

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300c2
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	333MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8323cvrafdc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Security Engine

The security engine is optimized to handle all the algorithms associated with IPSec, IEEE 802.11iTM standard, and iSCSI. The security engine contains one crypto-channel, a controller, and a set of crypto execution units (EUs). The execution units are:

- Data encryption standard execution unit (DEU), supporting DES and 3DES
- Advanced encryption standard unit (AESU), supporting AES
- Message digest execution unit (MDEU), supporting MD5, SHA1, SHA-256, and HMAC with any algorithm
- One crypto-channel supporting multi-command descriptor chains

1.4 DDR Memory Controller

The MPC8323E DDR1/DDR2 memory controller includes the following features:

- Single 32-bit interface supporting both DDR1 and DDR2 SDRAM
- Support for up to 266-MHz data rate
- Support for two ×16 devices
- Support for up to 16 simultaneous open pages
- Supports auto refresh
- On-the-fly power management using CKE
- 1.8-/2.5-V SSTL2 compatible I/O
- Support for 1 chip select only
- FCRAM, ECC, hardware/software calibration, bit deskew, QIN stage, or atomic logic are not supported.

1.5 PCI Controller

The MPC8323E PCI controller includes the following features:

- PCI Specification Revision 2.3 compatible
- Single 32-bit data PCI interface operates up to 66 MHz
- PCI 3.3-V compatible (not 5-V compatible)
- Support for host and agent modes
- On-chip arbitration, supporting three external masters on PCI
- Selectable hardware-enforced coherency

1.6 Programmable Interrupt Controller (PIC)

The programmable interrupt controller (PIC) implements the necessary functions to provide a flexible solution for general-purpose interrupt control. The PIC programming model is compatible with the MPC8260 interrupt controller, and it supports 8 external and 35 internal discrete interrupt sources. Interrupts can also be redirected to an external interrupt controller.

Electrical Characteristics

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8323E. The MPC8323E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

					-
Chara	acteristic	Symbol	Max Value	Unit	Notes
Core supply voltage		V _{DD}	-0.3 to 1.26	V	—
PLL supply voltage		AV_{DDn}	–0.3 to 1.26	V	_
DDR1 and DDR2 DRAM I/O voltage		GV _{DD}	–0.3 to 2.75 –0.3 to 1.98	V	_
PCI, local bus, DUART, system control and power management, I^2C , SPI, MII, RMII, MII management, and JTAG I/O voltage		OV _{DD}	-0.3 to 3.6	V	—
Input voltage	DDR1/DDR2 DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2
	DDR1/DDR2 DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2
	Local bus, DUART, CLKIN, system control and power management, I ² C, SPI, and JTAG signals	OV _{IN}	–0.3 to (OV _{DD} + 0.3)	V	3
	PCI	OVIN	–0.3 to (OV _{DD} + 0.3)	V	5
Storage temperature range		T _{STG}	–55 to 150	°C	_

Table 1. Absolute Maximum Ratings¹

Notes:

1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

 Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.

3. Caution: OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.

Parameter/Condition	Min	Max	Unit	Notes
HRESET/SRESET assertion (output)	512	_	t _{PCI_SYNC_IN}	1
HRESET negation to SRESET negation (output)	16		t _{PCI_SYNC_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8323E is in PCI host mode	4	_	^t CLKIN	2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8323E is in PCI agent mode	4	_	^t PCI_SYNC_IN	1
Input hold time for POR config signals with respect to negation of HRESET	0	_	ns	—
Time for the MPC8323E to turn off POR configuration signals with respect to the assertion of $\overrightarrow{\text{HRESET}}$	_	4	ns	3
Time for the MPC8323E to turn on POR configuration signals with respect to the negation of HRESET	1	_	^t PCI_SYNC_IN	1, 3

Table 9. RESET Initialization Timing Specifications (continued)

Notes:

1. t_{PCI_SYNC_IN} is the clock period of the input clock applied to PCI_SYNC_IN. When the MPC8323E is In PCI host mode the primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. See the MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual for more details.

 t_{CLKIN} is the clock period of the input clock applied to CLKIN. It is only valid when the MPC8323E is in PCI host mode. See the MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual for more details.

3. POR configuration signals consists of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.

Table 10 provides the PLL lock times.

Table 10. PLL Lock Times

Parameter/Condition	Min	Мах	Unit	Notes
PLL lock times		100	μs	_

5.1 Reset Signals DC Electrical Characteristics

Table 11 provides the DC electrical characteristics for the MPC8323E reset signals mentioned in Table 9.

Table 11. Reset Signals DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit	Notes
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	—	V	1
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V	1
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V	1
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V	1
Input low voltage	V _{IL}	_	-0.3	0.8	V	_

DDR1 and DDR2 SDRAM

Figure 5 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

Figure 5. Timing Diagram for t_{DDKHMH}

Figure 6 shows the DDR1 and DDR2 SDRAM output timing diagram.

Figure 6. DDR1 and DDR2 SDRAM Output Timing Diagram

Table 23. MII Transmit AC Timing Specifications (continued)

At recommended operating conditions with OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Max	Unit
TX_CLK data clock fall time	t _{MTXF}	1.0	_	4.0	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 7 shows the MII transmit AC timing diagram.

Figure 7. MII Transmit AC Timing Diagram

8.2.1.2 MII Receive AC Timing Specifications

Table 24 provides the MII receive AC timing specifications.

Table 24. MII Receive AC Timing Specifications

At recommended operating conditions with OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise time	t _{MRXR}	1.0	—	4.0	ns

Figure 15 through Figure 17 show the local bus signals.

11 I²C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8323E.

11.1 I²C DC Electrical Characteristics

Table 33 provides the DC electrical characteristics for the I²C interface of the MPC8323E.

Table 33. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V \pm 10%.

Parameter	Symbol	Min	Мах	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	
Input low voltage level	V _{IL}	-0.3	$0.3\times\text{OV}_{\text{DD}}$	V	_
Low level output voltage	V _{OL}	0	0.4	V	1
Output fall time from $V_{IH}(min)$ to $V_{IL}(max)$ with a bus capacitance from 10 to 400 pF	^t I2KLKV	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	3
Capacitance for each I/O pin	Cl	_	10	pF	_
Input current (0 V \leq V _{IN} \leq OV _{DD})	I _{IN}	—	±5	μA	4

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. C_B = capacitance of one bus line in pF.

3. Refer to the MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual for information on the digital filter used.

4. I/O pins obstructs the SDA and SCL lines if $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ is switched off.

11.2 I²C AC Electrical Specifications

Table 34 provides the AC timing parameters for the I^2C interface of the MPC8323E.

Table 34. I²C AC Electrical Specifications

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 33).

Parameter		Min	Мах	Unit
SCL clock frequency		0	400	kHz
Low period of the SCL clock		1.3	—	μs
High period of the SCL clock		0.6	—	μs
Setup time for a repeated START condition		0.6	—	μs
Hold time (repeated) START condition (after this period, the first clock pulse is generated)		0.6	_	μs
Data setup time		100	—	ns
Data hold time: CBUS compatible masters I ² C bus devices	t _{i2DXKL}	$\overline{0^2}$	 0.9 ³	μs

12 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8323E.

12.1 PCI DC Electrical Characteristics

Table 35 provides the DC electrical characteristics for the PCI interface of the MPC8323E.

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	$V_{OUT} \le V_{OL}$ (max)	-0.3	0.8	V
High-level output voltage	V _{OH}	OV _{DD} = min, I _{OH} = −100 μA	OV _{DD} – 0.2	_	V
Low-level output voltage	V _{OL}	OV _{DD} = min, I _{OL} = 100 μA	_	0.2	V
Input current	I _{IN}	$0 V \le V_{IN} \le OV_{DD}$	_	±5	μA

Table 35. PCI DC Electrical Characteristics^{1,2}

Notes:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

2. Ranges listed do not meet the full range of the DC specifications of the PCI 2.3 Local Bus Specifications.

12.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the MPC8323E. Note that the PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the MPC8323E is configured as a host or agent device. Table 36 shows the PCI AC timing specifications at 66 MHz.

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	t _{PCKHOV}	_	6.0	ns	2
Output hold from clock	t _{PCKHOX}	1	_	ns	2
Clock to output high impedence	t _{PCKHOZ}	_	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	_	ns	2, 4
Input hold from clock	t _{PCIXKH}	0	—	ns	2, 4

Table 36. PCI AC Timing Specifications at 66 MHz

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

Figure 31 and Figure 32 represent the AC timing from Table 45. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 31 shows the SPI timing in slave mode (external clock).

Note: The clock edge is selectable on SPI.

Figure 31. SPI AC Timing in Slave Mode (External Clock) Diagram

Figure 32 shows the SPI timing in master mode (internal clock).

Note: The clock edge is selectable on SPI.

Figure 32. SPI AC Timing in Master Mode (Internal Clock) Diagram

17 TDM/SI

This section describes the DC and AC electrical specifications for the time-division-multiplexed and serial interface of the MPC8323E.

17.1 TDM/SI DC Electrical Characteristics

Table 46 provides the DC electrical characteristics for the MPC8323E TDM/SI.

Characteristic	Symbol	Condition	Min	Max	Unit
Output high voltage	V _{OH}	I _{OH} = -2.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.5	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V

Table 46. TDM/SI DC Electrical Characteristics

Figure 35 provides the AC test load for the UTOPIA.

Figure 36 and Figure 37 represent the AC timing from Table 49. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 36 shows the UTOPIA timing with external clock.

Figure 36. UTOPIA AC Timing (External Clock) Diagram

Figure 37 shows the UTOPIA timing with internal clock.

Figure 37. UTOPIA AC Timing (Internal Clock) Diagram

19 HDLC, BISYNC, Transparent, and Synchronous UART

This section describes the DC and AC electrical specifications for the high level data link control (HDLC), BISYNC, transparent, and synchronous UART of the MPC8323E.

19.1 HDLC, BISYNC, Transparent, and Synchronous UART DC Electrical Characteristics

Table 50 provides the DC electrical characteristics for the MPC8323E HDLC, BISYNC, transparent, and synchronous UART protocols.

Table 50. HDLC, BISYN	C, Transparent	t, and Synchronous	SUART DC Electrica	I Characteristics
-----------------------	----------------	--------------------	--------------------	-------------------

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -2.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.5	V
Input high voltage	V _{IH}	_	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	$0 V \le V_{IN} \le OV_{DD}$	—	±5	μA

19.2 HDLC, BISYNC, Transparent, and Synchronous UART AC Timing Specifications

Table 51 provides the input and output AC timing specifications for HDLC, BISYNC, and transparent UART protocols.

Characteristic	Symbol ²	Min	Мах	Unit
Outputs—Internal clock delay	t _{HIKHOV}	0	5.5	ns
Outputs—External clock delay	t _{HEKHOV}	1	10	ns
Outputs—Internal clock high impedance	^t нікнох	0	5.5	ns
Outputs—External clock high impedance	t _{HEKHOX}	1	8	ns
Inputs—Internal clock input setup time	t _{ниvкн}	6	—	ns
Inputs—External clock input setup time	t _{HEIVKH}	4	—	ns
Inputs—Internal clock input hold time	t _{нихкн}	0	—	ns

Table 51. HDLC, BISYNC, and Transparent UART AC Timing Specifications¹

Figure 39 shows the timing with external clock.

Figure 40 shows the timing with internal clock.

Figure 40. AC Timing (Internal Clock) Diagram

21 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8323E is available in a thermally enhanced Plastic Ball Grid Array (PBGA); see Section 21.1, "Package Parameters for the MPC8323E PBGA," and Section 21.2, "Mechanical Dimensions of the MPC8323E PBGA," for information on the PBGA.

21.1 Package Parameters for the MPC8323E PBGA

The package parameters are as provided in the following list. The package type is $27 \text{ mm} \times 27 \text{ mm}$, 516 PBGA.

Package outline	$27 \text{ mm} \times 27 \text{ mm}$
Interconnects	516
Pitch	1.00 mm
Module height (typical)	2.25 mm
Solder Balls	62 Sn/36 Pb/2 Ag (ZQ package) 95.5 Sn/0.5 Cu/4Ag (VR package)
Ball diameter (typical)	0.6 mm

21.2 Mechanical Dimensions of the MPC8323E PBGA

Figure 42 shows the mechanical dimensions and bottom surface nomenclature of the MPC8323E, 516-PBGA package.

Package and Pin Listings

Table 55. MPC8323E PBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	CE/GPIO			
GPIO_PA0/SER1_TXD[0]/TDMA_TXD[0]/USBTXN	G3	IO	OV _{DD}	_
GPIO_PA1/SER1_TXD[1]/TDMA_TXD[1]/USBTXP	F3	IO	OV _{DD}	_
GPIO_PA2/SER1_TXD[2]/TDMA_TXD[2]	F2	IO	OV _{DD}	_
GPIO_PA3/SER1_TXD[3]/TDMA_TXD[3]	E3	IO	OV _{DD}	_
GPIO_PA4/SER1_RXD[0]/TDMA_RXD[0]/USBRXP	E2	IO	OV _{DD}	_
GPIO_PA5/SER1_RXD[1]/TDMA_RXD[1]/USBRXN	E1	IO	OV _{DD}	_
GPIO_PA6/SER1_RXD[2]/TDMA_RXD[2]/USBRXD	D3	IO	OV _{DD}	_
GPIO_PA7/SER1_RXD[3]/TDMA_RXD[3]	D2	IO	OV _{DD}	_
GPIO_PA8/SER1_CD/TDMA_REQ/USBOE	D1	IO	OV _{DD}	_
GPIO_PA9 TDMA_CLKO	C3	IO	OV _{DD}	
GPIO_PA10/SER1_CTS/TDMA_RSYNC	C2	IO	OV _{DD}	
GPIO_PA11/TDMA_STROBE	C1	IO	OV _{DD}	
GPIO_PA12/SER1_RTS/TDMA_TSYNC	B1	IO	OV _{DD}	
GPIO_PA13/CLK9/BRGO9	H4	IO	OV _{DD}	
GPIO_PA14/CLK11/BRGO10	G4	IO	OV _{DD}	
GPIO_PA15/BRGO7	J4	IO	OV _{DD}	
GPIO_PA16/ LA0 (LBIU)	K24	IO	OV _{DD}	
GPIO_PA17/ LA1 (LBIU)	K26	IO	OV _{DD}	
GPIO_PA18/Enet2_TXD[0]/SER2_TXD[0]/ TDMB_TXD[0]/LA2 (LBIU)	G25	IO	OV _{DD}	_
GPIO_PA19/Enet2_TXD[1]/SER2_TXD[1]/ TDMB_TXD[1]/LA3 (LBIU)	G26	IO	OV _{DD}	_
GPIO_PA20/Enet2_TXD[2]/SER2_TXD[2]/ TDMB_TXD[2]/LA4 (LBIU)	H25	IO	OV _{DD}	_
GPIO_PA21/Enet2_TXD[3]/SER2_TXD[3]/ TDMB_TXD[3]/LA5 (LBIU)	H26	IO	OV _{DD}	_
GPIO_PA22/Enet2_RXD[0]/SER2_RXD[0]/ TDMB_RXD[0]/LA6 (LBIU)	C25	IO	OV _{DD}	
GPIO_PA23/Enet2_RXD[1]/SER2_RXD[1]/ TDMB_RXD[1]/LA7 (LBIU)	C26	IO	OV _{DD}	_
GPIO_PA24/Enet2_RXD[2]/SER2_RXD[2]/ TDMB_RXD[2]/LA8 (LBIU)	D25	IO	OV _{DD}	—
GPIO_PA25/Enet2_RXD[3]/SER2_RXD[3]/ TDMB_RXD[3]/LA9 (LBIU)	D26	IO	OV _{DD}	—

Clocking

22 Clocking

Figure 43 shows the internal distribution of clocks within the MPC8323E.

Figure 43. MPC8323E Clock Subsystem

The primary clock source for the MPC8323E can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode, respectively.

22.1 Clocking in PCI Host Mode

When the MPC8323E is configured as a PCI host device (RCWH[PCIHOST] = 1), CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (\div 2) and the PCI_SYNC_OUT and PCI_CLK_OUT multiplexors. The CFG_CLKIN_DIV configuration input selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, with equal delay to all PCI agent devices in the system.

22.1.1 PCI Clock Outputs (PCI_CLK_OUT[0:2])

When the MPC8323E is configured as a PCI host, it provides three separate clock output signals, PCI_CLK_OUT[0:2], for external PCI agents.

When the device comes out of reset, the PCI clock outputs are disabled and are actively driven to a steady low state. Each of the individual clock outputs can be enabled (enable toggling of the clock) by setting its corresponding OCCR[PCICOEn] bit. All output clocks are phase-aligned to each other.

22.2 Clocking in PCI Agent Mode

When the MPC8323E is configured as a PCI agent device, PCI_CLK is the primary input clock. In agent mode, the CLKIN signal should be tied to GND, and the clock output signals, PCI_CLK_OUT*n* and PCI_SYNC_OUT, are not used.

22.3 System Clock Domains

As shown in Figure 43, the primary clock input (frequency) is multiplied up by the system phase-locked loop (PLL) and the clock unit to create three major clock domains:

- The coherent system bus clock (*csb_clk*)
- The QUICC Engine clock (*ce_clk*)
- The internal clock for the DDR controller (*ddr_clk*)
- The internal clock for the local bus controller (*lb_clk*)

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

 $csb_clk = [PCI_SYNC_IN \times (1 + \sim \overline{CFG_CLKIN_DIV})] \times SPMF$

In PCI host mode, PCI_SYNC_IN \times (1 + $\sim \overline{CFG}_{CLKIN}_{DIV}$) is the CLKIN frequency.

The *csb_clk* serves as the clock input to the e300c2 core. A second PLL inside the core multiplies up the *csb_clk* frequency to create the internal clock for the core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL) which is loaded at power-on reset or by one of the hard-coded reset options. See the "Reset Configuration" section in the *MPC8323E PowerQUICC II Pro Communications Processor Reference Manual* for more information.

Clocking

The *ce_clk* frequency is determined by the QUICC Engine PLL multiplication factor (RCWL[CEPMF) and the QUICC Engine PLL division factor (RCWL[CEPDF]) according to the following equation:

When CLKIN is the primary input clock,

 $ce_clk = (primary clock input \times CEPMF) \div (1 + CEPDF)$

When PCI_CLK is the primary input clock,

ce_clk = [primary clock input × CEPMF × $(1 + \sim CFG_CLKIN_DIV)$] ÷ (1 + CEPDF)

See the "QUICC Engine PLL Multiplication Factor" section and the "QUICC Engine PLL Division Factor" section in the *MPC8323E PowerQUICC II Pro Communications Processor Reference Manual* for more information.

The DDR SDRAM memory controller operates with a frequency equal to twice the frequency of csb_clk . Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the same frequency as ddr_clk .

The local bus memory controller operates with a frequency equal to the frequency of *csb_clk*. Note that *lbc_clk* is not the external local bus frequency; *lbc_clk* passes through the LBC clock divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LBC clock divider ratio is controlled by LCRR[CLKDIV]. See the "LBC Bus Clock and Clock Ratios" section in the *MPC8323E PowerQUICC II Pro Communications Processor Reference Manual* for more information.

In addition, some of the internal units may be required to be shut off or operate at lower frequency than the *csb_clk* frequency. These units have a default clock ratio that can be configured by a memory mapped register after the device comes out of reset. Table 56 specifies which units have a configurable clock frequency. Refer to the "System Clock Control Register (SCCR)" section in the *MPC8323E PowerQUICC II Pro Communications Processor Reference Manual* for a detailed description.

Table 56. Configurable Clock Units

Unit	Default Frequency	Options
Security core, I2C, SAP, TPR	csb_clk	Off, csb_clk/2, csb_clk/3
PCI and DMA complex	csb_clk	Off, csb_clk

NOTE

Setting the clock ratio of these units must be performed prior to any access to them.

Table 57 provides the operating frequencies for the 8323E PBGA under recommended operating conditions (see Table 2).

Table 57. Operating Frequencies for PBGA

Characteristic ¹	Max Operating Frequency	Unit
e300 core frequency (<i>core_clk</i>)	333	MHz
Coherent system bus frequency (<i>csb_clk</i>)	133	MHz
QUICC Engine frequency (<i>ce_clk</i>)	200	MHz

22.7 Suggested PLL Configurations

To simplify the PLL configurations, the MPC8323E might be separated into two clock domains. The first domain contain the CSB PLL and the core PLL. The core PLL is connected serially to the CSB PLL, and has the csb_clk as its input clock. The second clock domain has the QUICC Engine PLL. The clock domains are independent, and each of their PLLs are configured separately. Both of the domains has one common input clock. Table 63 shows suggested PLL configurations for 33, 25, and 66 MHz input clocks.

Conf No.	SPMF	Core PLL	CEMF	CEDF	Input Clock Frequency (MHz)	CSB Frequency (MHz)	Core Frequency (MHz)	QUICC Engine Frequency (MHz)
1	0100	0000100	0110	0	33.33	133.33	266.66	200
2	0100	0000101	1000	0	25	100	250	200
3	0010	0000100	0011	0	66.67	133.33	266.66	200
4	0100	0000101	0110	0	33.33	133.33	333.33	200
5	0101	0000101	1000	0	25	125	312.5	200
6	0010	0000101	0011	0	66.67	133.33	333.33	200

Table 63. Suggested PLL Configurations

23 Thermal

This section describes the thermal specifications of the MPC8323E.

23.1 **Thermal Characteristics**

Table 64 provides the package thermal characteristics for the 516 27×27 mm PBGA of the MPC8323E.

Table 64. Package Thermal Characteristics for PBGA							
Characteristic	Board type	Symbol	Value	Unit	Notes		
Junction-to-ambient natural convection	Single-layer board (1s)	R _{θJA}	28	°C/W	1, 2		
Junction-to-ambient natural convection	Four-layer board (2s2p)	R _{θJA}	21	°C/W	1, 2, 3		
Junction-to-ambient (@200 ft/min)	Single-layer board (1s)	R _{0JMA}	23	°C/W	1, 3		
Junction-to-ambient (@200 ft/min)	Four-layer board (2s2p)	R _{0JMA}	18	°C/W	1, 3		
Junction-to-board	—	$R_{\theta J B}$	13	°C/W	4		
Junction-to-case	_	R _{θJC}	9	°C/W	5		

. . ----

(edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_B + (R_{\theta JB} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_B = board temperature at the package perimeter (°C)

 $R_{\theta IB}$ = junction-to-board thermal resistance (°C/W) per JESD51-8

 P_D = power dissipation in package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

23.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_T = thermocouple temperature on top of package (°C)

 Ψ_{JT} = thermal characterization parameter (°C/W)

 P_D = power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

23.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

In some application environments, a heat sink is required to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case to ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins while HRESET is asserted, is latched when HRESET deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

24.7 Pull-Up Resistor Requirements

The MPC8323E requires high resistance pull-up resistors (10 k Ω is recommended) on open drain type pins including I²C pins, Ethernet Management MDIO pin, and IPIC interrupt pins.

For more information on required pull-up resistors and the connections required for the JTAG interface, see AN3361, "MPC8321E/MPC8323E PowerQUICC Design Checklist," Rev. 1.

25 Ordering Information

This section presents ordering information for the devices discussed in this document, and it shows an example of how the parts are marked. Ordering information for the devices fully covered by this document is provided in Section 25.1, "Part Numbers Fully Addressed by This Document."

25.1 Part Numbers Fully Addressed by This Document

Table 66 provides the Freescale part numbering nomenclature for the MPC8323E family. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the maximum processor core frequency, the part numbering scheme also includes the maximum effective DDR memory speed and QUICC Engine bus frequency. Each part number also contains a revision code which refers to the die mask revision number.

		-	U		7.11	-	•	<i>.</i>
Product Code	Part Identifier	Encryption Acceleration	Temperature Range ¹	Package ²	e300 Core Frequency ³	DDR Frequency	QUICC Engine Frequency	Revision Level
MPC	8323	Blank = Not included E = included	Blank = 0 to 105°C C = -40 to 105°C	VR = Pb-free PBGA ZQ = Pb PBGA	AD = 266 MHz AF = 333 MHz	D = 266 MHz	C = 200 MHz	Contact local Freescale sales office

Table 66	Part Nu	mbering	Nomencla	ture
----------	---------	---------	----------	------

ΔF

С

Δ

Л

VR

Notes:

MPC nnnn

1. Contact local Freescale office on availability of parts with C temperature range.

2. See Section 21, "Package and Pin Listings," for more information on available package types.

 Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.