#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

| Details                         |                                                                          |
|---------------------------------|--------------------------------------------------------------------------|
| Product Status                  | Obsolete                                                                 |
| Core Processor                  | PowerPC e300c2                                                           |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                           |
| Speed                           | 333MHz                                                                   |
| Co-Processors/DSP               | Communications; QUICC Engine, Security; SEC 2.2                          |
| RAM Controllers                 | DDR, DDR2                                                                |
| Graphics Acceleration           | No                                                                       |
| Display & Interface Controllers | -                                                                        |
| Ethernet                        | 10/100Mbps (3)                                                           |
| SATA                            | -                                                                        |
| USB                             | USB 2.0 (1)                                                              |
| Voltage - I/O                   | 1.8V, 2.5V, 3.3V                                                         |
| Operating Temperature           | -40°C ~ 105°C (TA)                                                       |
| Security Features               | Cryptography                                                             |
| Package / Case                  | 516-BBGA                                                                 |
| Supplier Device Package         | 516-PBGA (27x27)                                                         |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8323ecvrafdc |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





# 2.1.2 Power Supply Voltage Specification

Table 2 provides the recommended operating conditions for the MPC8323E. Note that these values are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

| Characteristic                                                                                          | Symbol                         | Recommended<br>Value            | Unit | Notes |
|---------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|------|-------|
| Core supply voltage                                                                                     | V <sub>DD</sub>                | 1.0 V ± 50 mV                   | V    | 1     |
| PLL supply voltage                                                                                      | AV <sub>DD</sub>               | 1.0 V ± 50 mV                   | V    | 1     |
| DDR1 and DDR2 DRAM I/O voltage                                                                          | GV <sub>DD</sub>               | 2.5 V ± 125 mV<br>1.8 V ± 90 mV | V    | 1     |
| PCI, local bus, DUART, system control and power management, I <sup>2</sup> C, SPI, and JTAG I/O voltage | OV <sub>DD</sub>               | 3.3 V ± 300 mV                  | V    | 1     |
| Junction temperature                                                                                    | T <sub>A</sub> /T <sub>J</sub> | 0 to 105                        | °C   | 2     |

### Table 2. Recommended Operating Conditions<sup>3</sup>

Note:

1. GV<sub>DD</sub>, OV<sub>DD</sub>, AV<sub>DD</sub>, and V<sub>DD</sub> must track each other and must vary in the same direction—either in the positive or negative direction.

2. Minimum temperature is specified with T<sub>A</sub>; maximum temperature is specified with T<sub>J</sub>.

3. All IO pins should be interfaced with peripherals operating at same voltage level.

4. This voltage is the input to the filter discussed in Section 24.2, "PLL Power Supply Filtering" and not necessarily the voltage at the AVDD pin, which may be reduced due to voltage drop across the filter.

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8323E



Figure 2. Overshoot/Undershoot Voltage for GV<sub>DD</sub>/OV<sub>DD</sub>



Electrical Characteristics

# 2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

| Driver Type                           | Output Impedance<br>(Ω) | Supply<br>Voltage        |
|---------------------------------------|-------------------------|--------------------------|
| Local bus interface utilities signals | 42                      | OV <sub>DD</sub> = 3.3 V |
| PCI signals                           | 25                      |                          |
| DDR1 signal                           | 18                      | GV <sub>DD</sub> = 2.5 V |
| DDR2 signal                           | 18                      | GV <sub>DD</sub> = 1.8 V |
| DUART, system control, I2C, SPI, JTAG | 42                      | OV <sub>DD</sub> = 3.3 V |
| GPIO signals                          | 42                      | OV <sub>DD</sub> = 3.3 V |

Table 3. Output Drive Capability

# 2.1.4 Input Capacitance Specification

Table 4 describes the input capacitance for the CLKIN pin in the MPC8323E.

**Table 4. Input Capacitance Specification** 

| Parameter/Condition                         | Symbol              | Min | Мах | Unit | Notes |
|---------------------------------------------|---------------------|-----|-----|------|-------|
| Input capacitance for all pins except CLKIN | CI                  | 6   | 8   | pF   | _     |
| Input capacitance for CLKIN                 | C <sub>ICLKIN</sub> | 10  |     | pF   | 1     |

Note:

1. The external clock generator should be able to drive 10 pF.

# 2.2 Power Sequencing

The device does not require the core supply voltage  $(V_{DD})$  and IO supply voltages  $(GV_{DD})$  and  $OV_{DD})$  to be applied in any particular order. Note that during power ramp-up, before the power supplies are stable and if the I/O voltages are supplied before the core voltage, there might be a period of time that all input and output pins are actively driven and cause contention and excessive current. In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core voltage  $(V_{DD})$  before the I/O voltage  $(GV_{DD})$  and  $OV_{DD}$  and assert PORESET before the power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal value before the I/O supplies reach 0.7 V; see Figure 3. Once both the power supplies (I/O voltage and core voltage) are stable, wait for a minimum of 32 clock cycles before negating PORESET.

Note that there is no specific power down sequence requirement for the device. I/O voltage supplies  $(GV_{DD})$  and  $OV_{DD}$  do not have any ordering requirements with respect to one another.



| Parameter/Condition                                                                                                                                                       | Min | Max | Unit                     | Notes |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------------------------|-------|
| HRESET/SRESET assertion (output)                                                                                                                                          | 512 | _   | t <sub>PCI_SYNC_IN</sub> | 1     |
| HRESET negation to SRESET negation (output)                                                                                                                               | 16  |     | t <sub>PCI_SYNC_IN</sub> | 1     |
| Input setup time for POR configuration signals<br>(CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to<br>negation of PORESET when the MPC8323E is in PCI host mode  | 4   | _   | <sup>t</sup> CLKIN       | 2     |
| Input setup time for POR configuration signals<br>(CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to<br>negation of PORESET when the MPC8323E is in PCI agent mode | 4   | _   | <sup>t</sup> PCI_SYNC_IN | 1     |
| Input hold time for POR config signals with respect to negation of HRESET                                                                                                 | 0   | _   | ns                       | —     |
| Time for the MPC8323E to turn off POR configuration signals with respect to the assertion of $\overrightarrow{\text{HRESET}}$                                             | _   | 4   | ns                       | 3     |
| Time for the MPC8323E to turn on POR configuration signals with respect to the negation of HRESET                                                                         | 1   | _   | <sup>t</sup> PCI_SYNC_IN | 1, 3  |

#### Table 9. RESET Initialization Timing Specifications (continued)

### Notes:

1. t<sub>PCI\_SYNC\_IN</sub> is the clock period of the input clock applied to PCI\_SYNC\_IN. When the MPC8323E is In PCI host mode the primary clock is applied to the CLKIN input, and PCI\_SYNC\_IN period depends on the value of CFG\_CLKIN\_DIV. See the *MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual* for more details.

 t<sub>CLKIN</sub> is the clock period of the input clock applied to CLKIN. It is only valid when the MPC8323E is in PCI host mode. See the MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual for more details.

3. POR configuration signals consists of CFG\_RESET\_SOURCE[0:2] and CFG\_CLKIN\_DIV.

### Table 10 provides the PLL lock times.

### Table 10. PLL Lock Times

| Parameter/Condition | Min | Мах | Unit | Notes |
|---------------------|-----|-----|------|-------|
| PLL lock times      |     | 100 | μs   | _     |

# 5.1 Reset Signals DC Electrical Characteristics

Table 11 provides the DC electrical characteristics for the MPC8323E reset signals mentioned in Table 9.

Table 11. Reset Signals DC Electrical Characteristics

| Characteristic      | Symbol          | Condition                 | Min  | Мах                    | Unit | Notes |
|---------------------|-----------------|---------------------------|------|------------------------|------|-------|
| Output high voltage | V <sub>OH</sub> | I <sub>OH</sub> = -6.0 mA | 2.4  | —                      | V    | 1     |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 6.0 mA  | —    | 0.5                    | V    | 1     |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 3.2 mA  | —    | 0.4                    | V    | 1     |
| Input high voltage  | V <sub>IH</sub> | —                         | 2.0  | OV <sub>DD</sub> + 0.3 | V    | 1     |
| Input low voltage   | V <sub>IL</sub> | _                         | -0.3 | 0.8                    | V    | _     |



**DDR1 and DDR2 SDRAM** 

#### Table 13. DDR2 SDRAM Capacitance for Dn\_GV<sub>DD</sub>(typ) = 1.8 V

| Delta input/output capacitance: DQ, DQS | C <sub>DIO</sub> | - | 0.5 | pF | 1 |
|-----------------------------------------|------------------|---|-----|----|---|
|                                         |                  |   |     |    |   |

#### Note:

1. This parameter is sampled.  $Dn_GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$ , f = 1 MHz, T<sub>A</sub> = 25 °C, V<sub>OUT</sub> =  $Dn_GV_{DD} \div 2$ ,

V<sub>OUT</sub> (peak-to-peak) = 0.2 V.

Table 14 provides the recommended operating conditions for the DDR1 SDRAM component(s) of the MPC8323E when  $Dn_GV_{DD}(typ) = 2.5 V.$ 

Parameter/Condition Symbol Min Max Unit Notes V I/O supply voltage 2.375 2.625 Dn\_GV<sub>DD</sub> 1 I/O reference voltage MVREF n<sub>REF</sub>  $0.49 \times Dn_GV_{DD}$  $0.51 \times Dn_GV_{DD}$ V 2 I/O termination voltage MVREF n<sub>REF</sub> - 0.04 MVREFn<sub>REF</sub> + 0.04 ٧ 3 VTT Input high voltage VIH MVREFn<sub>REF</sub> + 0.15  $Dn_GV_{DD} + 0.3$ ٧ ٧ Input low voltage VIL -0.3 MVREFn<sub>REF</sub> – 0.15 Output leakage current -9.9 loz -9.9 μΑ 4 Output high current (V<sub>OUT</sub> = 1.95 V) -16.2 mΑ I<sub>OH</sub> Output low current (V<sub>OUT</sub> = 0.35 V) 16.2 mΑ I<sub>OL</sub>

Table 14. DDR1 SDRAM DC Electrical Characteristics for Dn\_GV<sub>DD</sub>(typ) = 2.5 V

#### Notes:

1. Dn\_GV<sub>DD</sub> is expected to be within 50 mV of the DRAM Dn\_GV<sub>DD</sub> at all times.

2. MVREF  $n_{\text{BEF}}$  is expected to be equal to  $0.5 \times Dn_{\text{GV}DD}$ , and to track  $Dn_{\text{GV}DD}$  DC variations as measured at the receiver. Peak-to-peak noise on MVREF nREF may not exceed ±2% of the DC value.

3. V<sub>TT</sub> is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREFn<sub>REF</sub>. This rail should track variations in the DC level of MVREFn<sub>REF</sub>.

4. Output leakage is measured with all outputs disabled,  $0 V \le V_{OUT} \le Dn_GV_{DD}$ .

Table 15 provides the DDR1 capacitance  $Dn_GV_{DD}(typ) = 2.5$  V.

### Table 15. DDR1 SDRAM Capacitance for Dn\_GV<sub>DD</sub>(typ) = 2.5 V Interface

| Parameter/Condition                     | Symbol           | Min | Мах | Unit | Notes |
|-----------------------------------------|------------------|-----|-----|------|-------|
| Input/output capacitance: DQ,DQS        | C <sub>IO</sub>  | 6   | 8   | pF   | 1     |
| Delta input/output capacitance: DQ, DQS | C <sub>DIO</sub> |     | 0.5 | pF   | 1     |

Note:

1. This parameter is sampled.  $Dn_GV_{DD} = 2.5 V \pm 0.125 V$ , f = 1 MHz,  $T_A = 25^{\circ} C$ ,  $V_{OUT} = Dn_GV_{DD} \div 2$ , V<sub>OUT</sub> (peak-to-peak) = 0.2 V.



# 6.2 DDR1 and DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR1 and DDR2 SDRAM interface.

# 6.2.1 DDR1 and DDR2 SDRAM Input AC Timing Specifications

Table 16 provides the input AC timing specifications for the DDR2 SDRAM ( $Dn_GV_{DD}(typ) = 1.8 \text{ V}$ ).

### Table 16. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions with  $Dn_GV_{DD}$  of 1.8 ± 5%.

| Parameter             | Symbol          | Min                          | Мах                                  | Unit | Notes |
|-----------------------|-----------------|------------------------------|--------------------------------------|------|-------|
| AC input low voltage  | V <sub>IL</sub> | —                            | MVREF <i>n</i> <sub>REF</sub> – 0.25 | V    | —     |
| AC input high voltage | V <sub>IH</sub> | MVREFn <sub>REF</sub> + 0.25 | _                                    | V    |       |

Table 17 provides the input AC timing specifications for the DDR1 SDRAM ( $Dn_GV_{DD}(typ) = 2.5 V$ ).

Table 17. DDR1 SDRAM Input AC Timing Specifications for 2.5 V Interface

At recommended operating conditions with  $Dn_GV_{DD}$  of 2.5 ± 5%.

| Parameter             | Symbol          | Min                                  | Мах                                  | Unit | Notes |
|-----------------------|-----------------|--------------------------------------|--------------------------------------|------|-------|
| AC input low voltage  | V <sub>IL</sub> | —                                    | MVREF <i>n</i> <sub>REF</sub> – 0.31 | V    |       |
| AC input high voltage | V <sub>IH</sub> | MVREF <i>n</i> <sub>REF</sub> + 0.31 | _                                    | V    |       |

Table 18 provides the input AC timing specifications for the DDR1 and DDR2 SDRAM interface.

### Table 18. DDR1 and DDR2 SDRAM Input AC Timing Specifications

At recommended operating conditions with  $Dn_GV_{DD}$  of (1.8 or 2.5 V) ± 5%.

| Parameter                                              | Symbol              | Min           | Мах         | Unit | Notes |
|--------------------------------------------------------|---------------------|---------------|-------------|------|-------|
| Controller skew for MDQS—MDQ/MDM<br>266 MHz<br>200 MHz | <sup>t</sup> CISKEW | -750<br>-1250 | 750<br>1250 | ps   | 1, 2  |

#### Notes:

1. t<sub>CISKEW</sub> represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. This should be subtracted from the total timing budget.

 The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t<sub>DISKEW</sub>. This can be determined by the following equation: t<sub>DISKEW</sub> = ±(T/4 – abs(t<sub>CISKEW</sub>)) where T is the clock period and abs(t<sub>CISKEW</sub>) is the absolute value of t<sub>CISKEW</sub>.



#### DDR1 and DDR2 SDRAM

Figure 4 shows the input timing diagram for the DDR controller.



Figure 4. DDR Input Timing Diagram

## 6.2.2 DDR1 and DDR2 SDRAM Output AC Timing Specifications

Table 19 provides the output AC timing specifications for the DDR1 and DDR2 SDRAM interfaces.

### Table 19. DDR1 and DDR2 SDRAM Output AC Timing Specifications

At recommended operating conditions with  $Dn_GV_{DD}$  of (1.8 or 2.5 V)  $\pm$  5%.

| Parameter                                                       | Symbol <sup>1</sup> | Min        | Мах | Unit | Notes |
|-----------------------------------------------------------------|---------------------|------------|-----|------|-------|
| MCK cycle time, (MCK/MCK crossing)                              | t <sub>MCK</sub>    | 7.5        | 10  | ns   | 2     |
| ADDR/CMD output setup with respect to MCK<br>266 MHz<br>200 MHz | <sup>t</sup> DDKHAS | 2.5<br>3.5 |     | ns   | 3     |
| ADDR/CMD output hold with respect to MCK<br>266 MHz<br>200 MHz  | t <sub>DDKHAX</sub> | 2.5<br>3.5 |     | ns   | 3     |
| MCS output setup with respect to MCK<br>266 MHz<br>200 MHz      | t <sub>DDKHCS</sub> | 2.5<br>3.5 |     | ns   | 3     |
| MCS output hold with respect to MCK<br>266 MHz<br>200 MHz       | <sup>t</sup> DDKHCX | 2.5<br>3.5 |     | ns   | 3     |
| MCK to MDQS Skew                                                | t <sub>DDKHMH</sub> | -0.6       | 0.6 | ns   | 4     |



# 7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8323E.

# 7.1 DUART DC Electrical Characteristics

Table 20 provides the DC electrical characteristics for the DUART interface of the MPC8323E.

## Table 20. DUART DC Electrical Characteristics

| Parameter                                                                        | Symbol          | Min                    | Мах                    | Unit |
|----------------------------------------------------------------------------------|-----------------|------------------------|------------------------|------|
| High-level input voltage                                                         | V <sub>IH</sub> | 2                      | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage OV <sub>DD</sub>                                         | V <sub>IL</sub> | -0.3                   | 0.8                    | V    |
| High-level output voltage, $I_{OH} = -100 \ \mu A$                               | V <sub>OH</sub> | OV <sub>DD</sub> – 0.2 | —                      | V    |
| Low-level output voltage, $I_{OL} = 100 \ \mu A$                                 | V <sub>OL</sub> | —                      | 0.2                    | V    |
| Input current (0 V $\leq$ V <sub>IN</sub> $\leq$ OV <sub>DD</sub> ) <sup>1</sup> | I <sub>IN</sub> | —                      | ±5                     | μA   |

Note:

1. Note that the symbol  $V_{IN}$ , in this case, represents the OV<sub>IN</sub> symbol referenced in Table 1 and Table 2.

# 7.2 DUART AC Electrical Specifications

Table 21 provides the AC timing parameters for the DUART interface of the MPC8323E.

| Table 21 | . DUART | AC Timing | Specifications |
|----------|---------|-----------|----------------|
|----------|---------|-----------|----------------|

| Parameter         | Value       | Unit | Notes |
|-------------------|-------------|------|-------|
| Minimum baud rate | 256         | baud |       |
| Maximum baud rate | > 1,000,000 | baud | 1     |
| Oversample rate   | 16          |      | 2     |

Notes:

1. Actual attainable baud rate is limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8<sup>th</sup> sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16<sup>th</sup> sample.

# 8 Ethernet and MII Management

This section provides the AC and DC electrical characteristics for Ethernet and MII management.

# 8.1 Ethernet Controller (10/100 Mbps)—MII/RMII Electrical Characteristics

The electrical characteristics specified here apply to all MII (media independent interface) and RMII (reduced media independent interface), except MDIO (management data input/output) and MDC



Local Bus

Figure 13 shows the MII management AC timing diagram.



Figure 13. MII Management Interface Timing Diagram

# 9 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8323E.

# 9.1 Local Bus DC Electrical Characteristics

Table 29 provides the DC electrical characteristics for the local bus interface.

| Table 29. Local Bus DC Electrical Characteristics |
|---------------------------------------------------|
|---------------------------------------------------|

| Parameter                                            | Symbol          | Min                    | Мах                    | Unit |
|------------------------------------------------------|-----------------|------------------------|------------------------|------|
| High-level input voltage                             | V <sub>IH</sub> | 2                      | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage                              | V <sub>IL</sub> | -0.3                   | 0.8                    | V    |
| High-level output voltage, I <sub>OH</sub> = −100 μA | V <sub>OH</sub> | OV <sub>DD</sub> – 0.2 | —                      | V    |
| Low-level output voltage, I <sub>OL</sub> = 100 μA   | V <sub>OL</sub> | —                      | 0.2                    | V    |
| Input current                                        | I <sub>IN</sub> | —                      | ±5                     | μA   |

# 9.2 Local Bus AC Electrical Specifications

Table 30 describes the general timing parameters of the local bus interface of the MPC8323E.

Table 30. Local Bus General Timing Parameters

| Parameter                                                   | Symbol <sup>1</sup>  | Min | Мах | Unit | Notes |
|-------------------------------------------------------------|----------------------|-----|-----|------|-------|
| Local bus cycle time                                        | t <sub>LBK</sub>     | 15  | —   | ns   | 2     |
| Input setup to local bus clock (LCLKn)                      | t <sub>LBIVKH</sub>  | 7   | —   | ns   | 3, 4  |
| Input hold from local bus clock (LCLKn)                     | t <sub>LBIXKH</sub>  | 1.0 | —   | ns   | 3, 4  |
| LALE output fall to LAD output transition (LATCH hold time) | t <sub>LBOTOT1</sub> | 1.5 | —   | ns   | 5     |



Figure 15 through Figure 17 show the local bus signals.





JTAG

| Table 31. JTAG Interface DC Electrical Characteristics ( | continued) |
|----------------------------------------------------------|------------|
|----------------------------------------------------------|------------|

| Characteristic    | Symbol          | Condition                      | Min  | Мах | Unit |
|-------------------|-----------------|--------------------------------|------|-----|------|
| Input low voltage | V <sub>IL</sub> | —                              | -0.3 | 0.8 | V    |
| Input current     | I <sub>IN</sub> | $0~V \leq V_{IN} \leq OV_{DD}$ | —    | ±5  | μA   |

# **10.2 JTAG AC Electrical Characteristics**

This section describes the AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the MPC8323E. Table 32 provides the JTAG AC timing specifications as defined in Figure 19 through Figure 22.

## Table 32. JTAG AC Timing Specifications (Independent of CLKIN)<sup>1</sup>

At recommended operating conditions (see Table 2).

| Parameter                                            | Symbol <sup>2</sup>                        | Min      | Мах      | Unit | Notes |
|------------------------------------------------------|--------------------------------------------|----------|----------|------|-------|
| JTAG external clock frequency of operation           | f <sub>JTG</sub>                           | 0        | 33.3     | MHz  |       |
| JTAG external clock cycle time                       | t <sub>JTG</sub>                           | 30       | _        | ns   | _     |
| JTAG external clock pulse width measured at 1.4 V    | t <sub>JTKHKL</sub>                        | 11       | —        | ns   | —     |
| JTAG external clock rise and fall times              | t <sub>JTGR</sub> , t <sub>JTGF</sub>      | 0        | 2        | ns   | —     |
| TRST assert time                                     | t <sub>TRST</sub>                          | 25       | —        | ns   | 3     |
| Input setup times:<br>Boundary-scan data<br>TMS, TDI | t <sub>JTDVKH</sub><br>t <sub>JTIVKH</sub> | 4<br>4   |          | ns   | 4     |
| Input hold times:<br>Boundary-scan data<br>TMS, TDI  | <sup>t</sup> jtdxkh<br>t <sub>jtixkh</sub> | 10<br>10 |          | ns   | 4     |
| Valid times:<br>Boundary-scan data<br>TDO            | tjtkldv<br>tjtklov                         | 2<br>2   | 15<br>15 | ns   | 5     |
| Output hold times:<br>Boundary-scan data<br>TDO      | t <sub>jtkldx</sub><br>t <sub>jtklox</sub> | 2<br>2   | _        | ns   | 5     |



Figure 21 provides the boundary-scan timing diagram.



Figure 21. Boundary-Scan Timing Diagram





Figure 22. Test Access Port Timing Diagram



# 11 I<sup>2</sup>C

This section describes the DC and AC electrical characteristics for the I<sup>2</sup>C interface of the MPC8323E.

# 11.1 I<sup>2</sup>C DC Electrical Characteristics

Table 33 provides the DC electrical characteristics for the I<sup>2</sup>C interface of the MPC8323E.

## Table 33. I<sup>2</sup>C DC Electrical Characteristics

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  of 3.3 V  $\pm$  10%.

| Parameter                                                                                     | Symbol              | Min                   | Мах                              | Unit | Notes |
|-----------------------------------------------------------------------------------------------|---------------------|-----------------------|----------------------------------|------|-------|
| Input high voltage level                                                                      | V <sub>IH</sub>     | $0.7 	imes OV_{DD}$   | OV <sub>DD</sub> + 0.3           | V    |       |
| Input low voltage level                                                                       | V <sub>IL</sub>     | -0.3                  | $0.3\times\text{OV}_{\text{DD}}$ | V    | _     |
| Low level output voltage                                                                      | V <sub>OL</sub>     | 0                     | 0.4                              | V    | 1     |
| Output fall time from $V_{IH}(min)$ to $V_{IL}(max)$ with a bus capacitance from 10 to 400 pF | <sup>t</sup> I2KLKV | $20 + 0.1 \times C_B$ | 250                              | ns   | 2     |
| Pulse width of spikes which must be suppressed by the input filter                            | t <sub>I2KHKL</sub> | 0                     | 50                               | ns   | 3     |
| Capacitance for each I/O pin                                                                  | Cl                  | _                     | 10                               | pF   | _     |
| Input current (0 V $\leq$ V <sub>IN</sub> $\leq$ OV <sub>DD</sub> )                           | I <sub>IN</sub>     | —                     | ±5                               | μA   | 4     |

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2.  $C_B$  = capacitance of one bus line in pF.

3. Refer to the MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual for information on the digital filter used.

4. I/O pins obstructs the SDA and SCL lines if  $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$  is switched off.

# 11.2 I<sup>2</sup>C AC Electrical Specifications

Table 34 provides the AC timing parameters for the  $I^2C$  interface of the MPC8323E.

## Table 34. I<sup>2</sup>C AC Electrical Specifications

All values refer to  $V_{IH}$  (min) and  $V_{IL}$  (max) levels (see Table 33).

| Parameter                                                                                    | Symbol <sup>1</sup> | Min              | Мах                  | Unit |
|----------------------------------------------------------------------------------------------|---------------------|------------------|----------------------|------|
| SCL clock frequency                                                                          | f <sub>I2C</sub>    | 0                | 400                  | kHz  |
| Low period of the SCL clock                                                                  |                     | 1.3              | —                    | μs   |
| High period of the SCL clock                                                                 |                     | 0.6              | —                    | μs   |
| Setup time for a repeated START condition                                                    |                     | 0.6              | —                    | μs   |
| Hold time (repeated) START condition (after this period, the first clock pulse is generated) |                     | 0.6              | _                    | μs   |
| Data setup time                                                                              | t <sub>i2DVKH</sub> | 100              | —                    | ns   |
| Data hold time: CBUS compatible masters I <sup>2</sup> C bus devices                         | t <sub>I2DXKL</sub> | $\overline{0^2}$ | <br>0.9 <sup>3</sup> | μs   |



# 12 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8323E.

# **12.1 PCI DC Electrical Characteristics**

Table 35 provides the DC electrical characteristics for the PCI interface of the MPC8323E.

| Parameter                 | Symbol          | Test Condition                                       | Min                    | Мах                    | Unit |
|---------------------------|-----------------|------------------------------------------------------|------------------------|------------------------|------|
| High-level input voltage  | V <sub>IH</sub> | $V_{OUT} \ge V_{OH}$ (min) or                        | 2                      | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage   | V <sub>IL</sub> | $V_{OUT} \le V_{OL}$ (max)                           | -0.3                   | 0.8                    | V    |
| High-level output voltage | V <sub>OH</sub> | OV <sub>DD</sub> = min,<br>I <sub>OH</sub> = −100 μA | OV <sub>DD</sub> – 0.2 | —                      | V    |
| Low-level output voltage  | V <sub>OL</sub> | OV <sub>DD</sub> = min,<br>I <sub>OL</sub> = 100 μA  | _                      | 0.2                    | V    |
| Input current             | I <sub>IN</sub> | $0 V \le V_{IN} \le OV_{DD}$                         | _                      | ±5                     | μA   |

## Table 35. PCI DC Electrical Characteristics<sup>1,2</sup>

#### Notes:

1. Note that the symbol  $V_{IN}$ , in this case, represents the  $OV_{IN}$  symbol referenced in Table 1 and Table 2.

2. Ranges listed do not meet the full range of the DC specifications of the PCI 2.3 Local Bus Specifications.

# 12.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the MPC8323E. Note that the PCI\_CLK or PCI\_SYNC\_IN signal is used as the PCI input clock depending on whether the MPC8323E is configured as a host or agent device. Table 36 shows the PCI AC timing specifications at 66 MHz.

| Parameter                      | Symbol <sup>1</sup> | Min | Max | Unit | Notes |
|--------------------------------|---------------------|-----|-----|------|-------|
| Clock to output valid          | t <sub>PCKHOV</sub> | _   | 6.0 | ns   | 2     |
| Output hold from clock         | t <sub>PCKHOX</sub> | 1   | _   | ns   | 2     |
| Clock to output high impedence | t <sub>PCKHOZ</sub> | _   | 14  | ns   | 2, 3  |
| Input setup to clock           | t <sub>PCIVKH</sub> | 3.0 | _   | ns   | 2, 4  |
| Input hold from clock          | t <sub>PCIXKH</sub> | 0   | —   | ns   | 2, 4  |

## Table 36. PCI AC Timing Specifications at 66 MHz

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>PCIVKH</sub> symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI\_SYNC\_IN clock, t<sub>SYS</sub>, reference (K) going to the high (H) state or setup time. Also, t<sub>PCRHFV</sub> symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.



Figure 31 and Figure 32 represent the AC timing from Table 45. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 31 shows the SPI timing in slave mode (external clock).



Note: The clock edge is selectable on SPI.

## Figure 31. SPI AC Timing in Slave Mode (External Clock) Diagram

Figure 32 shows the SPI timing in master mode (internal clock).



Note: The clock edge is selectable on SPI.

Figure 32. SPI AC Timing in Master Mode (Internal Clock) Diagram

# 17 TDM/SI

This section describes the DC and AC electrical specifications for the time-division-multiplexed and serial interface of the MPC8323E.

# 17.1 TDM/SI DC Electrical Characteristics

Table 46 provides the DC electrical characteristics for the MPC8323E TDM/SI.

| Characteristic      | Symbol          | Condition                 | Min | Max                    | Unit |
|---------------------|-----------------|---------------------------|-----|------------------------|------|
| Output high voltage | V <sub>OH</sub> | I <sub>OH</sub> = -2.0 mA | 2.4 | _                      | V    |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 3.2 mA  | _   | 0.5                    | V    |
| Input high voltage  | V <sub>IH</sub> | —                         | 2.0 | OV <sub>DD</sub> + 0.3 | V    |

## Table 46. TDM/SI DC Electrical Characteristics



Package and Pin Listings

| Signal     | Signal Package Pin Number |          | Power<br>Supply  | Notes |
|------------|---------------------------|----------|------------------|-------|
| MEMC_MDQ29 | AD20                      | AD20 IO  |                  |       |
| MEMC_MDQ30 | AF23                      | AF23 IO  |                  |       |
| MEMC_MDQ31 | AD22                      | IO       | GV <sub>DD</sub> | —     |
| MEMC_MDM0  | AC9                       | 0        | GV <sub>DD</sub> | —     |
| MEMC_MDM1  | AD5                       | 0        | GV <sub>DD</sub> | —     |
| MEMC_MDM2  | AE20                      | AE20 O G |                  | —     |
| MEMC_MDM3  | AE22                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MDQS0 | AE8                       | IO       | GV <sub>DD</sub> | —     |
| MEMC_MDQS1 | AE5                       | IO       | GV <sub>DD</sub> | —     |
| MEMC_MDQS2 | AC19                      | IO       | GV <sub>DD</sub> | —     |
| MEMC_MDQS3 | AE23                      | IO       | GV <sub>DD</sub> | —     |
| MEMC_MBA0  | AD16                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MBA1  | AD17                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MBA2  | AE17                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA0   | AD12                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA1   | AE12                      | AE12 O   |                  | —     |
| MEMC_MA2   | AF12                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA3   | AC13                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA4   | AD13                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA5   | AE13                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA6   | AF13                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA7   | AC15                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA8   | AD15                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA9   | AE15                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA10  | AF15                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA11  | AE16                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA12  | AF16                      | 0        | GV <sub>DD</sub> | —     |
| MEMC_MA13  | AB16 O G                  |          | GV <sub>DD</sub> | —     |
| MEMC_MWE   | AC17 O                    |          | GV <sub>DD</sub> | —     |
| MEMC_MRAS  | AE11 O                    |          | GV <sub>DD</sub> | [ _   |
| MEMC_MCAS  | AD11                      | 0        | GV <sub>DD</sub> | [ _   |
| MEMC_MCS   | AC11                      | 0        | GV <sub>DD</sub> | _     |

## Table 55. MPC8323E PBGA Pinout Listing (continued)



Package and Pin Listings

### Table 55. MPC8323E PBGA Pinout Listing (continued)

| Signal                    | Package Pin Number | Pin Type | Power<br>Supply             | Notes |  |  |  |
|---------------------------|--------------------|----------|-----------------------------|-------|--|--|--|
| Power and Ground Supplies |                    |          |                             |       |  |  |  |
| AV <sub>DD</sub> 1        | P3                 | I        | AV <sub>DD</sub> 1          | _     |  |  |  |
| AV <sub>DD</sub> 2        | AA1                | I        | AV <sub>DD</sub> 2          | _     |  |  |  |
| AV <sub>DD</sub> 3        | AB15               | I        | AV <sub>DD</sub> 3          | _     |  |  |  |
| AV <sub>DD</sub> 4        | C24                | I        | AV <sub>DD</sub> 4          | _     |  |  |  |
| MVREF1                    | AB8                | I        | DDR<br>reference<br>voltage | _     |  |  |  |
| MVREF2                    | AB17               | I        | DDR<br>reference<br>voltage | _     |  |  |  |
|                           | PCI                |          |                             |       |  |  |  |
| PCI_INTA /IRQ_OUT         | AF2                | 0        | OV <sub>DD</sub>            | 2     |  |  |  |
| PCI_RESET_OUT             | AE2                | 0        | OV <sub>DD</sub>            | _     |  |  |  |
| PCI_AD0/MSRCID0 (DDR ID)  | L1                 | IO       | OV <sub>DD</sub>            | _     |  |  |  |
| PCI_AD1/MSRCID1 (DDR ID)  | L2                 | IO       | OV <sub>DD</sub>            | _     |  |  |  |
| PCI_AD2/MSRCID2 (DDR ID)  | M1                 | IO       | OV <sub>DD</sub>            | _     |  |  |  |
| PCI_AD3/MSRCID3 (DDR ID)  | M2                 | IO       | OV <sub>DD</sub>            | _     |  |  |  |
| PCI_AD4/MSRCID4 (DDR ID)  | L3                 | IO       | OV <sub>DD</sub>            | _     |  |  |  |
| PCI_AD5/MDVAL (DDR ID)    | N1                 | Ю        | OV <sub>DD</sub>            |       |  |  |  |
| PCI_AD6                   | N2                 | Ю        | OV <sub>DD</sub>            |       |  |  |  |
| PCI_AD7                   | МЗ                 | Ю        | OV <sub>DD</sub>            |       |  |  |  |
| PCI_AD8                   | P1                 | Ю        | OV <sub>DD</sub>            |       |  |  |  |
| PCI_AD9                   | R1                 | Ю        | $OV_{DD}$                   |       |  |  |  |
| PCI_AD10                  | N3                 | Ю        | OV <sub>DD</sub>            |       |  |  |  |
| PCI_AD11                  | N4                 | Ю        | OV <sub>DD</sub>            |       |  |  |  |
| PCI_AD12                  | T1                 | Ю        | OV <sub>DD</sub>            |       |  |  |  |
| PCI_AD13                  | R2                 | Ю        | OV <sub>DD</sub>            |       |  |  |  |
| PCI_AD14/ECID_TMODE_IN    | T2                 | Ю        | OV <sub>DD</sub>            |       |  |  |  |
| PCI_AD15                  | U1                 | IO       | OV <sub>DD</sub>            | _     |  |  |  |
| PCI_AD16                  | Y2                 | IO       | OV <sub>DD</sub>            |       |  |  |  |
| PCI_AD17                  | ¥1                 | IO       | OV <sub>DD</sub>            | _     |  |  |  |
| PCI_AD18                  | AA2                | IO       | OV <sub>DD</sub>            |       |  |  |  |
| PCI_AD19                  | AB1                | IO       | OV <sub>DD</sub>            | _     |  |  |  |



| Signal                | Package Pin Number | Pin Type | Power<br>Supply  | Notes |
|-----------------------|--------------------|----------|------------------|-------|
| PCI_AD20              | AB2                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD21              | Y4                 | IO       | OV <sub>DD</sub> | —     |
| PCI_AD22              | AC1                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD23              | AA3                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD24              | AA4                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD25              | AD1                | Ю        | OV <sub>DD</sub> |       |
| PCI_AD26              | AD2                | Ю        | OV <sub>DD</sub> |       |
| PCI_AD27              | AB3                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD28              | AB4                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD29              | AE1                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD30              | AC3                | IO       | OV <sub>DD</sub> |       |
| PCI_AD31              | AC4                | IO       | OV <sub>DD</sub> | —     |
| PCI_C_BE0             | M4                 | IO       | OV <sub>DD</sub> | —     |
| PCI_C_BE1             | T4                 | IO       | OV <sub>DD</sub> | —     |
| PCI_C_BE2             | Y3                 | IO       | OV <sub>DD</sub> | —     |
| PCI_C_BE3             | AC2                | IO       | OV <sub>DD</sub> | —     |
| PCI_PAR               | U3                 | IO       | OV <sub>DD</sub> | —     |
| PCI_FRAME             | W1                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_TRDY              | W4                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_IRDY              | W2                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_STOP              | V4                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_DEVSEL            | W3                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_IDSEL             | P2                 | I        | OV <sub>DD</sub> | —     |
| PCI_SERR              | U4                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_PERR              | V3                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_REQ0              | AD4                | IO       | OV <sub>DD</sub> | —     |
| PCI_REQ1/CPCI_HS_ES   | AE3                | I        | OV <sub>DD</sub> | —     |
| PCI_REQ2              | AF3                | I        | OV <sub>DD</sub> | —     |
| PCI_GNT0              | AD3                | IO       | OV <sub>DD</sub> | —     |
| PCI_GNT1/CPCI_HS_LED  | AE4                | 0        | OV <sub>DD</sub> | —     |
| PCI_GNT2/CPCI_HS_ENUM | AF4                | 0        | OV <sub>DD</sub> | —     |
| M66EN                 | L4                 | I        | OV <sub>DD</sub> | —     |

## Table 55. MPC8323E PBGA Pinout Listing (continued)



| Signal                                                             | Package Pin Number | Pin Type | Power<br>Supply  | Notes |
|--------------------------------------------------------------------|--------------------|----------|------------------|-------|
| GPIO_PA26/Enet2_RX_ER/SER2_CD/TDMB_REQ/<br>LA10 (LBIU)             | E26                | IO       | OV <sub>DD</sub> | —     |
| GPIO_PA27/Enet2_TX_ER/TDMB_CLKO/LA11 (LBIU)                        | F25                | IO       | OV <sub>DD</sub> | —     |
| GPIO_PA28/Enet2_RX_DV/SER2_CTS/<br>TDMB_RSYNC/LA12 (LBIU)          | E25                | IO       | OV <sub>DD</sub> | —     |
| GPIO_PA29/Enet2_COL/RXD[4]/SER2_RXD[4]/<br>TDMB_STROBE/LA13 (LBIU) | J25                | IO       | OV <sub>DD</sub> | —     |
| GPIO_PA30/Enet2_TX_EN/SER2_RTS/<br>TDMB_TSYNC/LA14 (LBIU)          | F26                | IO       | OV <sub>DD</sub> | —     |
| GPIO_PA31/Enet2_CRS/SDET LA15 (LBIU)                               | J26                | IO       | OV <sub>DD</sub> | —     |
| GPIO_PB0/Enet3_TXD[0]/SER3_TXD[0]/<br>TDMC_TXD[0]                  | A13                | IO       | OV <sub>DD</sub> | —     |
| GPIO_PB1/Enet3_TXD[1]/SER3_TXD[1]/<br>TDMC_TXD[1]                  | B13                | IO       | OV <sub>DD</sub> | —     |
| GPIO_PB2/Enet3_TXD[2]/SER3_TXD[2]/<br>TDMC_TXD[2]                  | A14                | IO       | OV <sub>DD</sub> | —     |
| GPIO_PB3/Enet3_TXD[3]/SER3_TXD[3]/<br>TDMC_TXD[3]                  | B14                | IO       | OV <sub>DD</sub> |       |
| GPIO_PB4/Enet3_RXD[0]/SER3_RXD[0]/<br>TDMC_RXD[0]                  | B8                 | IO       | OV <sub>DD</sub> | _     |
| GPIO_PB5/Enet3_RXD[1]/SER3_RXD[1]/<br>TDMC_RXD[1]                  | A8                 | IO       | OV <sub>DD</sub> |       |
| GPIO_PB6/Enet3_RXD[2]/SER3_RXD[2]/<br>TDMC_RXD[2]                  | A9                 | IO       | OV <sub>DD</sub> |       |
| GPIO_PB7/Enet3_RXD[3]/SER3_RXD[3]/<br>TDMC_RXD[3]                  | В9                 | IO       | OV <sub>DD</sub> | _     |
| GPIO_PB8/Enet3_RX_ER/SER3_CD/TDMC_REQ                              | A11                | IO       | OV <sub>DD</sub> | —     |
| GPIO_PB9/Enet3_TX_ER/TDMC_CLKO                                     | B11                | IO       | OV <sub>DD</sub> | —     |
| GPIO_PB10/Enet3_RX_DV/SER3_CTS/<br>TDMC_RSYNC                      | A10                | IO       | OV <sub>DD</sub> |       |
| GPIO_PB11/Enet3_COL/RXD[4]/SER3_RXD[4]/<br>TDMC_STROBE             | A15                | IO       | OV <sub>DD</sub> | _     |
| GPIO_PB12/Enet3_TX_EN/SER3_RTS/<br>TDMC_TSYNC                      | B12                | IO       | OV <sub>DD</sub> | _     |
| GPIO_PB13/Enet3_CRS/SDET                                           | B15                | IO       | OV <sub>DD</sub> | —     |
| GPIO_PB14/CLK12                                                    | D9                 | IO       | OV <sub>DD</sub> | —     |
| GPIO_PB15 UPC1_TxADDR[4]                                           | D14                | IO       | OV <sub>DD</sub> | —     |
| GPIO_PB16 UPC1_RxADDR[4]                                           | B16                | IO       | OV <sub>DD</sub> | —     |

## Table 55. MPC8323E PBGA Pinout Listing (continued)



#### System Design Information

interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

$$T_J = T_C + (R_{\theta JC} \times P_D)$$

where:

 $T_C$  = case temperature of the package (°C)  $R_{\theta JC}$  = junction-to-case thermal resistance (°C/W)  $P_D$  = power dissipation (W)

# 24 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8323E.

# 24.1 System Clocking

The MPC8323E includes three PLLs.

- The system PLL (AV<sub>DD</sub>2) generates the system clock from the externally supplied CLKIN input. The frequency ratio between the system and CLKIN is selected using the system PLL ratio configuration bits as described in Section 22.4, "System PLL Configuration."
- The e300 core PLL (AV<sub>DD</sub>3) generates the core clock as a slave to the system clock. The frequency ratio between the e300 core clock and the system clock is selected using the e300 PLL ratio configuration bits as described in Section 22.5, "Core PLL Configuration."
- The QUICC Engine PLL (AV<sub>DD</sub>1) which uses the same reference as the system PLL. The QUICC Engine block generates or uses external sources for all required serial interface clocks.

# 24.2 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins. The voltage level at each  $AV_{DD}n$  pin should always be equivalent to  $V_{DD}$ , and preferably these voltages are derived directly from  $V_{DD}$  through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide five independent filter circuits as illustrated in Figure 44, one to each of the five  $AV_{DD}$  pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.



#### **System Design Information**

output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and  $R_P$  is trimmed until the voltage at the pad equals  $OV_{DD}/2$ .  $R_P$  then becomes the resistance of the pull-up devices.  $R_P$  and  $R_N$  are designed to be close to each other in value. Then,  $Z_0 = (R_P + R_N)/2$ .



Figure 45. Driver Impedance Measurement

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is  $V_1 = R_{source} \times I_{source}$ . Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value  $R_{term}$ . The measured voltage is  $V_2 = (1/(1/R_1 + 1/R_2)) \times I_{source}$ . Solving for the output impedance gives  $R_{source} = R_{term} \times (V_1/V_2 - 1)$ . The drive current is then  $I_{source} = V_1/R_{source}$ .

Table 65 summarizes the signal impedance targets. The driver impedance are targeted at minimum  $V_{DD}$ , nominal  $OV_{DD}$ , 105°C.

| Impedance      | Local Bus, Ethernet, DUART, Control,<br>Configuration, Power Management | PCI       | DDR DRAM  | Symbol            | Unit |
|----------------|-------------------------------------------------------------------------|-----------|-----------|-------------------|------|
| R <sub>N</sub> | 42 Target                                                               | 25 Target | 20 Target | Z <sub>0</sub>    | W    |
| R <sub>P</sub> | 42 Target                                                               | 25 Target | 20 Target | Z <sub>0</sub>    | W    |
| Differential   | NA                                                                      | NA        | NA        | Z <sub>DIFF</sub> | W    |

**Table 65. Impedance Characteristics** 

Note: Nominal supply voltages. See Table 1,  $T_i = 105^{\circ}C$ .

# 24.6 Configuration Pin Multiplexing

The MPC8323E provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k $\Omega$  on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.