



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

## Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Active                                                                  |
|---------------------------------|-------------------------------------------------------------------------|
| Core Processor                  | PowerPC e300c2                                                          |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                          |
| Speed                           | 333MHz                                                                  |
| Co-Processors/DSP               | Communications; QUICC Engine                                            |
| RAM Controllers                 | DDR, DDR2                                                               |
| Graphics Acceleration           | No                                                                      |
| Display & Interface Controllers | -                                                                       |
| Ethernet                        | 10/100Mbps (3)                                                          |
| SATA                            | -                                                                       |
| USB                             | USB 2.0 (1)                                                             |
| Voltage - I/O                   | 1.8V, 2.5V, 3.3V                                                        |
| Operating Temperature           | -40°C ~ 105°C (TA)                                                      |
| Security Features               | -                                                                       |
| Package / Case                  | 516-BBGA                                                                |
| Supplier Device Package         | 516-PBGA (27x27)                                                        |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8321cvrafdca |
|                                 |                                                                         |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## 1.1.2 Serial Interfaces

The MPC8323E serial interfaces are as follows:

- Support for one UL2 interface with 31 multi-PHY addresses (MPC8323E and MPC8323 only)
- Support for up to three 10/100 Mbps Ethernet interfaces using MII or RMII
- Support for up to four T1/E1/J1/E3 or DS-3 serial interfaces (TDM)
- Support for dual UART and SPI interfaces and a single I<sup>2</sup>C interface

# 1.2 QUICC Engine Block

The QUICC Engine block is a versatile communications complex that integrates several communications peripheral controllers. It provides on-chip system design for a variety of applications, particularly in communications and networking systems. The QUICC Engine block has the following features:

- One 32-bit RISC controller for flexible support of the communications peripherals
- Serial DMA channel for receive and transmit on all serial channels
- Five universal communication controllers (UCCs) supporting the following protocols and interfaces (not all of them simultaneously):
  - 10/100 Mbps Ethernet/IEEE 802.3® standard
  - IP support for IPv4 and IPv6 packets including TOS, TTL, and header checksum processing
  - ATM protocol through UTOPIA interface (note that the MPC8321 and MPC8321E do not support the UTOPIA interface)
  - HDLC /transparent up to 70-Mbps full-duplex
  - HDLC bus up to 10 Mbps
  - Asynchronous HDLC
  - UART
  - BISYNC up to 2 Mbps
  - QUICC multi-channel controller (QMC) for 64 TDM channels
- One UTOPIA interface (UPC1) supporting 31 multi-PHYs (MPC8323E- and MPC8323-specific)
- Two serial peripheral interfaces (SPI). SPI2 is dedicated to Ethernet PHY management.
- Four TDM interfaces
- Thirteen independent baud rate generators and 19 input clock pins for supplying clocks to UCC serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers

The UCCs are similar to the PowerQUICC II peripherals: SCC (BISYNC, UART, and HDLC bus) and FCC (fast Ethernet, HDLC, transparent, and ATM).



| CLKIN input current       | $0 \ V \leq V_{IN} \leq OV_{DD}$                                                                                 | I <sub>IN</sub> | _ | ±5  | μA |
|---------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|---|-----|----|
| PCI_SYNC_IN input current | $\begin{array}{c} 0 \ V \leq V_{IN} \leq 0.5 \ V \ or \\ OV_{DD} - 0.5 \ V \leq V_{IN} \leq OV_{DD} \end{array}$ | I <sub>IN</sub> | _ | ±5  | μA |
| PCI_SYNC_IN input current | $0.5~V \leq V_{IN} \leq OV_{DD} - 0.5~V$                                                                         | I <sub>IN</sub> | — | ±50 | μA |

## 4.2 AC Electrical Characteristics

The primary clock source for the MPC8323E can be one of two inputs, CLKIN or PCI\_CLK, depending on whether the device is configured in PCI host or PCI agent mode. Table 8 provides the clock input (CLKIN/PCI\_CLK) AC timing specifications for the MPC8323E.

| Parameter/Condition        | Symbol                               | Min | Typical | Мах   | Unit | Notes |
|----------------------------|--------------------------------------|-----|---------|-------|------|-------|
| CLKIN/PCI_CLK frequency    | f <sub>CLKIN</sub>                   | 25  | —       | 66.67 | MHz  | 1     |
| CLKIN/PCI_CLK cycle time   | t <sub>CLKIN</sub>                   | 15  | —       | —     | ns   | —     |
| CLKIN rise and fall time   | t <sub>KH</sub> , t <sub>KL</sub>    | 0.6 | 0.8     | 4     | ns   | 2     |
| PCI_CLK rise and fall time | t <sub>PCH</sub> , t <sub>PCL</sub>  | 0.6 | 0.8     | 1.2   | ns   | 2     |
| CLKIN/PCI_CLK duty cycle   | t <sub>KHK</sub> /t <sub>CLKIN</sub> | 40  | —       | 60    | %    | 3     |
| CLKIN/PCI_CLK jitter       |                                      | —   | —       | ±150  | ps   | 4, 5  |

**Table 8. CLKIN AC Timing Specifications** 

Notes:

1. **Caution:** The system, core, security, and QUICC Engine block must not exceed their respective maximum or minimum operating frequencies.

2. Rise and fall times for CLKIN/PCI\_CLK are measured at 0.4 and 2.7 V.

3. Timing is guaranteed by design and characterization.

4. This represents the total input jitter—short term and long term—and is guaranteed by design.

5. The CLKIN/PCI\_CLK driver's closed loop jitter bandwidth should be < 500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.

# 5 **RESET Initialization**

This section describes the AC electrical specifications for the reset initialization timing requirements of the MPC8323E. Table 9 provides the reset initialization AC timing specifications for the reset component(s).

| Table 9. RESET Initialization Timir | g Specifications |
|-------------------------------------|------------------|
|-------------------------------------|------------------|

| Parameter/Condition                                                                                                                   | Min | Max | Unit                     | Notes |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------------------------|-------|
| Required assertion time of $\overrightarrow{\text{HRESET}}$ or $\overrightarrow{\text{SRESET}}$ (input) to activate reset flow        | 32  | _   | t <sub>PCI_SYNC_IN</sub> | 1     |
| Required assertion time of $\overrightarrow{\text{PORESET}}$ with stable clock applied to CLKIN when the MPC8323E is in PCI host mode | 32  |     | t <sub>CLKIN</sub>       | 2     |
| Required assertion time of PORESET with stable clock applied to<br>PCI_SYNC_IN when the MPC8323E is in PCI agent mode                 | 32  | _   | <sup>t</sup> PCI_SYNC_IN | 1     |



### DDR1 and DDR2 SDRAM

Figure 4 shows the input timing diagram for the DDR controller.



Figure 4. DDR Input Timing Diagram

## 6.2.2 DDR1 and DDR2 SDRAM Output AC Timing Specifications

Table 19 provides the output AC timing specifications for the DDR1 and DDR2 SDRAM interfaces.

## Table 19. DDR1 and DDR2 SDRAM Output AC Timing Specifications

At recommended operating conditions with  $Dn_GV_{DD}$  of (1.8 or 2.5 V)  $\pm$  5%.

| Parameter                                                       | Symbol <sup>1</sup> | Min        | Мах | Unit | Notes |
|-----------------------------------------------------------------|---------------------|------------|-----|------|-------|
| MCK cycle time, (MCK/MCK crossing)                              | t <sub>MCK</sub>    | 7.5        | 10  | ns   | 2     |
| ADDR/CMD output setup with respect to MCK<br>266 MHz<br>200 MHz | <sup>t</sup> DDKHAS | 2.5<br>3.5 |     | ns   | 3     |
| ADDR/CMD output hold with respect to MCK<br>266 MHz<br>200 MHz  | t <sub>DDKHAX</sub> | 2.5<br>3.5 |     | ns   | 3     |
| MCS output setup with respect to MCK<br>266 MHz<br>200 MHz      | t <sub>DDKHCS</sub> | 2.5<br>3.5 |     | ns   | 3     |
| MCS output hold with respect to MCK<br>266 MHz<br>200 MHz       | <sup>t</sup> DDKHCX | 2.5<br>3.5 |     | ns   | 3     |
| MCK to MDQS Skew                                                | t <sub>DDKHMH</sub> | -0.6       | 0.6 | ns   | 4     |



#### Table 19. DDR1 and DDR2 SDRAM Output AC Timing Specifications (continued)

At recommended operating conditions with  $Dn_GV_{DD}$  of (1.8 or 2.5 V) ± 5%.

| Parameter                                 | Symbol <sup>1</sup>                         | Min                             | Мах                         | Unit | Notes |
|-------------------------------------------|---------------------------------------------|---------------------------------|-----------------------------|------|-------|
| MDQ/MDM output setup with respect to MDQS | <sup>t</sup> DDKHDS,<br>t <sub>DDKLDS</sub> |                                 |                             | ns   | 5     |
| 266 MHz                                   |                                             | 0.9                             | —                           |      |       |
| 200 MHz                                   |                                             | 1.0                             | —                           |      |       |
| MDQ/MDM output hold with respect to MDQS  | t <sub>DDKHDX,</sub><br>t <sub>DDKLDX</sub> |                                 |                             | ps   | 5     |
| 266 MHz                                   |                                             | 1100                            | —                           |      |       |
| 200 MHz                                   |                                             | 1200                            | —                           |      |       |
| MDQS preamble start                       | t <sub>DDKHMP</sub>                         | $-0.5\times t_{\text{MCK}}-0.6$ | $-0.5 \times t_{MCK} + 0.6$ | ns   | 6     |
| MDQS epilogue end                         | t <sub>DDKHME</sub>                         | -0.6                            | 0.6                         | ns   | 6     |

#### Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t<sub>DDKHAS</sub> symbolizes DDR timing (DD) for the time t<sub>MCK</sub> memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t<sub>DDKLDX</sub> symbolizes DDR timing (DD) for the time t<sub>MCK</sub> memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
</sub>

2. All MCK/ $\overline{MCK}$  referenced measurements are made from the crossing of the two signals  $\pm 0.1$  V.

3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied cycle.

- 4. Note that t<sub>DDKHMH</sub> follows the symbol conventions described in note 1. For example, t<sub>DDKHMH</sub> describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t<sub>DDKHMH</sub> can be modified through control of the DQSS override bits in the TIMING\_CFG\_2 register. This is typically set to the same delay as the clock adjust in the CLK\_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.
- 5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.
- 6. All outputs are referenced to the rising edge of MCK(n) at the pins of the microprocessor. Note that t<sub>DDKHMP</sub> follows the symbol conventions described in note 1.



## 8.3.1 MII Management DC Electrical Characteristics

MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 27.

| Parameter              | Symbol           | Conditions                |                                  | Min  | Max                    | Unit |      |   |
|------------------------|------------------|---------------------------|----------------------------------|------|------------------------|------|------|---|
| Supply voltage (3.3 V) | OV <sub>DD</sub> | —                         |                                  | —    |                        | 2.97 | 3.63 | V |
| Output high voltage    | V <sub>OH</sub>  | I <sub>OH</sub> = -1.0 mA | OV <sub>DD</sub> = Min           | 2.10 | OV <sub>DD</sub> + 0.3 | V    |      |   |
| Output low voltage     | V <sub>OL</sub>  | I <sub>OL</sub> = 1.0 mA  | OV <sub>DD</sub> = Min           | GND  | 0.50                   | V    |      |   |
| Input high voltage     | V <sub>IH</sub>  | -                         | —                                |      | —                      | V    |      |   |
| Input low voltage      | V <sub>IL</sub>  | —                         |                                  | —    | 0.80                   | V    |      |   |
| Input current          | I <sub>IN</sub>  | 0 V ≤ V <sub>II</sub>     | $_{\rm N} \le {\rm OV}_{\rm DD}$ | —    | ±5                     | μA   |      |   |

Table 27. MII Management DC Electrical Characteristics When Powered at 3.3 V

## 8.3.2 MII Management AC Electrical Specifications

Table 28 provides the MII management AC timing specifications.

## Table 28. MII Management AC Timing Specifications

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  is 3.3 V  $\pm$  10%.

| Parameter/Condition        | Symbol <sup>1</sup> | Min | Typical | Мах | Unit | Notes |
|----------------------------|---------------------|-----|---------|-----|------|-------|
| MDC frequency              | f <sub>MDC</sub>    | —   | 2.5     | —   | MHz  | _     |
| MDC period                 | t <sub>MDC</sub>    | —   | 400     | —   | ns   | _     |
| MDC clock pulse width high | t <sub>MDCH</sub>   | 32  | —       | —   | ns   | _     |
| MDC to MDIO delay          | t <sub>MDKHDX</sub> | 10  | —       | 70  | ns   | _     |
| MDIO to MDC setup time     | t <sub>MDDVKH</sub> | 5   | —       | —   | ns   | _     |
| MDIO to MDC hold time      | t <sub>MDDXKH</sub> | 0   | —       | —   | ns   | _     |
| MDC rise time              | t <sub>MDCR</sub>   | —   | —       | 10  | ns   | _     |
| MDC fall time              | t <sub>MDHF</sub>   | —   | —       | 10  | ns   |       |

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>MDKHDX</sub> symbolizes management data timing (MD) for the time t<sub>MDC</sub> from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t<sub>MDDVKH</sub> symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>MDC</sub> clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>



| Parameter                                                                              | Symbol <sup>1</sup>  | Min | Мах | Unit | Notes |
|----------------------------------------------------------------------------------------|----------------------|-----|-----|------|-------|
| LALE output fall to LAD output transition (LATCH hold time)                            | t <sub>LBOTOT2</sub> | 3   | _   | ns   | 6     |
| LALE output fall to LAD output transition (LATCH hold time)                            | t <sub>LBOTOT3</sub> | 2.5 | _   | ns   | 7     |
| Local bus clock (LCLKn) to output valid                                                | t <sub>LBKHOV</sub>  | —   | 3   | ns   | 3     |
| Local bus clock (LCLKn) to output high impedance for LAD/LDP                           | t <sub>LBKHOZ</sub>  | —   | 4   | ns   | 8     |
| Local bus clock (LCLKn) duty cycle                                                     | t <sub>LBDC</sub>    | 47  | 53  | %    | _     |
| Local bus clock (LCLKn) jitter specification                                           | t <sub>LBRJ</sub>    | —   | 400 | ps   | _     |
| Delay between the input clock (PCI_SYNC_IN) of local bus output clock (LCLK <i>n</i> ) | t <sub>LBCDL</sub>   | —   | 1.7 | ns   | _     |

## Table 30. Local Bus General Timing Parameters (continued)

#### Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state)</sub> for inputs and t<sub>(first two letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>LBIXKH1</sub> symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t<sub>LBK</sub> clock reference (K) goes high (H), in this case for clock one(1).

2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of LCLK0 (for all other inputs).

All signals are measured from OV<sub>DD</sub>/2 of the rising/falling edge of LCLK0 to 0.4 × OV<sub>DD</sub> of the signal in question for 3.3-V signaling levels.

4. Input timings are measured at the pin.

5. t<sub>LBOTOT1</sub> should be used when RCWH[LALE] is not set and the load on LALE output pin is at least 10 pF less than the load on LAD output pins.

 t<sub>LBOTOT2</sub> should be used when RCWH[LALE] is set and the load on LALE output pin is at least 10 pF less than the load on LAD output pins.

7. t<sub>LBOTOT3</sub> should be used when RCWH[LALE] is set and the load on LALE output pin equals to the load on LAD output pins.

8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

Figure 14 provides the AC test load for the local bus.



Figure 14. Local Bus C Test Load



# 11 I<sup>2</sup>C

This section describes the DC and AC electrical characteristics for the I<sup>2</sup>C interface of the MPC8323E.

# 11.1 I<sup>2</sup>C DC Electrical Characteristics

Table 33 provides the DC electrical characteristics for the I<sup>2</sup>C interface of the MPC8323E.

## Table 33. I<sup>2</sup>C DC Electrical Characteristics

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  of 3.3 V  $\pm$  10%.

| Parameter                                                                                     | Symbol              | Min                   | Мах                              | Unit | Notes |
|-----------------------------------------------------------------------------------------------|---------------------|-----------------------|----------------------------------|------|-------|
| Input high voltage level                                                                      | V <sub>IH</sub>     | $0.7 	imes OV_{DD}$   | OV <sub>DD</sub> + 0.3           | V    |       |
| Input low voltage level                                                                       | V <sub>IL</sub>     | -0.3                  | $0.3\times\text{OV}_{\text{DD}}$ | V    | _     |
| Low level output voltage                                                                      | V <sub>OL</sub>     | 0                     | 0.4                              | V    | 1     |
| Output fall time from $V_{IH}(min)$ to $V_{IL}(max)$ with a bus capacitance from 10 to 400 pF | <sup>t</sup> I2KLKV | $20 + 0.1 \times C_B$ | 250                              | ns   | 2     |
| Pulse width of spikes which must be suppressed by the input filter                            | t <sub>I2KHKL</sub> | 0                     | 50                               | ns   | 3     |
| Capacitance for each I/O pin                                                                  | Cl                  | _                     | 10                               | pF   | _     |
| Input current (0 V $\leq$ V <sub>IN</sub> $\leq$ OV <sub>DD</sub> )                           | I <sub>IN</sub>     | —                     | ±5                               | μA   | 4     |

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2.  $C_B$  = capacitance of one bus line in pF.

3. Refer to the MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual for information on the digital filter used.

4. I/O pins obstructs the SDA and SCL lines if  $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$  is switched off.

# 11.2 I<sup>2</sup>C AC Electrical Specifications

Table 34 provides the AC timing parameters for the  $I^2C$  interface of the MPC8323E.

## Table 34. I<sup>2</sup>C AC Electrical Specifications

All values refer to  $V_{IH}$  (min) and  $V_{IL}$  (max) levels (see Table 33).

| Parameter                                                                                    | Symbol <sup>1</sup> | Min              | Мах                  | Unit |
|----------------------------------------------------------------------------------------------|---------------------|------------------|----------------------|------|
| SCL clock frequency                                                                          | f <sub>I2C</sub>    | 0                | 400                  | kHz  |
| Low period of the SCL clock                                                                  | t <sub>I2CL</sub>   | 1.3              | —                    | μs   |
| High period of the SCL clock                                                                 | t <sub>I2CH</sub>   | 0.6              | —                    | μs   |
| Setup time for a repeated START condition                                                    | t <sub>I2SVKH</sub> | 0.6              | —                    | μs   |
| Hold time (repeated) START condition (after this period, the first clock pulse is generated) |                     | 0.6              | _                    | μs   |
| Data setup time                                                                              |                     | 100              | —                    | ns   |
| Data hold time: CBUS compatible masters I <sup>2</sup> C bus devices                         | t <sub>I2DXKL</sub> | $\overline{0^2}$ | <br>0.9 <sup>3</sup> | μs   |



1<sup>2</sup>C

## Table 34. I<sup>2</sup>C AC Electrical Specifications (continued)

All values refer to  $V_{IH}$  (min) and  $V_{IL}$  (max) levels (see Table 33).

| Parameter                                                                       | Symbol <sup>1</sup> | Min                                  | Мах | Unit |
|---------------------------------------------------------------------------------|---------------------|--------------------------------------|-----|------|
| Rise time of both SDA and SCL signals                                           | t <sub>l2CR</sub>   | 20 + 0.1 C <sub>b</sub> <sup>4</sup> | 300 | ns   |
| Fall time of both SDA and SCL signals                                           | t <sub>I2CF</sub>   | 20 + 0.1 C <sub>b</sub> <sup>4</sup> | 300 | ns   |
| Setup time for STOP condition                                                   | t <sub>I2PVKH</sub> | 0.6                                  |     | μs   |
| Bus free time between a STOP and START condition                                | t <sub>I2KHDX</sub> | 1.3                                  |     | μs   |
| Noise margin at the LOW level for each connected device (including hysteresis)  | V <sub>NL</sub>     | $0.1 \times OV_{DD}$                 | Ι   | V    |
| Noise margin at the HIGH level for each connected device (including hysteresis) | V <sub>NH</sub>     | $0.2 \times \text{OV}_{\text{DD}}$   | _   | V    |

#### Notes:

1. The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>12DVKH</sub> symbolizes I<sup>2</sup>C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>12C</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>12SXKL</sub> symbolizes I<sup>2</sup>C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t<sub>12C</sub> clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t<sub>12C</sub> clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub>

- MPC8323E provides a hold time of at least 300 ns for the SDA signal (referred to the V<sub>IH</sub>(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t<sub>I2DVKH</sub> has only to be met if the device does not stretch the LOW period (t<sub>I2CL</sub>) of the SCL signal.

4.  $C_B$  = capacitance of one bus line in pF.

Figure 23 provides the AC test load for the  $I^2C$ .



Figure 23. I<sup>2</sup>C AC Test Load

Figure 24 shows the AC timing diagram for the  $I^2C$  bus.



Figure 24. I<sup>2</sup>C Bus AC Timing Diagram



# 12 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8323E.

# **12.1 PCI DC Electrical Characteristics**

Table 35 provides the DC electrical characteristics for the PCI interface of the MPC8323E.

| Parameter                 | Symbol          | Test Condition                                       | Min                    | Мах                    | Unit |
|---------------------------|-----------------|------------------------------------------------------|------------------------|------------------------|------|
| High-level input voltage  | V <sub>IH</sub> | $V_{OUT} \ge V_{OH}$ (min) or                        | 2                      | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage   | V <sub>IL</sub> | $V_{OUT} \le V_{OL}$ (max)                           | -0.3                   | 0.8                    | V    |
| High-level output voltage | V <sub>OH</sub> | OV <sub>DD</sub> = min,<br>I <sub>OH</sub> = −100 μA | OV <sub>DD</sub> – 0.2 | _                      | V    |
| Low-level output voltage  | V <sub>OL</sub> | OV <sub>DD</sub> = min,<br>I <sub>OL</sub> = 100 μA  | _                      | 0.2                    | V    |
| Input current             | I <sub>IN</sub> | $0 V \le V_{IN} \le OV_{DD}$                         | _                      | ±5                     | μA   |

## Table 35. PCI DC Electrical Characteristics<sup>1,2</sup>

## Notes:

1. Note that the symbol  $V_{IN}$ , in this case, represents the  $OV_{IN}$  symbol referenced in Table 1 and Table 2.

2. Ranges listed do not meet the full range of the DC specifications of the PCI 2.3 Local Bus Specifications.

# 12.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the MPC8323E. Note that the PCI\_CLK or PCI\_SYNC\_IN signal is used as the PCI input clock depending on whether the MPC8323E is configured as a host or agent device. Table 36 shows the PCI AC timing specifications at 66 MHz.

| Parameter                      | Symbol <sup>1</sup> | Min | Max | Unit | Notes |
|--------------------------------|---------------------|-----|-----|------|-------|
| Clock to output valid          | t <sub>PCKHOV</sub> | _   | 6.0 | ns   | 2     |
| Output hold from clock         | t <sub>PCKHOX</sub> | 1   | _   | ns   | 2     |
| Clock to output high impedence | t <sub>PCKHOZ</sub> | _   | 14  | ns   | 2, 3  |
| Input setup to clock           | t <sub>PCIVKH</sub> | 3.0 | _   | ns   | 2, 4  |
| Input hold from clock          | t <sub>PCIXKH</sub> | 0   | —   | ns   | 2, 4  |

## Table 36. PCI AC Timing Specifications at 66 MHz

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>PCIVKH</sub> symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI\_SYNC\_IN clock, t<sub>SYS</sub>, reference (K) going to the high (H) state or setup time. Also, t<sub>PCRHFV</sub> symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.





# 19 HDLC, BISYNC, Transparent, and Synchronous UART

This section describes the DC and AC electrical specifications for the high level data link control (HDLC), BISYNC, transparent, and synchronous UART of the MPC8323E.

# 19.1 HDLC, BISYNC, Transparent, and Synchronous UART DC Electrical Characteristics

Table 50 provides the DC electrical characteristics for the MPC8323E HDLC, BISYNC, transparent, and synchronous UART protocols.

| Table 50. HDLC, BISYN | C, Transparent | , and Synchronous | UART DC Electrica | I Characteristics |
|-----------------------|----------------|-------------------|-------------------|-------------------|
|-----------------------|----------------|-------------------|-------------------|-------------------|

| Characteristic      | Symbol          | Condition                    | Min  | Мах                    | Unit |
|---------------------|-----------------|------------------------------|------|------------------------|------|
| Output high voltage | V <sub>OH</sub> | I <sub>OH</sub> = -2.0 mA    | 2.4  | —                      | V    |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 3.2 mA     | —    | 0.5                    | V    |
| Input high voltage  | V <sub>IH</sub> | _                            | 2.0  | OV <sub>DD</sub> + 0.3 | V    |
| Input low voltage   | V <sub>IL</sub> | _                            | -0.3 | 0.8                    | V    |
| Input current       | I <sub>IN</sub> | $0 V \le V_{IN} \le OV_{DD}$ | —    | ±5                     | μA   |

# 19.2 HDLC, BISYNC, Transparent, and Synchronous UART AC Timing Specifications

Table 51 provides the input and output AC timing specifications for HDLC, BISYNC, and transparent UART protocols.

| Characteristic                         | Symbol <sup>2</sup> | Min | Мах | Unit |
|----------------------------------------|---------------------|-----|-----|------|
| Outputs—Internal clock delay           | t <sub>HIKHOV</sub> | 0   | 5.5 | ns   |
| Outputs—External clock delay           | t <sub>HEKHOV</sub> | 1   | 10  | ns   |
| Outputs—Internal clock high impedance  | <sup>t</sup> нікнох | 0   | 5.5 | ns   |
| Outputs—External clock high impedance  | t <sub>HEKHOX</sub> | 1   | 8   | ns   |
| Inputs—Internal clock input setup time | t <sub>ниvкн</sub>  | 6   | —   | ns   |
| Inputs—External clock input setup time | t <sub>HEIVKH</sub> | 4   | —   | ns   |
| Inputs—Internal clock input hold time  | t <sub>нихкн</sub>  | 0   | —   | ns   |

Table 51. HDLC, BISYNC, and Transparent UART AC Timing Specifications<sup>1</sup>



Figure 39 shows the timing with external clock.





Figure 40 shows the timing with internal clock.



Figure 40. AC Timing (Internal Clock) Diagram



Package and Pin Listings



## Notes:

1.All dimensions are in millimeters.

2.Dimensions and tolerances per ASME Y14.5M-1994.

3.Maximum solder ball diameter measured parallel to datum A.

4.Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Figure 42. Mechanical Dimensions and Bottom Surface Nomenclature of the MPC8323E PBGA



# 21.3 Pinout Listings

Table 55 shows the pin list of the MPC8323E.

## Table 55. MPC8323E PBGA Pinout Listing

| Signal                          | Package Pin Number | Pin Type | Power<br>Supply  | Notes |  |  |  |
|---------------------------------|--------------------|----------|------------------|-------|--|--|--|
| DDR Memory Controller Interface |                    |          |                  |       |  |  |  |
| MEMC_MDQ0                       | AE9                | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ1                       | AD10               | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ2                       | AF10               | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ3                       | AF9                | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ4                       | AF7                | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ5                       | AE10               | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ6                       | AD9                | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ7                       | AF8                | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ8                       | AE6                | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ9                       | AD7                | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ10                      | AF6                | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ11                      | AC7                | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ12                      | AD8                | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ13                      | AE7                | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ14                      | AD6                | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ15                      | AF5                | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ16                      | AD18               | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ17                      | AE19               | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ18                      | AF17               | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ19                      | AF19               | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ20                      | AF18               | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ21                      | AE18               | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ22                      | AF20               | Ю        | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ23                      | AD19               | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ24                      | AD21               | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ25                      | AF22               | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ26                      | AC21               | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ27                      | AF21               | IO       | GV <sub>DD</sub> | —     |  |  |  |
| MEMC_MDQ28                      | AE21               | IO       | GV <sub>DD</sub> |       |  |  |  |
|                                 |                    |          |                  |       |  |  |  |



| Signal                | Package Pin Number | Pin Type | Power<br>Supply  | Notes |
|-----------------------|--------------------|----------|------------------|-------|
| PCI_AD20              | AB2                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD21              | Y4                 | IO       | OV <sub>DD</sub> | —     |
| PCI_AD22              | AC1                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD23              | AA3                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD24              | AA4                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD25              | AD1                | IO       | OV <sub>DD</sub> |       |
| PCI_AD26              | AD2                | IO       | OV <sub>DD</sub> |       |
| PCI_AD27              | AB3                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD28              | AB4                | IO       | OV <sub>DD</sub> | —     |
| PCI_AD29              | AE1                | IO       | OV <sub>DD</sub> |       |
| PCI_AD30              | AC3                | IO       | OV <sub>DD</sub> |       |
| PCI_AD31              | AC4                | IO       | OV <sub>DD</sub> | —     |
| PCI_C_BE0             | M4                 | IO       | OV <sub>DD</sub> | —     |
| PCI_C_BE1             | T4                 | IO       | OV <sub>DD</sub> | —     |
| PCI_C_BE2             | Y3                 | IO       | OV <sub>DD</sub> | —     |
| PCI_C_BE3             | AC2                | IO       | OV <sub>DD</sub> |       |
| PCI_PAR               | U3                 | IO       | OV <sub>DD</sub> |       |
| PCI_FRAME             | W1                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_TRDY              | W4                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_IRDY              | W2                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_STOP              | V4                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_DEVSEL            | W3                 | Ю        | OV <sub>DD</sub> | 5     |
| PCI_IDSEL             | P2                 | I        | OV <sub>DD</sub> | —     |
| PCI_SERR              | U4                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_PERR              | V3                 | IO       | OV <sub>DD</sub> | 5     |
| PCI_REQ0              | AD4                | IO       | OV <sub>DD</sub> | —     |
| PCI_REQ1/CPCI_HS_ES   | AE3                | I        | OV <sub>DD</sub> | —     |
| PCI_REQ2              | AF3                | I        | OV <sub>DD</sub> | —     |
| PCI_GNT0              | AD3                | IO       | OV <sub>DD</sub> | —     |
| PCI_GNT1/CPCI_HS_LED  | AE4                | 0        | OV <sub>DD</sub> | —     |
| PCI_GNT2/CPCI_HS_ENUM | AF4                | 0        | OV <sub>DD</sub> | —     |
| M66EN                 | L4                 | I        | OV <sub>DD</sub> | _     |

## Table 55. MPC8323E PBGA Pinout Listing (continued)



Package and Pin Listings

## Table 55. MPC8323E PBGA Pinout Listing (continued)

| Signal                                                        | Package Pin Number | Pin Type | Power<br>Supply  | Notes |
|---------------------------------------------------------------|--------------------|----------|------------------|-------|
|                                                               | CE/GPIO            |          |                  |       |
| GPIO_PA0/SER1_TXD[0]/TDMA_TXD[0]/USBTXN                       | G3                 | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA1/SER1_TXD[1]/TDMA_TXD[1]/USBTXP                       | F3                 | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA2/SER1_TXD[2]/TDMA_TXD[2]                              | F2                 | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA3/SER1_TXD[3]/TDMA_TXD[3]                              | E3                 | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA4/SER1_RXD[0]/TDMA_RXD[0]/USBRXP                       | E2                 | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA5/SER1_RXD[1]/TDMA_RXD[1]/USBRXN                       | E1                 | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA6/SER1_RXD[2]/TDMA_RXD[2]/USBRXD                       | D3                 | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA7/SER1_RXD[3]/TDMA_RXD[3]                              | D2                 | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA8/SER1_CD/TDMA_REQ/USBOE                               | D1                 | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA9 TDMA_CLKO                                            | C3                 | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA10/SER1_CTS/TDMA_RSYNC                                 | C2                 | IO       | OV <sub>DD</sub> | —     |
| GPIO_PA11/TDMA_STROBE                                         | C1                 | IO       | OV <sub>DD</sub> |       |
| GPIO_PA12/SER1_RTS/TDMA_TSYNC                                 | B1                 | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA13/CLK9/BRGO9                                          | H4                 | IO       | OV <sub>DD</sub> |       |
| GPIO_PA14/CLK11/BRGO10                                        | G4                 | IO       | OV <sub>DD</sub> | —     |
| GPIO_PA15/BRGO7                                               | J4                 | IO       | OV <sub>DD</sub> | —     |
| GPIO_PA16/ LA0 (LBIU)                                         | K24                | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA17/ LA1 (LBIU)                                         | K26                | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA18/Enet2_TXD[0]/SER2_TXD[0]/<br>TDMB_TXD[0]/LA2 (LBIU) | G25                | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA19/Enet2_TXD[1]/SER2_TXD[1]/<br>TDMB_TXD[1]/LA3 (LBIU) | G26                | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA20/Enet2_TXD[2]/SER2_TXD[2]/<br>TDMB_TXD[2]/LA4 (LBIU) | H25                | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA21/Enet2_TXD[3]/SER2_TXD[3]/<br>TDMB_TXD[3]/LA5 (LBIU) | H26                | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA22/Enet2_RXD[0]/SER2_RXD[0]/<br>TDMB_RXD[0]/LA6 (LBIU) | C25                | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA23/Enet2_RXD[1]/SER2_RXD[1]/<br>TDMB_RXD[1]/LA7 (LBIU) | C26                | IO       | OV <sub>DD</sub> | —     |
| GPIO_PA24/Enet2_RXD[2]/SER2_RXD[2]/<br>TDMB_RXD[2]/LA8 (LBIU) | D25                | IO       | OV <sub>DD</sub> | _     |
| GPIO_PA25/Enet2_RXD[3]/SER2_RXD[3]/<br>TDMB_RXD[3]/LA9 (LBIU) | D26                | IO       | OV <sub>DD</sub> | —     |



Package and Pin Listings

| Signal                              | Package Pin Number                                                                                                                                                                                                                                                               | Pin Type         | Power<br>Supply  | Notes |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-------|
| GPIO_PD10/GTM1_TIN2/GTM2_TIN1/CLK17 | J24                                                                                                                                                                                                                                                                              | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD11/GTM1_TGATE2/GTM2_TGATE1   | B25                                                                                                                                                                                                                                                                              | Ю                | OV <sub>DD</sub> | —     |
| GPIO_PD12/GTM1_TOUT2/GTM2_TOUT1     | C4                                                                                                                                                                                                                                                                               | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD13/GTM1_TIN3/GTM2_TIN4/BRGO8 | D4                                                                                                                                                                                                                                                                               | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD14/GTM1_TGATE3/GTM2_TGATE4   | D5                                                                                                                                                                                                                                                                               | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD15/GTM1_TOUT3                | A5                                                                                                                                                                                                                                                                               | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD16/GTM1_TIN4/GTM2_TIN3       | B5                                                                                                                                                                                                                                                                               | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD17/GTM1_TGATE4/GTM2_TGATE3   | C5                                                                                                                                                                                                                                                                               | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD18/GTM1_TOUT4/GTM2_TOUT3     | A6                                                                                                                                                                                                                                                                               | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD19/CE_RISC1_INT/CE_EXT_REQ4  | B6                                                                                                                                                                                                                                                                               | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD20/CLK18/BRGO6               | D21                                                                                                                                                                                                                                                                              | Ю                | OV <sub>DD</sub> | —     |
| GPIO_PD21/CLK16/BRG05/UPC1_CLKO     | C19                                                                                                                                                                                                                                                                              | Ю                | OV <sub>DD</sub> | —     |
| GPIO_PD22/CLK4/BRGO9/UCC2_CLKO      | A7                                                                                                                                                                                                                                                                               | Ю                | OV <sub>DD</sub> | —     |
| GPIO_PD23/CLK3/BRGO10/UCC3_CLKO     | B7                                                                                                                                                                                                                                                                               | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD24/CLK10/BRGO2/UCC4_CLKO     | A12                                                                                                                                                                                                                                                                              | Ю                | OV <sub>DD</sub> | —     |
| GPIO_PD25/CLK13/BRGO16/UCC5_CLKO    | B10                                                                                                                                                                                                                                                                              | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD26/CLK2/BRGO4/UCC1_CLKO      | E4                                                                                                                                                                                                                                                                               | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD27/CLK1/BRGO3                | F4                                                                                                                                                                                                                                                                               | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD28/CLK19/BRGO11              | D15                                                                                                                                                                                                                                                                              | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD29/CLK15/BRGO8               | C6                                                                                                                                                                                                                                                                               | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD30/CLK14                     | D6                                                                                                                                                                                                                                                                               | IO               | OV <sub>DD</sub> | —     |
| GPIO_PD31/CLK7/BRGO15               | E24                                                                                                                                                                                                                                                                              | IO               | OV <sub>DD</sub> | —     |
| Power                               | and Ground Supplies                                                                                                                                                                                                                                                              |                  |                  |       |
| GV <sub>DD</sub>                    | AA8, AA10, AA11, AA13,<br>AA14, AA16, AA17, AA19,<br>AA21, AB9, AB10, AB11,<br>AB12, AB14, AB18, AB20,<br>AB21, AC6, AC8, AC14, AC18                                                                                                                                             | GV <sub>DD</sub> |                  | _     |
| OV <sub>DD</sub>                    | E5, E6, E8, E9, E10, E12, E14,<br>E15, E16, E18, E19, E20, E22,<br>F5, F6, F8, F10, F14, F16, F19,<br>F22, G22, H5, H6, H21, J5,<br>J22, K21, K22, L5, L6, L22, M5,<br>M22, N5, N21, N22, P6, P22,<br>P23, R5, R23, T5, T21, T22,<br>U6, U22, V5, V22, W22, Y5,<br>AB5, AB6, AC5 | OV <sub>DD</sub> | _                | _     |

## Table 55. MPC8323E PBGA Pinout Listing (continued)

## MPC8323E PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 4



## Clocking

# 22 Clocking

Figure 43 shows the internal distribution of clocks within the MPC8323E.



## Figure 43. MPC8323E Clock Subsystem

The primary clock source for the MPC8323E can be one of two inputs, CLKIN or PCI\_CLK, depending on whether the device is configured in PCI host or PCI agent mode, respectively.





# 22.5 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb\_clk*) and the e300 core clock (*core\_clk*). Table 60 shows the encodings for RCWL[COREPLL]. COREPLL values not listed in Table 60 should be considered reserved.

| RCWL[COREPLL] |      | PLL] | aara alku aab alk Patia                                           | VCO Divider                                                       |  |  |
|---------------|------|------|-------------------------------------------------------------------|-------------------------------------------------------------------|--|--|
| 0-1           | 2-5  | 6    | COTE_CIK : CSD_CIK HAIIO                                          | VCO Divider                                                       |  |  |
| nn            | 0000 | n    | PLL bypassed<br>(PLL off, <i>csb_clk</i> clocks<br>core directly) | PLL bypassed<br>(PLL off, <i>csb_clk</i> clocks<br>core directly) |  |  |
| 00            | 0001 | 0    | 1:1                                                               | ÷2                                                                |  |  |
| 01            | 0001 | 0    | 1:1                                                               | ÷4                                                                |  |  |
| 10            | 0001 | 0    | 1:1                                                               | ÷8                                                                |  |  |
| 11            | 0001 | 0    | 1:1                                                               | ÷8                                                                |  |  |
| 00            | 0001 | 1    | 1.5:1                                                             | ÷2                                                                |  |  |
| 01            | 0001 | 1    | 1.5:1                                                             | ÷4                                                                |  |  |
| 10            | 0001 | 1    | 1.5:1                                                             | ÷8                                                                |  |  |
| 11            | 0001 | 1    | 1.5:1                                                             | ÷8                                                                |  |  |
| 00            | 0010 | 0    | 2:1                                                               | ÷2                                                                |  |  |
| 01            | 0010 | 0    | 2:1                                                               | ÷4                                                                |  |  |
| 10            | 0010 | 0    | 2:1                                                               | ÷8                                                                |  |  |
| 11            | 0010 | 0    | 2:1                                                               | ÷8                                                                |  |  |
| 00            | 0010 | 1    | 2.5:1                                                             | ÷2                                                                |  |  |
| 01            | 0010 | 1    | 2.5:1                                                             | ÷4                                                                |  |  |
| 10            | 0010 | 1    | 2.5:1                                                             | ÷8                                                                |  |  |
| 11            | 0010 | 1    | 2.5:1                                                             | ÷8                                                                |  |  |
| 00            | 0011 | 0    | 3:1                                                               | ÷2                                                                |  |  |
| 01            | 0011 | 0    | 3:1                                                               | ÷4                                                                |  |  |
| 10            | 0011 | 0    | 3:1                                                               | ÷8                                                                |  |  |
| 11            | 0011 | 0    | 3:1                                                               | ÷8                                                                |  |  |

Table 60. e300 Core PLL Configuration

## NOTE

Core VCO frequency = core frequency  $\times$  VCO divider

VCO divider (RCWL[COREPLL[0:1]]) must be set properly so that the core VCO frequency is in the range of 500–800 MHz.



## Table 64. Package Thermal Characteristics for PBGA (continued)

| Characteristic          | Board type         | Symbol      | Value | Unit | Notes |
|-------------------------|--------------------|-------------|-------|------|-------|
| Junction-to-package top | Natural convection | $\Psi_{JT}$ | 2     | °C/W | 6     |

Notes:

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

# 23.2 Thermal Management Information

For the following sections,  $P_D = (V_{DD} \times I_{DD}) + P_{I/O}$ , where  $P_{I/O}$  is the power dissipation of the I/O drivers.

## 23.2.1 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T<sub>J</sub>, can be obtained from the equation:

 $T_J = T_A + (R_{\theta JA} \times P_D)$ 

where:

 $T_J$  = junction temperature (°C)

 $T_A$  = ambient temperature for the package (°C)

 $R_{\theta JA}$  = junction-to-ambient thermal resistance (°C/W)

 $P_D$  = power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. As a general statement, the value obtained on a single layer board is appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity  $T_I - T_A$ ) are possible.

## 23.2.2 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal resistance. The thermal performance of any component is strongly dependent on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter



(edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_B + (R_{\theta JB} \times P_D)$$

where:

 $T_J$  = junction temperature (°C)

 $T_B$  = board temperature at the package perimeter (°C)

 $R_{\theta IB}$  = junction-to-board thermal resistance (°C/W) per JESD51-8

 $P_D$  = power dissipation in package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

## 23.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter ( $\Psi_{JT}$ ) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 $T_J$  = junction temperature (°C)

 $T_T$  = thermocouple temperature on top of package (°C)

 $\Psi_{JT}$  = thermal characterization parameter (°C/W)

 $P_D$  = power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

## 23.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

In some application environments, a heat sink is required to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case to ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$