



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Obsolete                                                               |
|---------------------------------|------------------------------------------------------------------------|
| Core Processor                  | PowerPC e300c2                                                         |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                         |
| Speed                           | 333MHz                                                                 |
| Co-Processors/DSP               | Communications; QUICC Engine                                           |
| RAM Controllers                 | DDR, DDR2                                                              |
| Graphics Acceleration           | No                                                                     |
| Display & Interface Controllers | -                                                                      |
| Ethernet                        | 10/100Mbps (3)                                                         |
| SATA                            | -                                                                      |
| USB                             | USB 2.0 (1)                                                            |
| Voltage - I/O                   | 1.8V, 2.5V, 3.3V                                                       |
| Operating Temperature           | 0°C ~ 105°C (TA)                                                       |
| Security Features               | -                                                                      |
| Package / Case                  | 516-BBGA                                                               |
| Supplier Device Package         | 516-PBGA (27x27)                                                       |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8321zqafdc |
|                                 |                                                                        |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Electrical Characteristics

# 2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8323E. The MPC8323E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

# 2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

# 2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

|                                                                  |                                                                                                       |                              |                                  |      | -     |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|------|-------|
| Chara                                                            | acteristic                                                                                            | Symbol                       | Max Value                        | Unit | Notes |
| Core supply voltage                                              | V <sub>DD</sub>                                                                                       | -0.3 to 1.26                 | V                                | —    |       |
| PLL supply voltage                                               |                                                                                                       | $AV_{DDn}$                   | –0.3 to 1.26                     | V    | _     |
| DDR1 and DDR2 DRAM I/O vol                                       | GV <sub>DD</sub>                                                                                      | –0.3 to 2.75<br>–0.3 to 1.98 | V                                | _    |       |
| PCI, local bus, DUART, system c<br>SPI, MII, RMII, MII managemen | OV <sub>DD</sub>                                                                                      | -0.3 to 3.6                  | V                                | —    |       |
| Input voltage                                                    | DDR1/DDR2 DRAM signals                                                                                | MV <sub>IN</sub>             | –0.3 to (GV <sub>DD</sub> + 0.3) | V    | 2     |
|                                                                  | DDR1/DDR2 DRAM reference                                                                              | MV <sub>REF</sub>            | –0.3 to (GV <sub>DD</sub> + 0.3) | V    | 2     |
|                                                                  | Local bus, DUART, CLKIN, system control and power management, I <sup>2</sup> C, SPI, and JTAG signals | OV <sub>IN</sub>             | –0.3 to (OV <sub>DD</sub> + 0.3) | V    | 3     |
|                                                                  | PCI                                                                                                   | OVIN                         | –0.3 to (OV <sub>DD</sub> + 0.3) | V    | 5     |
| Storage temperature range                                        |                                                                                                       | T <sub>STG</sub>             | –55 to 150                       | °C   | _     |

# Table 1. Absolute Maximum Ratings<sup>1</sup>

Notes:

1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

 Caution: MV<sub>IN</sub> must not exceed GV<sub>DD</sub> by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.

3. Caution: OV<sub>IN</sub> must not exceed OV<sub>DD</sub> by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.



Electrical Characteristics

# 2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

| Driver Type                           | Output Impedance<br>(Ω) | Supply<br>Voltage        |
|---------------------------------------|-------------------------|--------------------------|
| Local bus interface utilities signals | 42                      | OV <sub>DD</sub> = 3.3 V |
| PCI signals                           | 25                      |                          |
| DDR1 signal                           | 18                      | GV <sub>DD</sub> = 2.5 V |
| DDR2 signal                           | 18                      | GV <sub>DD</sub> = 1.8 V |
| DUART, system control, I2C, SPI, JTAG | 42                      | OV <sub>DD</sub> = 3.3 V |
| GPIO signals                          | 42                      | OV <sub>DD</sub> = 3.3 V |

Table 3. Output Drive Capability

# 2.1.4 Input Capacitance Specification

Table 4 describes the input capacitance for the CLKIN pin in the MPC8323E.

**Table 4. Input Capacitance Specification** 

| Parameter/Condition                         | Symbol              | Min | Мах | Unit | Notes |
|---------------------------------------------|---------------------|-----|-----|------|-------|
| Input capacitance for all pins except CLKIN | CI                  | 6   | 8   | pF   | _     |
| Input capacitance for CLKIN                 | C <sub>ICLKIN</sub> | 10  |     | pF   | 1     |

Note:

1. The external clock generator should be able to drive 10 pF.

# 2.2 Power Sequencing

The device does not require the core supply voltage  $(V_{DD})$  and IO supply voltages  $(GV_{DD})$  and  $OV_{DD})$  to be applied in any particular order. Note that during power ramp-up, before the power supplies are stable and if the I/O voltages are supplied before the core voltage, there might be a period of time that all input and output pins are actively driven and cause contention and excessive current. In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core voltage  $(V_{DD})$  before the I/O voltage  $(GV_{DD})$  and  $OV_{DD}$  and assert PORESET before the power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal value before the I/O supplies reach 0.7 V; see Figure 3. Once both the power supplies (I/O voltage and core voltage) are stable, wait for a minimum of 32 clock cycles before negating PORESET.

Note that there is no specific power down sequence requirement for the device. I/O voltage supplies  $(GV_{DD})$  and  $OV_{DD}$ ) do not have any ordering requirements with respect to one another.



| Parameter/Condition                                                                                                                                                       | Min | Max | Unit                     | Notes |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------------------------|-------|
| HRESET/SRESET assertion (output)                                                                                                                                          | 512 | _   | t <sub>PCI_SYNC_IN</sub> | 1     |
| HRESET negation to SRESET negation (output)                                                                                                                               | 16  |     | t <sub>PCI_SYNC_IN</sub> | 1     |
| Input setup time for POR configuration signals<br>(CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to<br>negation of PORESET when the MPC8323E is in PCI host mode  | 4   | _   | <sup>t</sup> CLKIN       | 2     |
| Input setup time for POR configuration signals<br>(CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to<br>negation of PORESET when the MPC8323E is in PCI agent mode | 4   | _   | <sup>t</sup> PCI_SYNC_IN | 1     |
| Input hold time for POR config signals with respect to negation of HRESET                                                                                                 | 0   | _   | ns                       | —     |
| Time for the MPC8323E to turn off POR configuration signals with respect to the assertion of $\overrightarrow{\text{HRESET}}$                                             | _   | 4   | ns                       | 3     |
| Time for the MPC8323E to turn on POR configuration signals with respect to the negation of HRESET                                                                         | 1   | _   | <sup>t</sup> PCI_SYNC_IN | 1, 3  |

### Table 9. RESET Initialization Timing Specifications (continued)

### Notes:

1. t<sub>PCI\_SYNC\_IN</sub> is the clock period of the input clock applied to PCI\_SYNC\_IN. When the MPC8323E is In PCI host mode the primary clock is applied to the CLKIN input, and PCI\_SYNC\_IN period depends on the value of CFG\_CLKIN\_DIV. See the *MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual* for more details.

 t<sub>CLKIN</sub> is the clock period of the input clock applied to CLKIN. It is only valid when the MPC8323E is in PCI host mode. See the MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual for more details.

3. POR configuration signals consists of CFG\_RESET\_SOURCE[0:2] and CFG\_CLKIN\_DIV.

## Table 10 provides the PLL lock times.

### Table 10. PLL Lock Times

| Parameter/Condition | Min | Мах | Unit | Notes |
|---------------------|-----|-----|------|-------|
| PLL lock times      |     | 100 | μs   | _     |

# 5.1 Reset Signals DC Electrical Characteristics

Table 11 provides the DC electrical characteristics for the MPC8323E reset signals mentioned in Table 9.

Table 11. Reset Signals DC Electrical Characteristics

| Characteristic      | Symbol          | Condition                 | Min  | Мах                    | Unit | Notes |
|---------------------|-----------------|---------------------------|------|------------------------|------|-------|
| Output high voltage | V <sub>OH</sub> | I <sub>OH</sub> = -6.0 mA | 2.4  | —                      | V    | 1     |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 6.0 mA  | —    | 0.5                    | V    | 1     |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 3.2 mA  | —    | 0.4                    | V    | 1     |
| Input high voltage  | V <sub>IH</sub> | —                         | 2.0  | OV <sub>DD</sub> + 0.3 | V    | 1     |
| Input low voltage   | V <sub>IL</sub> | _                         | -0.3 | 0.8                    | V    | _     |



**DDR1 and DDR2 SDRAM** 

### Table 13. DDR2 SDRAM Capacitance for Dn\_GV<sub>DD</sub>(typ) = 1.8 V

| Delta input/output capacitance: DQ, DQS | C <sub>DIO</sub> | - | 0.5 | pF | 1 |
|-----------------------------------------|------------------|---|-----|----|---|
|                                         |                  |   |     |    |   |

### Note:

1. This parameter is sampled.  $Dn_GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$ , f = 1 MHz, T<sub>A</sub> = 25 °C, V<sub>OUT</sub> =  $Dn_GV_{DD} \div 2$ ,

V<sub>OUT</sub> (peak-to-peak) = 0.2 V.

Table 14 provides the recommended operating conditions for the DDR1 SDRAM component(s) of the MPC8323E when  $Dn_GV_{DD}(typ) = 2.5 V.$ 

Parameter/Condition Symbol Min Max Unit Notes V I/O supply voltage 2.375 2.625 Dn\_GV<sub>DD</sub> 1 I/O reference voltage MVREF n<sub>REF</sub>  $0.49 \times Dn_GV_{DD}$  $0.51 \times Dn_GV_{DD}$ V 2 I/O termination voltage MVREF n<sub>REF</sub> - 0.04 MVREFn<sub>REF</sub> + 0.04 ٧ 3 VTT Input high voltage VIH MVREFn<sub>REF</sub> + 0.15  $Dn_GV_{DD} + 0.3$ ٧ ٧ Input low voltage VIL -0.3 MVREFn<sub>REF</sub> – 0.15 Output leakage current -9.9 loz -9.9 μΑ 4 Output high current (V<sub>OUT</sub> = 1.95 V) -16.2 mΑ I<sub>OH</sub> Output low current (V<sub>OUT</sub> = 0.35 V) 16.2 mΑ I<sub>OL</sub>

Table 14. DDR1 SDRAM DC Electrical Characteristics for Dn\_GV<sub>DD</sub>(typ) = 2.5 V

#### Notes:

1. Dn\_GV<sub>DD</sub> is expected to be within 50 mV of the DRAM Dn\_GV<sub>DD</sub> at all times.

2. MVREF  $n_{\text{BEF}}$  is expected to be equal to  $0.5 \times Dn_{\text{GV}DD}$ , and to track  $Dn_{\text{GV}DD}$  DC variations as measured at the receiver. Peak-to-peak noise on MVREF nREF may not exceed ±2% of the DC value.

3. V<sub>TT</sub> is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREFn<sub>REF</sub>. This rail should track variations in the DC level of MVREFn<sub>REF</sub>.

4. Output leakage is measured with all outputs disabled,  $0 V \le V_{OUT} \le Dn_GV_{DD}$ .

Table 15 provides the DDR1 capacitance  $Dn_GV_{DD}(typ) = 2.5$  V.

### Table 15. DDR1 SDRAM Capacitance for Dn\_GV<sub>DD</sub>(typ) = 2.5 V Interface

| Parameter/Condition                     | Symbol           | Min | Мах | Unit | Notes |
|-----------------------------------------|------------------|-----|-----|------|-------|
| Input/output capacitance: DQ,DQS        | C <sub>IO</sub>  | 6   | 8   | pF   | 1     |
| Delta input/output capacitance: DQ, DQS | C <sub>DIO</sub> |     | 0.5 | pF   | 1     |

Note:

1. This parameter is sampled.  $Dn_GV_{DD} = 2.5 \text{ V} \pm 0.125 \text{ V}$ , f = 1 MHz,  $T_A = 25^{\circ} \text{ C}$ ,  $V_{OUT} = Dn_GV_{DD} \div 2$ , V<sub>OUT</sub> (peak-to-peak) = 0.2 V.



#### **Ethernet and MII Management**

### Table 24. MII Receive AC Timing Specifications (continued)

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  of 3.3 V  $\pm$  10%.

| Parameter/Condition    | Symbol <sup>1</sup> | Min | Typical | Мах | Unit |
|------------------------|---------------------|-----|---------|-----|------|
| RX_CLK clock fall time | t <sub>MRXF</sub>   | 1.0 | _       | 4.0 | ns   |

Note:

1. The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>MRDVKH</sub> symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>MRX</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>MRDXKL</sub> symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t<sub>MRX</sub> clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t<sub>MRX</sub> represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub>

Figure 8 provides the AC test load.



Figure 8. AC Test Load

Figure 9 shows the MII receive AC timing diagram.



Figure 9. MII Receive AC Timing Diagram

# 8.2.2 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.



#### **Ethernet and MII Management**

Table 26. RMII Receive AC Timing Specifications (continued)

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  of 3.3 V  $\pm$  10%.

| Parameter/Condition                                    | Symbol <sup>1</sup> | Min | Typical | Мах | Unit |
|--------------------------------------------------------|---------------------|-----|---------|-----|------|
| REF_CLK clock fall time $V_{IH}(max)$ to $V_{IL}(min)$ | t <sub>RMXF</sub>   | 1.0 |         | 4.0 | ns   |

### Note:

1. The symbols used for timing specifications follow the pattern of t<sub>(first three letters of functional block)(signal)(state)(reference)(state)(signal)(state) for outputs. For example, t<sub>RMRDVKH</sub> symbolizes RMII receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>RMX</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>RMRDXKL</sub> symbolizes RMII receive timing (RMR) with respect to the tinvalid (X) relative to the t<sub>RMX</sub> clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t<sub>RMX</sub> represents the RMII (RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub>

### Figure 11 provides the AC test load.



Figure 11. AC Test Load

Figure 12 shows the RMII receive AC timing diagram.



Figure 12. RMII Receive AC Timing Diagram

# 8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for MII, and RMII are specified in Section 8.1, "Ethernet Controller (10/100 Mbps)—MII/RMII Electrical Characteristics."



# 8.3.1 MII Management DC Electrical Characteristics

MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 27.

| Parameter              | Symbol           | Conditions                   |                        | Min  | Max                    | Unit |
|------------------------|------------------|------------------------------|------------------------|------|------------------------|------|
| Supply voltage (3.3 V) | OV <sub>DD</sub> | —                            |                        | 2.97 | 3.63                   | V    |
| Output high voltage    | V <sub>OH</sub>  | I <sub>OH</sub> = -1.0 mA    | OV <sub>DD</sub> = Min | 2.10 | OV <sub>DD</sub> + 0.3 | V    |
| Output low voltage     | V <sub>OL</sub>  | I <sub>OL</sub> = 1.0 mA     | OV <sub>DD</sub> = Min | GND  | 0.50                   | V    |
| Input high voltage     | V <sub>IH</sub>  | -                            | _                      |      | —                      | V    |
| Input low voltage      | V <sub>IL</sub>  | —                            |                        | —    | 0.80                   | V    |
| Input current          | I <sub>IN</sub>  | $0 V \le V_{IN} \le OV_{DD}$ |                        | —    | ±5                     | μA   |

Table 27. MII Management DC Electrical Characteristics When Powered at 3.3 V

# 8.3.2 MII Management AC Electrical Specifications

Table 28 provides the MII management AC timing specifications.

### Table 28. MII Management AC Timing Specifications

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  is 3.3 V  $\pm$  10%.

| Parameter/Condition        | Symbol <sup>1</sup> | Min | Typical | Мах | Unit | Notes |
|----------------------------|---------------------|-----|---------|-----|------|-------|
| MDC frequency              | f <sub>MDC</sub>    | —   | 2.5     | —   | MHz  | _     |
| MDC period                 | t <sub>MDC</sub>    | —   | 400     | —   | ns   | _     |
| MDC clock pulse width high | t <sub>MDCH</sub>   | 32  | —       | —   | ns   | _     |
| MDC to MDIO delay          | t <sub>MDKHDX</sub> | 10  | —       | 70  | ns   | _     |
| MDIO to MDC setup time     | t <sub>MDDVKH</sub> | 5   | —       | —   | ns   | _     |
| MDIO to MDC hold time      | t <sub>MDDXKH</sub> | 0   | —       | —   | ns   | _     |
| MDC rise time              | t <sub>MDCR</sub>   | —   | —       | 10  | ns   | _     |
| MDC fall time              | t <sub>MDHF</sub>   | —   | —       | 10  | ns   |       |

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>MDKHDX</sub> symbolizes management data timing (MD) for the time t<sub>MDC</sub> from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t<sub>MDDVKH</sub> symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>MDC</sub> clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>



Local Bus

Figure 13 shows the MII management AC timing diagram.



Figure 13. MII Management Interface Timing Diagram

# 9 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8323E.

# 9.1 Local Bus DC Electrical Characteristics

Table 29 provides the DC electrical characteristics for the local bus interface.

| Table 29. Local Bus DC Electrical Characteristics |
|---------------------------------------------------|
|---------------------------------------------------|

| Parameter                                            | Symbol          | Min                    | Мах                    | Unit |
|------------------------------------------------------|-----------------|------------------------|------------------------|------|
| High-level input voltage                             | V <sub>IH</sub> | 2                      | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage                              | V <sub>IL</sub> | -0.3                   | 0.8                    | V    |
| High-level output voltage, I <sub>OH</sub> = −100 μA | V <sub>OH</sub> | OV <sub>DD</sub> – 0.2 | —                      | V    |
| Low-level output voltage, I <sub>OL</sub> = 100 μA   | V <sub>OL</sub> | —                      | 0.2                    | V    |
| Input current                                        | I <sub>IN</sub> | —                      | ±5                     | μA   |

# 9.2 Local Bus AC Electrical Specifications

Table 30 describes the general timing parameters of the local bus interface of the MPC8323E.

Table 30. Local Bus General Timing Parameters

| Parameter                                                   | Symbol <sup>1</sup>  | Min | Мах | Unit | Notes |
|-------------------------------------------------------------|----------------------|-----|-----|------|-------|
| Local bus cycle time                                        | t <sub>LBK</sub>     | 15  | —   | ns   | 2     |
| Input setup to local bus clock (LCLKn)                      | t <sub>LBIVKH</sub>  | 7   | —   | ns   | 3, 4  |
| Input hold from local bus clock (LCLKn)                     | t <sub>LBIXKH</sub>  | 1.0 | —   | ns   | 3, 4  |
| LALE output fall to LAD output transition (LATCH hold time) | t <sub>LBOTOT1</sub> | 1.5 | —   | ns   | 5     |



## Table 32. JTAG AC Timing Specifications (Independent of CLKIN)<sup>1</sup> (continued)

At recommended operating conditions (see Table 2).

| Parameter                                                                  | Symbol <sup>2</sup>                        | Min    | Мах     | Unit | Notes     |
|----------------------------------------------------------------------------|--------------------------------------------|--------|---------|------|-----------|
| JTAG external clock to output high impedance:<br>Boundary-scan data<br>TDO | t <sub>JTKLDZ</sub><br>t <sub>JTKLOZ</sub> | 2<br>2 | 19<br>9 | ns   | 5, 6<br>6 |

Notes:

1. All outputs are measured from the midpoint voltage of the falling/rising edge of t<sub>TCLK</sub> to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50- $\Omega$  load (see Figure 14). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

- 2. The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>JTDVKH</sub> symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t<sub>JTG</sub> clock reference (K)</sub> going to the high (H) state or setup time. Also, t<sub>JTDXKH</sub> symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t<sub>JTG</sub> clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.

4. Non-JTAG signal input timing with respect to t<sub>TCLK</sub>.

- 5. Non-JTAG signal output timing with respect to t<sub>TCLK</sub>.
- 6. Guaranteed by design and characterization.

Figure 18 provides the AC test load for TDO and the boundary-scan outputs of the MPC8323E.



Figure 18. AC Test Load for the JTAG Interface

Figure 19 provides the JTAG clock input timing diagram.



Figure 19. JTAG Clock Input Timing Diagram

Figure 20 provides the TRST timing diagram.





1<sup>2</sup>C

## Table 34. I<sup>2</sup>C AC Electrical Specifications (continued)

All values refer to  $V_{IH}$  (min) and  $V_{IL}$  (max) levels (see Table 33).

| Parameter                                                                       | Symbol <sup>1</sup> | Min                                  | Мах | Unit |
|---------------------------------------------------------------------------------|---------------------|--------------------------------------|-----|------|
| Rise time of both SDA and SCL signals                                           | t <sub>l2CR</sub>   | 20 + 0.1 C <sub>b</sub> <sup>4</sup> | 300 | ns   |
| Fall time of both SDA and SCL signals                                           | t <sub>I2CF</sub>   | 20 + 0.1 C <sub>b</sub> <sup>4</sup> | 300 | ns   |
| Setup time for STOP condition                                                   | t <sub>I2PVKH</sub> | 0.6                                  |     | μs   |
| Bus free time between a STOP and START condition                                | t <sub>I2KHDX</sub> | 1.3                                  |     | μs   |
| Noise margin at the LOW level for each connected device (including hysteresis)  | V <sub>NL</sub>     | $0.1 \times OV_{DD}$                 | Ι   | V    |
| Noise margin at the HIGH level for each connected device (including hysteresis) | V <sub>NH</sub>     | $0.2 \times \text{OV}_{\text{DD}}$   | _   | V    |

#### Notes:

1. The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>12DVKH</sub> symbolizes I<sup>2</sup>C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>12C</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>12SXKL</sub> symbolizes I<sup>2</sup>C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t<sub>12C</sub> clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t<sub>12C</sub> clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub>

- MPC8323E provides a hold time of at least 300 ns for the SDA signal (referred to the V<sub>IH</sub>(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum  $t_{I2DVKH}$  has only to be met if the device does not stretch the LOW period ( $t_{I2CL}$ ) of the SCL signal.

4.  $C_B$  = capacitance of one bus line in pF.

Figure 23 provides the AC test load for the  $I^2C$ .



Figure 23. I<sup>2</sup>C AC Test Load

Figure 24 shows the AC timing diagram for the  $I^2C$  bus.



Figure 24. I<sup>2</sup>C Bus AC Timing Diagram



# 12 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8323E.

# **12.1 PCI DC Electrical Characteristics**

Table 35 provides the DC electrical characteristics for the PCI interface of the MPC8323E.

| Parameter                 | Symbol          | Test Condition                                       | Min                    | Мах                    | Unit |
|---------------------------|-----------------|------------------------------------------------------|------------------------|------------------------|------|
| High-level input voltage  | V <sub>IH</sub> | $V_{OUT} \ge V_{OH}$ (min) or                        | 2                      | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage   | V <sub>IL</sub> | $V_{OUT} \le V_{OL}$ (max)                           | -0.3                   | 0.8                    | V    |
| High-level output voltage | V <sub>OH</sub> | OV <sub>DD</sub> = min,<br>I <sub>OH</sub> = −100 μA | OV <sub>DD</sub> – 0.2 | _                      | V    |
| Low-level output voltage  | V <sub>OL</sub> | OV <sub>DD</sub> = min,<br>I <sub>OL</sub> = 100 μA  | _                      | 0.2                    | V    |
| Input current             | I <sub>IN</sub> | $0 V \le V_{IN} \le OV_{DD}$                         | _                      | ±5                     | μA   |

# Table 35. PCI DC Electrical Characteristics<sup>1,2</sup>

### Notes:

1. Note that the symbol  $V_{IN}$ , in this case, represents the  $OV_{IN}$  symbol referenced in Table 1 and Table 2.

2. Ranges listed do not meet the full range of the DC specifications of the PCI 2.3 Local Bus Specifications.

# 12.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the MPC8323E. Note that the PCI\_CLK or PCI\_SYNC\_IN signal is used as the PCI input clock depending on whether the MPC8323E is configured as a host or agent device. Table 36 shows the PCI AC timing specifications at 66 MHz.

| Parameter                      | Symbol <sup>1</sup> | Min | Max | Unit | Notes |
|--------------------------------|---------------------|-----|-----|------|-------|
| Clock to output valid          | t <sub>PCKHOV</sub> | _   | 6.0 | ns   | 2     |
| Output hold from clock         | t <sub>PCKHOX</sub> | 1   | _   | ns   | 2     |
| Clock to output high impedence | t <sub>PCKHOZ</sub> | _   | 14  | ns   | 2, 3  |
| Input setup to clock           | t <sub>PCIVKH</sub> | 3.0 | _   | ns   | 2, 4  |
| Input hold from clock          | t <sub>PCIXKH</sub> | 0   | —   | ns   | 2, 4  |

## Table 36. PCI AC Timing Specifications at 66 MHz

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>PCIVKH</sub> symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI\_SYNC\_IN clock, t<sub>SYS</sub>, reference (K) going to the high (H) state or setup time. Also, t<sub>PCRHFV</sub> symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.



SPI

# 16 SPI

This section describes the DC and AC electrical specifications for the SPI of the MPC8323E.

# **16.1 SPI DC Electrical Characteristics**

Table 44 provides the DC electrical characteristics for the MPC8323E SPI.

| Characteristic      | Symbol          | Condition                      | Min  | Мах                    | Unit |
|---------------------|-----------------|--------------------------------|------|------------------------|------|
| Output high voltage | V <sub>OH</sub> | I <sub>OH</sub> = -6.0 mA      | 2.4  | —                      | V    |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 6.0 mA       | —    | 0.5                    | V    |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 3.2 mA       | —    | 0.4                    | V    |
| Input high voltage  | V <sub>IH</sub> | —                              | 2.0  | OV <sub>DD</sub> + 0.3 | V    |
| Input low voltage   | V <sub>IL</sub> | —                              | -0.3 | 0.8                    | V    |
| Input current       | I <sub>IN</sub> | $0 \ V \le V_{IN} \le OV_{DD}$ | —    | ±5                     | μA   |

# Table 44. SPI DC Electrical Characteristics

# 16.2 SPI AC Timing Specifications

Table 45 and provide the SPI input and output AC timing specifications.

Table 45. SPI AC Timing Specifications<sup>1</sup>

| Characteristic                                           | Symbol <sup>2</sup> | Min | Мах | Unit |
|----------------------------------------------------------|---------------------|-----|-----|------|
| SPI outputs—Master mode (internal clock) delay           | t <sub>NIKHOV</sub> | 0.5 | 6   | ns   |
| SPI outputs—Slave mode (external clock) delay            | t <sub>NEKHOV</sub> | 2   | 8   | ns   |
| SPI inputs—Master mode (internal clock) input setup time | t <sub>NIIVKH</sub> | 6   | —   | ns   |
| SPI inputs—Master mode (internal clock) input hold time  | t <sub>NIIXKH</sub> | 0   | —   | ns   |
| SPI inputs—Slave mode (external clock) input setup time  | t <sub>NEIVKH</sub> | 4   | —   | ns   |
| SPI inputs—Slave mode (external clock) input hold time   | t <sub>NEIXKH</sub> | 2   | —   | ns   |

Notes:

1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t<sub>NIKHOV</sub> symbolizes the NMSI outputs internal timing (NI) for the time t<sub>SPI</sub> memory clock reference (K) goes from the high state (H) until outputs (O) are valid (V).
</sub></sub>

Figure 30 provides the AC test load for the SPI.



Figure 30. SPI AC Test Load



Figure 39 shows the timing with external clock.





Figure 40 shows the timing with internal clock.



Figure 40. AC Timing (Internal Clock) Diagram



Package and Pin Listings



### Notes:

1.All dimensions are in millimeters.

2.Dimensions and tolerances per ASME Y14.5M-1994.

3.Maximum solder ball diameter measured parallel to datum A.

4.Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Figure 42. Mechanical Dimensions and Bottom Surface Nomenclature of the MPC8323E PBGA



| Signal    | Package Pin Number      | Pin Type | Power<br>Supply  | Notes |
|-----------|-------------------------|----------|------------------|-------|
| MEMC_MCKE | AD14                    | 0        | GV <sub>DD</sub> | 3     |
| MEMC_MCK  | AF14                    | 0        | GV <sub>DD</sub> | —     |
| MEMC_MCK  | AE14                    | 0        | GV <sub>DD</sub> | —     |
| MEMC_MODT | AF11                    | 0        | GV <sub>DD</sub> | —     |
| Local B   | us Controller Interface |          |                  |       |
| LAD0      | N25                     | IO       | OV <sub>DD</sub> | 7     |
| LAD1      | P26                     | IO       | OV <sub>DD</sub> | 7     |
| LAD2      | P25                     | IO       | OV <sub>DD</sub> | 7     |
| LAD3      | R26                     | IO       | OV <sub>DD</sub> | 7     |
| LAD4      | R25                     | IO       | OV <sub>DD</sub> | 7     |
| LAD5      | T26                     | IO       | OV <sub>DD</sub> | 7     |
| LAD6      | T25                     | IO       | OV <sub>DD</sub> | 7     |
| LAD7      | U25                     | IO       | OV <sub>DD</sub> | 7     |
| LAD8      | M24                     | IO       | OV <sub>DD</sub> | 7     |
| LAD9      | N24                     | IO       | OV <sub>DD</sub> | 7     |
| LAD10     | P24                     | IO       | OV <sub>DD</sub> | 7     |
| LAD11     | R24                     | IO       | OV <sub>DD</sub> | 7     |
| LAD12     | T24                     | IO       | OV <sub>DD</sub> | 7     |
| LAD13     | U24                     | IO       | OV <sub>DD</sub> | 7     |
| LAD14     | U26                     | IO       | OV <sub>DD</sub> | 7     |
| LAD15     | V26                     | IO       | OV <sub>DD</sub> | 7     |
| LA16      | K25                     | 0        | OV <sub>DD</sub> | 7     |
| LA17      | L25                     | 0        | OV <sub>DD</sub> | 7     |
| LA18      | L26                     | 0        | OV <sub>DD</sub> | 7     |
| LA19      | L24                     | 0        | OV <sub>DD</sub> | 7     |
| LA20      | M26                     | 0        | OV <sub>DD</sub> | 7     |
| LA21      | M25                     | 0        | OV <sub>DD</sub> | 7     |
| LA22      | N26                     | 0        | OV <sub>DD</sub> | 7     |
| LA23      | AC24                    | 0        | OV <sub>DD</sub> | 7     |
| LA24      | AC25                    | 0        | OV <sub>DD</sub> | 7     |
| LA25      | AB23                    | 0        | OV <sub>DD</sub> | 7     |
| LCS0      | AB24                    | 0        | OV <sub>DD</sub> | 4     |

# Table 55. MPC8323E PBGA Pinout Listing (continued)



| Signal                | Package Pin Number | Pin Type | Power<br>Supply  | Notes |
|-----------------------|--------------------|----------|------------------|-------|
| PCI_AD20              | AB2                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD21              | Y4                 | IO       | OV <sub>DD</sub> | —     |
| PCI_AD22              | AC1                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD23              | AA3                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD24              | AA4                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD25              | AD1                | IO       | OV <sub>DD</sub> |       |
| PCI_AD26              | AD2                | IO       | OV <sub>DD</sub> |       |
| PCI_AD27              | AB3                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD28              | AB4                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD29              | AE1                | IO       | OV <sub>DD</sub> |       |
| PCI_AD30              | AC3                | IO       | OV <sub>DD</sub> |       |
| PCI_AD31              | AC4                | IO       | OV <sub>DD</sub> | —     |
| PCI_C_BE0             | M4                 | IO       | OV <sub>DD</sub> | —     |
| PCI_C_BE1             | T4                 | IO       | OV <sub>DD</sub> | —     |
| PCI_C_BE2             | Y3                 | IO       | OV <sub>DD</sub> | —     |
| PCI_C_BE3             | AC2                | IO       | OV <sub>DD</sub> |       |
| PCI_PAR               | U3                 | IO       | OV <sub>DD</sub> |       |
| PCI_FRAME             | W1                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_TRDY              | W4                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_IRDY              | W2                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_STOP              | V4                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_DEVSEL            | W3                 | Ю        | OV <sub>DD</sub> | 5     |
| PCI_IDSEL             | P2                 | I        | OV <sub>DD</sub> | —     |
| PCI_SERR              | U4                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_PERR              | V3                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_REQ0              | AD4                | IO       | OV <sub>DD</sub> | —     |
| PCI_REQ1/CPCI_HS_ES   | AE3                | I        | OV <sub>DD</sub> | —     |
| PCI_REQ2              | AF3                | I        | OV <sub>DD</sub> | —     |
| PCI_GNT0              | AD3                | IO       | OV <sub>DD</sub> | —     |
| PCI_GNT1/CPCI_HS_LED  | AE4                | 0        | OV <sub>DD</sub> | —     |
| PCI_GNT2/CPCI_HS_ENUM | AF4                | 0        | OV <sub>DD</sub> | —     |
| M66EN                 | L4                 | I        | OV <sub>DD</sub> | _     |

# Table 55. MPC8323E PBGA Pinout Listing (continued)



Package and Pin Listings

| Signal          | Package Pin Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pin Type        | Power<br>Supply | Notes |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-------|--|--|
| V <sub>DD</sub> | K10, K11, K12, K13, K14, K15,<br>K16, K17, L10, L17, M10, M17,<br>N10, N17, P10, P17, R10, R17,<br>T10, T17, U10, U11, U12, U13,<br>U14, U15, U16, U17                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>DD</sub> | _               | _     |  |  |
| V <sub>SS</sub> | <ul> <li>B23, E7, E11, E13, E17, E21,</li> <li>F11, F13, F17, F21, F23, G5,</li> <li>H22, K5, K6, L11, L12, L13,</li> <li>L14, L15, L16, L21, M11, M12,</li> <li>M13, M14, M15, M16, N6, N11,</li> <li>N12, N13, N14, N15, N16, P5,</li> <li>P11, P12, P13, P14, P15, P16,</li> <li>P21, R11, R12, R13, R14, R15,</li> <li>R16, R22, T6, T11, T12, T13,</li> <li>T14, T15, T16, U5, U21, V23,</li> <li>W5, W6, W21, W23, W24, Y22,</li> <li>AA5, AA6, AA22, AA25, AB7,</li> <li>AB13, AB19, AB22, AC10,</li> <li>AC12, AC16, AC20</li> </ul> | V <sub>SS</sub> |                 |       |  |  |
| No Connect      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                 |       |  |  |
| NC              | C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _               | _               | —     |  |  |

#### Table 55. MPC8323E PBGA Pinout Listing (continued)

### Notes:

1. This pin is an open drain signal. A weak pull-up resistor (1 k $\Omega$ ) should be placed on this pin to OV<sub>DD</sub>.

2. This pin is an open drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OV<sub>DD</sub>.

3. This output is actively driven during reset rather than being three-stated during reset.

4. These JTAG and local bus pins have weak internal pull-up P-FETs that are always enabled.

5. This pin should have a weak pull up if the chip is in PCI host mode. Follow the PCI specification's recommendation.

6. This pin must always be tied to GND. 7. This pin has weak internal pull-down N-FET that is always enabled.8. Though this pin has weak internal pull-up yet it is recommended to apply an external pull-up.



#### 22.7 Suggested PLL Configurations

To simplify the PLL configurations, the MPC8323E might be separated into two clock domains. The first domain contain the CSB PLL and the core PLL. The core PLL is connected serially to the CSB PLL, and has the csb\_clk as its input clock. The second clock domain has the QUICC Engine PLL. The clock domains are independent, and each of their PLLs are configured separately. Both of the domains has one common input clock. Table 63 shows suggested PLL configurations for 33, 25, and 66 MHz input clocks.

| Conf No. | SPMF | Core<br>PLL | CEMF | CEDF | Input Clock<br>Frequency<br>(MHz) | CSB<br>Frequency<br>(MHz) | Core<br>Frequency<br>(MHz) | QUICC<br>Engine<br>Frequency<br>(MHz) |
|----------|------|-------------|------|------|-----------------------------------|---------------------------|----------------------------|---------------------------------------|
| 1        | 0100 | 0000100     | 0110 | 0    | 33.33                             | 133.33                    | 266.66                     | 200                                   |
| 2        | 0100 | 0000101     | 1000 | 0    | 25                                | 100                       | 250                        | 200                                   |
| 3        | 0010 | 0000100     | 0011 | 0    | 66.67                             | 133.33                    | 266.66                     | 200                                   |
| 4        | 0100 | 0000101     | 0110 | 0    | 33.33                             | 133.33                    | 333.33                     | 200                                   |
| 5        | 0101 | 0000101     | 1000 | 0    | 25                                | 125                       | 312.5                      | 200                                   |
| 6        | 0010 | 0000101     | 0011 | 0    | 66.67                             | 133.33                    | 333.33                     | 200                                   |

Table 63. Suggested PLL Configurations

#### 23 Thermal

This section describes the thermal specifications of the MPC8323E.

#### 23.1 **Thermal Characteristics**

Table 64 provides the package thermal characteristics for the 516  $27 \times 27$  mm PBGA of the MPC8323E.

| Table 64. Package Thermal Characteristics for PBGA |                         |                   |       |      |         |  |
|----------------------------------------------------|-------------------------|-------------------|-------|------|---------|--|
| Characteristic                                     | Board type              | Symbol            | Value | Unit | Notes   |  |
| Junction-to-ambient natural convection             | Single-layer board (1s) | R <sub>θJA</sub>  | 28    | °C/W | 1, 2    |  |
| Junction-to-ambient natural convection             | Four-layer board (2s2p) | R <sub>θJA</sub>  | 21    | °C/W | 1, 2, 3 |  |
| Junction-to-ambient (@200 ft/min)                  | Single-layer board (1s) | R <sub>θJMA</sub> | 23    | °C/W | 1, 3    |  |
| Junction-to-ambient (@200 ft/min)                  | Four-layer board (2s2p) | R <sub>θJMA</sub> | 18    | °C/W | 1, 3    |  |
| Junction-to-board                                  | —                       | R <sub>θJB</sub>  | 13    | °C/W | 4       |  |
| Junction-to-case                                   | —                       | R <sub>θJC</sub>  | 9     | °C/W | 5       |  |

. . ----



#### System Design Information

interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

$$T_J = T_C + (R_{\theta JC} \times P_D)$$

where:

 $T_C$  = case temperature of the package (°C)  $R_{\theta JC}$  = junction-to-case thermal resistance (°C/W)  $P_D$  = power dissipation (W)

# 24 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8323E.

# 24.1 System Clocking

The MPC8323E includes three PLLs.

- The system PLL (AV<sub>DD</sub>2) generates the system clock from the externally supplied CLKIN input. The frequency ratio between the system and CLKIN is selected using the system PLL ratio configuration bits as described in Section 22.4, "System PLL Configuration."
- The e300 core PLL (AV<sub>DD</sub>3) generates the core clock as a slave to the system clock. The frequency ratio between the e300 core clock and the system clock is selected using the e300 PLL ratio configuration bits as described in Section 22.5, "Core PLL Configuration."
- The QUICC Engine PLL (AV<sub>DD</sub>1) which uses the same reference as the system PLL. The QUICC Engine block generates or uses external sources for all required serial interface clocks.

# 24.2 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins. The voltage level at each  $AV_{DD}n$  pin should always be equivalent to  $V_{DD}$ , and preferably these voltages are derived directly from  $V_{DD}$  through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide five independent filter circuits as illustrated in Figure 44, one to each of the five  $AV_{DD}$  pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.



#### **System Design Information**

output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and  $R_P$  is trimmed until the voltage at the pad equals  $OV_{DD}/2$ .  $R_P$  then becomes the resistance of the pull-up devices.  $R_P$  and  $R_N$  are designed to be close to each other in value. Then,  $Z_0 = (R_P + R_N)/2$ .



Figure 45. Driver Impedance Measurement

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is  $V_1 = R_{source} \times I_{source}$ . Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value  $R_{term}$ . The measured voltage is  $V_2 = (1/(1/R_1 + 1/R_2)) \times I_{source}$ . Solving for the output impedance gives  $R_{source} = R_{term} \times (V_1/V_2 - 1)$ . The drive current is then  $I_{source} = V_1/R_{source}$ .

Table 65 summarizes the signal impedance targets. The driver impedance are targeted at minimum  $V_{DD}$ , nominal  $OV_{DD}$ , 105°C.

| Impedance      | Local Bus, Ethernet, DUART, Control,<br>Configuration, Power Management | PCI       | DDR DRAM  | Symbol            | Unit |
|----------------|-------------------------------------------------------------------------|-----------|-----------|-------------------|------|
| R <sub>N</sub> | 42 Target                                                               | 25 Target | 20 Target | Z <sub>0</sub>    | W    |
| R <sub>P</sub> | 42 Target                                                               | 25 Target | 20 Target | Z <sub>0</sub>    | W    |
| Differential   | NA                                                                      | NA        | NA        | Z <sub>DIFF</sub> | W    |

**Table 65. Impedance Characteristics** 

Note: Nominal supply voltages. See Table 1,  $T_i = 105^{\circ}C$ .

# 24.6 Configuration Pin Multiplexing

The MPC8323E provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k $\Omega$  on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.