

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Obsolete
Core Processor	PowerPC e300c2
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	Communications; QUICC Engine, Security; SEC 2.2
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8321evraddc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Electrical Characteristics

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8323E. The MPC8323E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

					-
Chara	acteristic	Symbol	Max Value	Unit	Notes
Core supply voltage		V _{DD}	-0.3 to 1.26	V	—
PLL supply voltage	AV_{DDn}	–0.3 to 1.26	V	_	
DDR1 and DDR2 DRAM I/O vol	GV _{DD}	–0.3 to 2.75 –0.3 to 1.98	V	_	
PCI, local bus, DUART, system control and power management, I ² C, SPI, MII, RMII, MII management, and JTAG I/O voltage		OV _{DD}	-0.3 to 3.6	V	—
Input voltage	DDR1/DDR2 DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2
	DDR1/DDR2 DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2
Local bus, DUART, CLKIN, system control and power management, I ² C, SPI, and JTAG signals		OV _{IN}	–0.3 to (OV _{DD} + 0.3)	V	3
	PCI	OVIN	–0.3 to (OV _{DD} + 0.3)	V	5
Storage temperature range		T _{STG}	–55 to 150	°C	_

Table 1. Absolute Maximum Ratings¹

Notes:

1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

 Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.

3. Caution: OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8323E.

7.1 DUART DC Electrical Characteristics

Table 20 provides the DC electrical characteristics for the DUART interface of the MPC8323E.

Table 20. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage OV _{DD}	V _{IL}	-0.3	0.8	V
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} – 0.2	—	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V
Input current (0 V \leq V _{IN} \leq OV _{DD}) ¹	I _{IN}	—	±5	μA

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

7.2 DUART AC Electrical Specifications

Table 21 provides the AC timing parameters for the DUART interface of the MPC8323E.

Table 21	. DUART	AC Timing	Specifications
----------	---------	-----------	----------------

Parameter	Value	Unit	Notes
Minimum baud rate	256	baud	
Maximum baud rate	> 1,000,000	baud	1
Oversample rate	16		2

Notes:

1. Actual attainable baud rate is limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Ethernet and MII Management

This section provides the AC and DC electrical characteristics for Ethernet and MII management.

8.1 Ethernet Controller (10/100 Mbps)—MII/RMII Electrical Characteristics

The electrical characteristics specified here apply to all MII (media independent interface) and RMII (reduced media independent interface), except MDIO (management data input/output) and MDC

8.2.2.1 RMII Transmit AC Timing Specifications

Table 23 provides the RMII transmit AC timing specifications.

Table 25. RMII Transmit AC Timing Specifications

At recommended operating conditions with OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Max	Unit
REF_CLK clock	t _{RMX}	_	20	_	ns
REF_CLK duty cycle	t _{RMXH} /t _{RMX}	35	_	65	%
REF_CLK to RMII data TXD[1:0], TX_EN delay	t _{RMTKHDX}	2	_	10	ns
REF_CLK data clock rise V _{IL} (min) to V _{IH} (max)	t _{RMXR}	1.0	_	4.0	ns
REF_CLK data clock fall $V_{IH}(max)$ to $V_{IL}(min)$	t _{RMXF}	1.0		4.0	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first three letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{RMTKHDX} symbolizes RMII transmit timing (RMT) for the time t_{RMX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII(RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

Figure 10 shows the RMII transmit AC timing diagram.

Figure 10. RMII Transmit AC Timing Diagram

8.2.2.2 RMII Receive AC Timing Specifications

Table 24 provides the RMII receive AC timing specifications.

Table 26. RMII Receive AC Timing Specifications

At recommended operating conditions with OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit
REF_CLK clock period	t _{RMX}	—	20	—	ns
REF_CLK duty cycle	t _{RMXH} /t _{RMX}	35	—	65	%
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK	t _{RMRDVKH}	4.0	—	—	ns
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK	t _{RMRDXKH}	2.0	—	—	ns
REF_CLK clock rise VIL(min) to VIH(max)	t _{RMXR}	1.0	—	4.0	ns

Ethernet and MII Management

Table 26. RMII Receive AC Timing Specifications (continued)

At recommended operating conditions with OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit
REF_CLK clock fall time $V_{IH}(max)$ to $V_{IL}(min)$	t _{RMXF}	1.0		4.0	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first three letters of functional block)(signal)(state)(reference)(state)(signal)(state) for outputs. For example, t_{RMRDVKH} symbolizes RMII receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{RMX} clock reference (K) going to the high (H) state or setup time. Also, t_{RMRDXKL} symbolizes RMII receive timing (RMR) with respect to the tinvalid (X) relative to the t_{RMX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII (RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 11 provides the AC test load.

Figure 11. AC Test Load

Figure 12 shows the RMII receive AC timing diagram.

Figure 12. RMII Receive AC Timing Diagram

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for MII, and RMII are specified in Section 8.1, "Ethernet Controller (10/100 Mbps)—MII/RMII Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 27.

Parameter	Symbol	Conditions		Min	Max	Unit
Supply voltage (3.3 V)	OV _{DD}	—		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	OV _{DD} = Min	2.10	OV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	OV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	-	—		—	V
Input low voltage	V _{IL}	—		—	0.80	V
Input current	I _{IN}	0 V ≤ V _{II}	$0 V \le V_{IN} \le OV_{DD}$		±5	μA

Table 27. MII Management DC Electrical Characteristics When Powered at 3.3 V

8.3.2 MII Management AC Electrical Specifications

Table 28 provides the MII management AC timing specifications.

Table 28. MII Management AC Timing Specifications

At recommended operating conditions with OV_{DD} is 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit	Notes
MDC frequency	f _{MDC}	—	2.5	—	MHz	_
MDC period	t _{MDC}	—	400	—	ns	_
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	_
MDC to MDIO delay	t _{MDKHDX}	10	—	70	ns	_
MDIO to MDC setup time	t _{MDDVKH}	5	—	—	ns	_
MDIO to MDC hold time	t _{MDDXKH}	0	—	—	ns	_
MDC rise time	t _{MDCR}	—	—	10	ns	_
MDC fall time	t _{MDHF}	—	—	10	ns	

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

JTAG

Table 31. JTAG Interface DC Electrical Characteristics (continued)
--	------------

Characteristic	Symbol	Condition	Min	Мах	Unit
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0~V \leq V_{IN} \leq OV_{DD}$	—	±5	μA

10.2 JTAG AC Electrical Characteristics

This section describes the AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the MPC8323E. Table 32 provides the JTAG AC timing specifications as defined in Figure 19 through Figure 22.

Table 32. JTAG AC Timing Specifications (Independent of CLKIN)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	
JTAG external clock cycle time	t _{JTG}	30	_	ns	_
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	11	—	ns	—
JTAG external clock rise and fall times	t _{JTGR} , t _{JTGF}	0	2	ns	—
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4		ns	4
Input hold times: Boundary-scan data TMS, TDI	^t jtdxkh t _{jtixkh}	10 10		ns	4
Valid times: Boundary-scan data TDO	tjtkldv tjtklov	2 2	15 15	ns	5
Output hold times: Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	2 2	_	ns	5

Table 32. JTAG AC Timing Specifications (Independent of CLKIN)¹ (continued)

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	2 2	19 9	ns	5, 6 6

Notes:

1. All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50- Ω load (see Figure 14). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

- 2. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K)} going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.

4. Non-JTAG signal input timing with respect to t_{TCLK}.

- 5. Non-JTAG signal output timing with respect to t_{TCLK}.
- 6. Guaranteed by design and characterization.

Figure 18 provides the AC test load for TDO and the boundary-scan outputs of the MPC8323E.

Figure 18. AC Test Load for the JTAG Interface

Figure 19 provides the JTAG clock input timing diagram.

Figure 19. JTAG Clock Input Timing Diagram

Figure 20 provides the TRST timing diagram.

PCI

Table 37 shows the PCI AC timing specifications at 33 MHz.

	Table 37.	PCI AC	Timing	Specifications	at 33 MHz
--	-----------	--------	--------	----------------	-----------

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	^t PCKHOV		11	ns	2
Output hold from clock	t _{PCKHOX}	2		ns	2
Clock to output high impedence	t _{PCKHOZ}	_	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	-	ns	2, 4
Input hold from clock	t _{PCIXKH}	0	_	ns	2, 4

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

Figure 25 provides the AC test load for PCI.

Figure 25. PCI AC Test Load

Figure 26 shows the PCI input AC timing conditions.

Figure 26. PCI Input AC Timing Measurement Conditions

TDM/SI

Table 46. TDM	SI DC Electrica	Characteristics	(continued)
---------------	-----------------	-----------------	-------------

Characteristic	Symbol	Condition	Min	Мах	Unit
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0 \ V \le V_{IN} \le OV_{DD}$	—	±5	μA

17.2 TDM/SI AC Timing Specifications

Table 47 provides the TDM/SI input and output AC timing specifications.

Table 47. TDM/SI AC Timing Specifications¹

Characteristic	Symbol ²	Min	Мах	Unit
TDM/SI outputs—External clock delay	t _{SEKHOV}	2	12	ns
TDM/SI outputs—External clock High Impedance	t _{SEKHOX}	2	10	ns
TDM/SI inputs—External clock input setup time	t _{SEIVKH}	5		ns
TDM/SI inputs—External clock input hold time	t _{SEIXKH}	2	_	ns

Notes:

1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

2. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{SEKHOX} symbolizes the TDM/SI outputs external timing (SE) for the time t_{TDM/SI} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).}

Figure 33 provides the AC test load for the TDM/SI.

Figure 33. TDM/SI AC Test Load

Figure 34 represents the AC timing from Table 47. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 34. TDM/SI AC Timing (External Clock) Diagram

Figure 35 provides the AC test load for the UTOPIA.

Figure 36 and Figure 37 represent the AC timing from Table 49. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 36 shows the UTOPIA timing with external clock.

Figure 36. UTOPIA AC Timing (External Clock) Diagram

Figure 37 shows the UTOPIA timing with internal clock.

Figure 37. UTOPIA AC Timing (Internal Clock) Diagram

19 HDLC, BISYNC, Transparent, and Synchronous UART

This section describes the DC and AC electrical specifications for the high level data link control (HDLC), BISYNC, transparent, and synchronous UART of the MPC8323E.

19.1 HDLC, BISYNC, Transparent, and Synchronous UART DC Electrical Characteristics

Table 50 provides the DC electrical characteristics for the MPC8323E HDLC, BISYNC, transparent, and synchronous UART protocols.

Table 50. HDLC, BISYN	C, Transparent	, and Synchronous	UART DC Electrica	I Characteristics
-----------------------	----------------	-------------------	-------------------	-------------------

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -2.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.5	V
Input high voltage	V _{IH}	_	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	$0 V \le V_{IN} \le OV_{DD}$	—	±5	μA

19.2 HDLC, BISYNC, Transparent, and Synchronous UART AC Timing Specifications

Table 51 provides the input and output AC timing specifications for HDLC, BISYNC, and transparent UART protocols.

Characteristic	Symbol ²	Min	Мах	Unit
Outputs—Internal clock delay	t _{HIKHOV}	0	5.5	ns
Outputs—External clock delay	t _{HEKHOV}	1	10	ns
Outputs—Internal clock high impedance	^t нікнох	0	5.5	ns
Outputs—External clock high impedance	t _{HEKHOX}	1	8	ns
Inputs—Internal clock input setup time	t _{ниvкн}	6	—	ns
Inputs—External clock input setup time	t _{HEIVKH}	4	—	ns
Inputs—Internal clock input hold time	t _{нихкн}	0	—	ns

Table 51. HDLC, BISYNC, and Transparent UART AC Timing Specifications¹

HDLC, BISYNC, Transparent, and Synchronous UART

Table 51. HDLC, BISYNC, and Transparent UART AC Timing Specifications¹ (continued)

Characteristic	Symbol ²	Min	Мах	Unit
Inputs—External clock input hold time	t _{HEIXKH}	1	—	ns

Notes:

1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

2. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{HIKHOX} symbolizes the outputs internal timing (HI) for the time t_{serial} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).}

Table 52. Synchronous UART AC Timing Specifications¹

Characteristic	Symbol ²	Min	Мах	Unit
Outputs—Internal clock delay	t _{UAIKHOV}	0	5.5	ns
Outputs—External clock delay	t _{UAEKHOV}	1	10	ns
Outputs—Internal clock high impedance	t _{UAIKHOX}	0	5.5	ns
Outputs—External clock high impedance	t _{UAEKHOX}	1	8	ns
Inputs—Internal clock input setup time	t _{UAIIVKH}	6	—	ns
Inputs—External clock input setup time	t _{UAEIVKH}	4	—	ns
Inputs—Internal clock input hold time	t _{UAIIXKH}	0	—	ns
Inputs—External clock input hold time	t _{UAEIXKH}	1	—	ns

Notes:

- 1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.
- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{UAIKHOX} symbolizes the outputs internal timing (UAI) for the time t_{serial} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).
 </sub>

Figure 38 provides the AC test load.

Figure 38. AC Test Load

Figure 39 and Figure 40 represent the AC timing from Table 51. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 39 shows the timing with external clock.

Figure 40 shows the timing with internal clock.

Figure 40. AC Timing (Internal Clock) Diagram

USB

20 USB

This section provides the AC and DC electrical specifications for the USB interface of the MPC8323E.

20.1 USB DC Electrical Characteristics

Table 53 provides the DC electrical characteristics for the USB interface.

Table 53. USB DC Electrical Characteristics¹

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} – 0.2	—	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V
Input current	I _{IN}	-	±5	μA

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

20.2 USB AC Electrical Specifications

Table 54 describes the general timing parameters of the USB interface of the MPC8323E.

Table 54. 03D General Tilling Parameters	Table 54.	USB	General	Timing	Parameters
--	-----------	-----	---------	--------	------------

Parameter	Symbol ¹	Min	Мах	Unit	Notes
USB clock cycle time	t _{USCK}	20.83	—	ns	Full speed 48 MHz
USB clock cycle time	t _{USCK}	166.67	—	ns	Low speed 6 MHz
Skew between TXP and TXN	t _{USTSPN}	_	5	ns	—
Skew among RXP, RXN, and RXD	t _{USRSPND}	_	10	ns	Full speed transitions
Skew among RXP, RXN, and RXD	tUSRPND		100	ns	Low speed transitions

Notes:

 The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(state)(signal)} for receive signals and t_{(first two letters of functional block)(state)(signal)} for transmit signals. For example, t_{USRSPND} symbolizes USB timing (US) for the USB receive signals skew (RS) among RXP, RXN, and RXD (PND). Also, t_{USTSPN} symbolizes USB timing (US) for the USB transmit signals skew (TS) between TXP and TXN (PN).

2. Skew measurements are done at $OV_{DD}/2$ of the rising or falling edge of the signals.

Figure 41 provide the AC test load for the USB.

Figure 41. USB AC Test Load

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MEMC_MCKE	AD14	0	GV _{DD}	3
MEMC_MCK	AF14	0	GV _{DD}	—
MEMC_MCK	AE14	0	GV _{DD}	—
MEMC_MODT	AF11	0	GV _{DD}	—
Local B	us Controller Interface			
LAD0	N25	IO	OV _{DD}	7
LAD1	P26	IO	OV _{DD}	7
LAD2	P25	IO	OV _{DD}	7
LAD3	R26	IO	OV _{DD}	7
LAD4	R25	IO	OV _{DD}	7
LAD5	T26	IO	OV _{DD}	7
LAD6	T25	IO	OV _{DD}	7
LAD7	U25	IO	OV _{DD}	7
LAD8	M24	IO	OV _{DD}	7
LAD9	N24	IO	OV _{DD}	7
LAD10	P24	IO	OV _{DD}	7
LAD11	R24	IO	OV _{DD}	7
LAD12	T24	IO	OV _{DD}	7
LAD13	U24	IO	OV _{DD}	7
LAD14	U26	IO	OV _{DD}	7
LAD15	V26	IO	OV _{DD}	7
LA16	K25	0	OV _{DD}	7
LA17	L25	0	OV _{DD}	7
LA18	L26	0	OV _{DD}	7
LA19	L24	0	OV _{DD}	7
LA20	M26	0	OV _{DD}	7
LA21	M25	0	OV _{DD}	7
LA22	N26	0	OV _{DD}	7
LA23	AC24	0	OV _{DD}	7
LA24	AC25	0	OV _{DD}	7
LA25	AB23	0	OV _{DD}	7
LCS0	AB24	0	OV _{DD}	4

Table 55. MPC8323E PBGA Pinout Listing (continued)

Package and Pin Listings

Table 55. MPC8323E PBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
Power	and Ground Supplies			
AV _{DD} 1	P3	I	AV _{DD} 1	_
AV _{DD} 2	AA1	I	AV _{DD} 2	_
AV _{DD} 3	AB15	I	AV _{DD} 3	_
AV _{DD} 4	C24	I	AV _{DD} 4	_
MVREF1	AB8	I	DDR reference voltage	_
MVREF2	AB17	I	DDR reference voltage	_
	PCI			
PCI_INTA /IRQ_OUT	AF2	0	OV _{DD}	2
PCI_RESET_OUT	AE2	0	OV _{DD}	_
PCI_AD0/MSRCID0 (DDR ID)	L1	IO	OV _{DD}	_
PCI_AD1/MSRCID1 (DDR ID)	L2	IO	OV _{DD}	_
PCI_AD2/MSRCID2 (DDR ID)	M1	IO	OV _{DD}	_
PCI_AD3/MSRCID3 (DDR ID)	M2	IO	OV _{DD}	_
PCI_AD4/MSRCID4 (DDR ID)	L3	IO	OV _{DD}	_
PCI_AD5/MDVAL (DDR ID)	N1	Ю	OV _{DD}	
PCI_AD6	N2	Ю	OV _{DD}	
PCI_AD7	МЗ	Ю	OV _{DD}	
PCI_AD8	P1	Ю	OV _{DD}	
PCI_AD9	R1	Ю	OV_{DD}	
PCI_AD10	N3	Ю	OV _{DD}	
PCI_AD11	N4	Ю	OV _{DD}	
PCI_AD12	T1	Ю	OV _{DD}	
PCI_AD13	R2	Ю	OV _{DD}	
PCI_AD14/ECID_TMODE_IN	T2	Ю	OV _{DD}	
PCI_AD15	U1	IO	OV _{DD}	_
PCI_AD16	Y2	IO	OV _{DD}	
PCI_AD17	¥1	IO	OV _{DD}	_
PCI_AD18	AA2	IO	OV _{DD}	
PCI_AD19	AB1	IO	OV _{DD}	_

Package and Pin Listings

Table 55. MPC8323E PBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	CE/GPIO			
GPIO_PA0/SER1_TXD[0]/TDMA_TXD[0]/USBTXN	G3	IO	OV _{DD}	_
GPIO_PA1/SER1_TXD[1]/TDMA_TXD[1]/USBTXP	F3	IO	OV _{DD}	_
GPIO_PA2/SER1_TXD[2]/TDMA_TXD[2]	F2	IO	OV _{DD}	_
GPIO_PA3/SER1_TXD[3]/TDMA_TXD[3]	E3	IO	OV _{DD}	_
GPIO_PA4/SER1_RXD[0]/TDMA_RXD[0]/USBRXP	E2	IO	OV _{DD}	_
GPIO_PA5/SER1_RXD[1]/TDMA_RXD[1]/USBRXN	E1	IO	OV _{DD}	_
GPIO_PA6/SER1_RXD[2]/TDMA_RXD[2]/USBRXD	D3	IO	OV _{DD}	_
GPIO_PA7/SER1_RXD[3]/TDMA_RXD[3]	D2	IO	OV _{DD}	_
GPIO_PA8/SER1_CD/TDMA_REQ/USBOE	D1	IO	OV _{DD}	_
GPIO_PA9 TDMA_CLKO	C3	IO	OV _{DD}	
GPIO_PA10/SER1_CTS/TDMA_RSYNC	C2	IO	OV _{DD}	
GPIO_PA11/TDMA_STROBE	C1	IO	OV _{DD}	
GPIO_PA12/SER1_RTS/TDMA_TSYNC	B1	IO	OV _{DD}	
GPIO_PA13/CLK9/BRGO9	H4	IO	OV _{DD}	
GPIO_PA14/CLK11/BRGO10	G4	IO	OV _{DD}	
GPIO_PA15/BRGO7	J4	IO	OV _{DD}	
GPIO_PA16/ LA0 (LBIU)	K24	IO	OV _{DD}	
GPIO_PA17/ LA1 (LBIU)	K26	IO	OV _{DD}	
GPIO_PA18/Enet2_TXD[0]/SER2_TXD[0]/ TDMB_TXD[0]/LA2 (LBIU)	G25	IO	OV _{DD}	_
GPIO_PA19/Enet2_TXD[1]/SER2_TXD[1]/ TDMB_TXD[1]/LA3 (LBIU)	G26	IO	OV _{DD}	_
GPIO_PA20/Enet2_TXD[2]/SER2_TXD[2]/ TDMB_TXD[2]/LA4 (LBIU)	H25	IO	OV _{DD}	_
GPIO_PA21/Enet2_TXD[3]/SER2_TXD[3]/ TDMB_TXD[3]/LA5 (LBIU)	H26	IO	OV _{DD}	_
GPIO_PA22/Enet2_RXD[0]/SER2_RXD[0]/ TDMB_RXD[0]/LA6 (LBIU)	C25	IO	OV _{DD}	
GPIO_PA23/Enet2_RXD[1]/SER2_RXD[1]/ TDMB_RXD[1]/LA7 (LBIU)	C26	IO	OV _{DD}	_
GPIO_PA24/Enet2_RXD[2]/SER2_RXD[2]/ TDMB_RXD[2]/LA8 (LBIU)	D25	IO	OV _{DD}	—
GPIO_PA25/Enet2_RXD[3]/SER2_RXD[3]/ TDMB_RXD[3]/LA9 (LBIU)	D26	IO	OV _{DD}	—

22.5 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). Table 60 shows the encodings for RCWL[COREPLL]. COREPLL values not listed in Table 60 should be considered reserved.

RCWL[COREPLL]		aara alku aab alk Batia		
0-1	2-5	6	COTE_CIK : CSD_CIK HALIO	VCO Divider
nn	0000	n	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)
00	0001	0	1:1	÷2
01	0001	0	1:1	÷4
10	0001	0	1:1	÷8
11	0001	0	1:1	÷8
00	0001	1	1.5:1	÷2
01	0001	1	1.5:1	÷4
10	0001	1	1.5:1	÷8
11	0001	1	1.5:1	÷8
00	0010	0	2:1	÷2
01	0010	0	2:1	÷4
10	0010	0	2:1	÷8
11	0010	0	2:1	÷8
00	0010	1	2.5:1	÷2
01	0010	1	2.5:1	÷4
10	0010	1	2.5:1	÷8
11	0010	1	2.5:1	÷8
00	0011	0	3:1	÷2
01	0011	0	3:1	÷4
10	0011	0	3:1	÷8
11	0011	0	3:1	÷8

Table 60. e300 Core PLL Configuration

NOTE

Core VCO frequency = core frequency \times VCO divider

VCO divider (RCWL[COREPLL[0:1]]) must be set properly so that the core VCO frequency is in the range of 500–800 MHz.

Table 64. Package Thermal Characteristics for PBGA (continued)

Characteristic	Board type	Symbol	Value	Unit	Notes
Junction-to-package top	Natural convection	Ψ_{JT}	2	°C/W	6

Notes:

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

23.2 Thermal Management Information

For the following sections, $P_D = (V_{DD} \times I_{DD}) + P_{I/O}$, where $P_{I/O}$ is the power dissipation of the I/O drivers.

23.2.1 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

 $T_J = T_A + (R_{\theta JA} \times P_D)$

where:

 T_J = junction temperature (°C)

 T_A = ambient temperature for the package (°C)

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. As a general statement, the value obtained on a single layer board is appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity $T_I - T_A$) are possible.

23.2.2 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal resistance. The thermal performance of any component is strongly dependent on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter

Document Revision History

Table 67. Document Revision History

Rev. No.	Date	Substantive Change(s)
2	4/2008	 Removed Figures 2 and 3 overshoot and undershoot voltage specs from Section 2.1.2, "Power Supply Voltage Specification," and footnotes 4 and 5 from Table 1. Corrected QUIESCE signal to be an output signal in Table 55. Added column for GVDD (1.8 V) - DDR2 - to Table 6 with 0.212-W typical power dissipation. Added Figure 4 DDR input timing diagram. Removed CE_TRB* and CE_PIO* signals from Table 55. Added three local bus AC specifications to Table 30 (duty cycle, jitter, delay between input clock and local bus clock). Added row in Table 2 stating junction temperature range of 0 to 105•C. Modified Section 2.2, "Power Sequencing," to include PORESET requirement.
1	6/2007	Correction to descriptive text in Section 2.2.
0	6/2007	Initial release.