9/BRGO9	H4	IO	OV _{DD}	
GPIO_PA14/CLK11/BRGO10	G4	IO	OV _{DD}	—
GPIO_PA15/BRGO7	J4	IO	OV _{DD}	—
GPIO_PA16/ LA0 (LBIU)	K24	IO	OV _{DD}	_
GPIO_PA17/ LA1 (LBIU)	K26	IO	OV _{DD}	_
GPIO_PA18/Enet2_TXD[0]/SER2_TXD[0]/ TDMB_TXD[0]/LA2 (LBIU)	G25	IO	OV _{DD}	_
GPIO_PA19/Enet2_TXD[1]/SER2_TXD[1]/ TDMB_TXD[1]/LA3 (LBIU)	G26	IO	OV _{DD}	_
GPIO_PA20/Enet2_TXD[2]/SER2_TXD[2]/ TDMB_TXD[2]/LA4 (LBIU)	H25	IO	OV _{DD}	_
GPIO_PA21/Enet2_TXD[3]/SER2_TXD[3]/ TDMB_TXD[3]/LA5 (LBIU)	H26	IO	OV _{DD}	_
GPIO_PA22/Enet2_RXD[0]/SER2_RXD[0]/ TDMB_RXD[0]/LA6 (LBIU)	C25	IO	OV _{DD}	_
GPIO_PA23/Enet2_RXD[1]/SER2_RXD[1]/ TDMB_RXD[1]/LA7 (LBIU)	C26	IO	OV _{DD}	—
GPIO_PA24/Enet2_RXD[2]/SER2_RXD[2]/ TDMB_RXD[2]/LA8 (LBIU)	D25	IO	OV _{DD}	_
GPIO_PA25/Enet2_RXD[3]/SER2_RXD[3]/ TDMB_RXD[3]/LA9 (LBIU)	D26	IO	OV _{DD}	—

Signal	Package Pin Number	Pin Type	Power Supply	Notes
GPIO_PA26/Enet2_RX_ER/SER2_CD/TDMB_REQ/ LA10 (LBIU)	E26	IO	OV _{DD}	—
GPIO_PA27/Enet2_TX_ER/TDMB_CLKO/LA11 (LBIU)	F25	IO	OV _{DD}	—
GPIO_PA28/Enet2_RX_DV/SER2_CTS/ TDMB_RSYNC/LA12 (LBIU)	E25	IO	OV _{DD}	—
GPIO_PA29/Enet2_COL/RXD[4]/SER2_RXD[4]/ TDMB_STROBE/LA13 (LBIU)	J25	IO	OV _{DD}	—
GPIO_PA30/Enet2_TX_EN/SER2_RTS/ TDMB_TSYNC/LA14 (LBIU)	F26	IO	OV _{DD}	—
GPIO_PA31/Enet2_CRS/SDET LA15 (LBIU)	J26	IO	OV _{DD}	_
GPIO_PB0/Enet3_TXD[0]/SER3_TXD[0]/ TDMC_TXD[0]	A13	IO	OV _{DD}	—
GPIO_PB1/Enet3_TXD[1]/SER3_TXD[1]/ TDMC_TXD[1]	B13	IO	OV _{DD}	—
GPIO_PB2/Enet3_TXD[2]/SER3_TXD[2]/ TDMC_TXD[2]	A14	IO	OV _{DD}	—
GPIO_PB3/Enet3_TXD[3]/SER3_TXD[3]/ TDMC_TXD[3]	B14	IO	OV _{DD}	—
GPIO_PB4/Enet3_RXD[0]/SER3_RXD[0]/ TDMC_RXD[0]	B8	IO	OV _{DD}	—
GPIO_PB5/Enet3_RXD[1]/SER3_RXD[1]/ TDMC_RXD[1]	A8	IO	OV _{DD}	—
GPIO_PB6/Enet3_RXD[2]/SER3_RXD[2]/ TDMC_RXD[2]	A9	IO	OV _{DD}	—
GPIO_PB7/Enet3_RXD[3]/SER3_RXD[3]/ TDMC_RXD[3]	В9	IO	OV _{DD}	—
GPIO_PB8/Enet3_RX_ER/SER3_CD/TDMC_REQ	A11	IO	OV _{DD}	_
GPIO_PB9/Enet3_TX_ER/TDMC_CLKO	B11	IO	OV _{DD}	—
GPIO_PB10/Enet3_RX_DV/SER3_CTS/ TDMC_RSYNC	A10	IO	OV _{DD}	—
GPIO_PB11/Enet3_COL/RXD[4]/SER3_RXD[4]/ TDMC_STROBE	A15	IO	OV _{DD}	—
GPIO_PB12/Enet3_TX_EN/SER3_RTS/ TDMC_TSYNC	B12	IO	OV _{DD}	—
GPIO_PB13/Enet3_CRS/SDET	B15	IO	OV _{DD}	—
GPIO_PB14/CLK12	D9	IO	OV _{DD}	—
GPIO_PB15 UPC1_TxADDR[4]	D14	IO	OV _{DD}	_
GPIO_PB16 UPC1_RxADDR[4]	B16	IO	OV _{DD}	_

Table 55. MPC8323E PBGA Pinout Listing (continued)

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
GPIO_PD10/GTM1_TIN2/GTM2_TIN1/CLK17	J24	IO	OV _{DD}	—
GPIO_PD11/GTM1_TGATE2/GTM2_TGATE1	B25	Ю	OV _{DD}	—
GPIO_PD12/GTM1_TOUT2/GTM2_TOUT1	C4	IO	OV _{DD}	—
GPIO_PD13/GTM1_TIN3/GTM2_TIN4/BRGO8	D4	IO	OV _{DD}	—
GPIO_PD14/GTM1_TGATE3/GTM2_TGATE4	D5	IO	OV _{DD}	—
GPIO_PD15/GTM1_TOUT3	A5	IO	OV _{DD}	—
GPIO_PD16/GTM1_TIN4/GTM2_TIN3	B5	IO	OV _{DD}	—
GPIO_PD17/GTM1_TGATE4/GTM2_TGATE3	C5	IO	OV _{DD}	—
GPIO_PD18/GTM1_TOUT4/GTM2_TOUT3	A6	IO	OV _{DD}	—
GPIO_PD19/CE_RISC1_INT/CE_EXT_REQ4	B6	IO	OV _{DD}	—
GPIO_PD20/CLK18/BRGO6	D21	Ю	OV _{DD}	—
GPIO_PD21/CLK16/BRG05/UPC1_CLKO	C19	Ю	OV _{DD}	—
GPIO_PD22/CLK4/BRGO9/UCC2_CLKO	A7	Ю	OV _{DD}	—
GPIO_PD23/CLK3/BRGO10/UCC3_CLKO	B7	IO	OV _{DD}	—
GPIO_PD24/CLK10/BRGO2/UCC4_CLKO	A12	Ю	OV _{DD}	—
GPIO_PD25/CLK13/BRGO16/UCC5_CLKO	B10	IO	OV _{DD}	—
GPIO_PD26/CLK2/BRGO4/UCC1_CLKO	E4	IO	OV _{DD}	—
GPIO_PD27/CLK1/BRGO3	F4	IO	OV _{DD}	—
GPIO_PD28/CLK19/BRGO11	D15	IO	OV _{DD}	—
GPIO_PD29/CLK15/BRGO8	C6	IO	OV _{DD}	—
GPIO_PD30/CLK14	D6	IO	OV _{DD}	—
GPIO_PD31/CLK7/BRGO15	E24	IO	OV _{DD}	—
Power	and Ground Supplies			
GV _{DD}	AA8, AA10, AA11, AA13, AA14, AA16, AA17, AA19, AA21, AB9, AB10, AB11, AB12, AB14, AB18, AB20, AB21, AC6, AC8, AC14, AC18	GV _{DD}		_
OV _{DD}	E5, E6, E8, E9, E10, E12, E14, E15, E16, E18, E19, E20, E22, F5, F6, F8, F10, F14, F16, F19, F22, G22, H5, H6, H21, J5, J22, K21, K22, L5, L6, L22, M5, M22, N5, N21, N22, P6, P22, P23, R5, R23, T5, T21, T22, U6, U22, V5, V22, W22, Y5, AB5, AB6, AC5	OV _{DD}	_	_

Table 55. MPC8323E PBGA Pinout Listing (continued)

MPC8323E PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 4

Characteristic ¹	Max Operating Frequency	Unit
DDR1/DDR2 memory bus frequency (MCLK) ²	133	MHz
Local bus frequency (LCLKn) ³	66	MHz
PCI input frequency (CLKIN or PCI_CLK)	66	MHz

Table 57. Operating Frequencies for PBGA (continued)

¹ The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen such that the resulting *csb_clk*, MCLK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies.

² The DDR1/DDR2 data rate is 2× the DDR1/DDR2 memory bus frequency.

³ The local bus frequency is 1/2, 1/4, or 1/8 of the *lb_clk* frequency (depending on LCRR[CLKDIV]) which is in turn 1× or 2× the *csb_clk* frequency (depending on RCWL[LBCM]).

22.4 System PLL Configuration

The system PLL is controlled by the RCWL[SPMF] parameter. Table 58 shows the multiplication factor encodings for the system PLL.

NOTE

System PLL VCO frequency = $2 \times (CSB \text{ frequency}) \times (System PLL VCO divider})$.

The VCO divider needs to be set properly so that the System PLL VCO frequency is in the range of 300–600 MHz.

RCWL[SPMF]	System PLL Multiplication Factor
0000	Reserved
0001	Reserved
0010	× 2
0011	× 3
0100	× 4
0101	× 5
0110	× 6
0111-1111	Reserved

Table 58. System PLL Multiplication Factors

As described in Section 22, "Clocking," the LBCM, DDRCM, and SPMF parameters in the reset configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (*csb_clk*). Table 59

Clocking

shows the expected frequency values for the CSB frequency for select *csb_clk* to CLKIN/PCI_SYNC_IN ratios.

		csh clk:	Input Clock Frequency		cy (MHz) ²	
CFG_CLKIN_DIV_B at Reset ¹	SPMF	Input Clock	25	33.33	66.67	
		Ratio	csb_cll	k Frequenc	y (MHz)	
High	0010	2:1			133	
High	0011	3:1		100		
High	0100	4 : 1	100	133		
High	0101	5:1	125			
High	0110	6:1				
High	0111	7:1				
High	1000	8:1				
High	1001	9:1				
High	1010	10 : 1				
High	1011	11 : 1				
High	1100	12 : 1				
High	1101	13 : 1				
High	1110	14 : 1				
High	1111	15 : 1				
High	0000	16 : 1				
Low	0010	2 : 1			133	
Low	0011	3 : 1		100		
Low	0100	4 : 1		133		
Low	0101	5 : 1				
Low	0110	6:1				
Low	0111	7:1				
Low	1000	8:1				
Low	1001	9:1				
Low	1010	10 : 1				
Low	1011	11:1				
Low	1100	12 : 1				
Low	1101	13 : 1				
Low	1110	14 : 1				
Low	1111	15 : 1				
Low	0000	16 : 1				

Table 59. CSB Frequency Options

¹ CFG_CLKIN_DIV_B is only used for host mode; CLKIN must be tied low and

CFG_CLKIN_DIV_B must be pulled up (high) in agent mode.

² CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

22.5 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). Table 60 shows the encodings for RCWL[COREPLL]. COREPLL values not listed in Table 60 should be considered reserved.

RCWL[COREPLL]			aara alk; ash alk Patia	VCO Dividor
0-1	2-5	6	COTE_CIK : CSD_CIK HALIO	
nn	0000	n	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)
00	0001	0	1:1	÷2
01	0001	0	1:1	÷4
10	0001	0	1:1	÷8
11	0001	0	1:1	÷8
00	0001	1	1.5:1	÷2
01	0001	1	1.5:1	÷4
10	0001	1	1.5:1	÷8
11	0001	1	1.5:1	÷8
00	0010	0	2:1	÷2
01	0010	0	2:1	÷4
10	0010	0	2:1	÷8
11	0010	0	2:1	÷8
00	0010	1	2.5:1	÷2
01	0010	1	2.5:1	÷4
10	0010	1	2.5:1	÷8
11	0010	1	2.5:1	÷8
00	0011	0	3:1	÷2
01	0011	0	3:1	÷4
10	0011	0	3:1	÷8
11	0011	0	3:1	÷8

Table 60. e300 Core PLL Configuration

NOTE

Core VCO frequency = core frequency \times VCO divider

VCO divider (RCWL[COREPLL[0:1]]) must be set properly so that the core VCO frequency is in the range of 500–800 MHz.

System Design Information

interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

$$T_J = T_C + (R_{\theta JC} \times P_D)$$

where:

 T_C = case temperature of the package (°C) $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W) P_D = power dissipation (W)

24 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8323E.

24.1 System Clocking

The MPC8323E includes three PLLs.

- The system PLL (AV_{DD}2) generates the system clock from the externally supplied CLKIN input. The frequency ratio between the system and CLKIN is selected using the system PLL ratio configuration bits as described in Section 22.4, "System PLL Configuration."
- The e300 core PLL (AV_{DD}3) generates the core clock as a slave to the system clock. The frequency ratio between the e300 core clock and the system clock is selected using the e300 PLL ratio configuration bits as described in Section 22.5, "Core PLL Configuration."
- The QUICC Engine PLL (AV_{DD}1) which uses the same reference as the system PLL. The QUICC Engine block generates or uses external sources for all required serial interface clocks.

24.2 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins. The voltage level at each $AV_{DD}n$ pin should always be equivalent to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide five independent filter circuits as illustrated in Figure 44, one to each of the five AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.