

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XFI

Product Status	Active
Core Processor	PowerPC e300c2
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	333MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8323cvrafdca

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Overview

The MPC8323E incorporates the e300c2 (MPC603e-based) core built on Power Architecture® technology, which includes 16 Kbytes of L1 instruction and data caches, dual integer units, and on-chip memory management units (MMUs). The e300c2 core does not contain a floating point unit (FPU). The MPC8323E also includes a 32-bit PCI controller, four DMA channels, a security engine, and a 32-bit DDR1/DDR2 memory controller.

A new communications complex based on QUICC Engine technology forms the heart of the networking capability of the MPC8323E. The QUICC Engine block contains several peripheral controllers and a 32-bit RISC controller. Protocol support is provided by the main workhorses of the device—the unified communication controllers (UCCs). Note that the MPC8321 and MPC8321E do not support UTOPIA. A block diagram of the MPC8323E is shown in Figure 1.

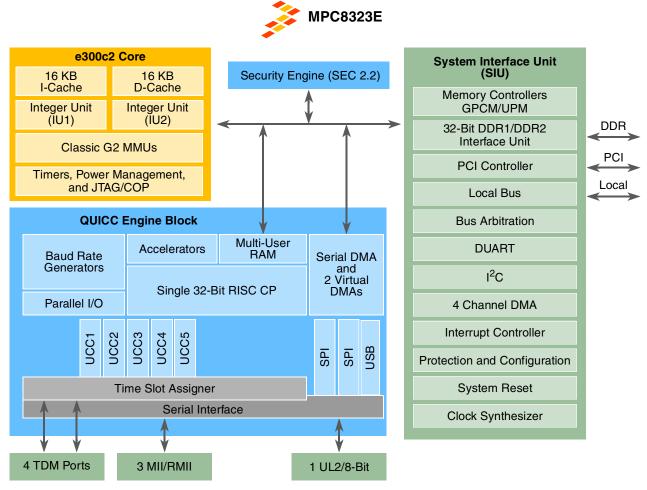


Figure 1. MPC8323E Block Diagram

Each of the five UCCs can support a variety of communication protocols: 10/100 Mbps Ethernet, serial ATM, HDLC, UART, and BISYNC—and, in the MPC8323E and MPC8323, multi-PHY ATM and ATM support for up to OC-3 speeds.

NOTE

The QUICC Engine block can also support a UTOPIA level 2 capable of supporting 31 multi-PHY (MPC8323E- and MPC8323-specific).

The MPC8323E security engine (SEC 2.2) allows CPU-intensive cryptographic operations to be offloaded from the main CPU core. The security-processing accelerator provides hardware acceleration for the DES, 3DES, AES, SHA-1, and MD-5 algorithms.

In summary, the MPC8323E family provides users with a highly integrated, fully programmable communications processor. This helps ensure that a low-cost system solution can be quickly developed and offers flexibility to accommodate new standards and evolving system requirements.

1.1 MPC8323E Features

Major features of the MPC8323E are as follows:

- High-performance, low-power, and cost-effective single-chip data-plane/control-plane solution for ATM or IP/Ethernet packet processing (or both).
- MPC8323E QUICC Engine block offers a future-proof solution for next generation designs by supporting programmable protocol termination and network interface termination to meet evolving protocol standards.
- Single platform architecture supports the convergence of IP packet networks and ATM networks.
- DDR1/DDR2 memory controller—one 32-bit interface at up to 266 MHz supporting both DDR1 and DDR2.
- An e300c2 core built on Power Architecture technology with 16-Kbyte instruction and data caches, and dual integer units.
- Peripheral interfaces such as 32-bit PCI (2.2) interface up to 66-MHz operation, 16-bit local bus interface up to 66-MHz operation, and USB 2.0 (full-/low-speed).
- Security engine provides acceleration for control and data plane security protocols.
- High degree of software compatibility with previous-generation PowerQUICC processor-based designs for backward compatibility and easier software migration.

1.1.1 Protocols

The protocols are as follows:

- ATM SAR up to 155 Mbps (OC-3) full duplex, with ATM traffic shaping (ATF TM4.1)
- Support for ATM AAL1 structured and unstructured circuit emulation service (CES 2.0)
- Support for IMA and ATM transmission convergence sub-layer
- ATM OAM handling features compatible with ITU-T I.610
- IP termination support for IPv4 and IPv6 packets including TOS, TTL, and header checksum processing
- Extensive support for ATM statistics and Ethernet RMON/MIB statistics
- Support for 64 channels of HDLC/transparent

1.1.2 Serial Interfaces

The MPC8323E serial interfaces are as follows:

- Support for one UL2 interface with 31 multi-PHY addresses (MPC8323E and MPC8323 only)
- Support for up to three 10/100 Mbps Ethernet interfaces using MII or RMII
- Support for up to four T1/E1/J1/E3 or DS-3 serial interfaces (TDM)
- Support for dual UART and SPI interfaces and a single I²C interface

1.2 QUICC Engine Block

The QUICC Engine block is a versatile communications complex that integrates several communications peripheral controllers. It provides on-chip system design for a variety of applications, particularly in communications and networking systems. The QUICC Engine block has the following features:

- One 32-bit RISC controller for flexible support of the communications peripherals
- Serial DMA channel for receive and transmit on all serial channels
- Five universal communication controllers (UCCs) supporting the following protocols and interfaces (not all of them simultaneously):
 - 10/100 Mbps Ethernet/IEEE 802.3® standard
 - IP support for IPv4 and IPv6 packets including TOS, TTL, and header checksum processing
 - ATM protocol through UTOPIA interface (note that the MPC8321 and MPC8321E do not support the UTOPIA interface)
 - HDLC /transparent up to 70-Mbps full-duplex
 - HDLC bus up to 10 Mbps
 - Asynchronous HDLC
 - UART
 - BISYNC up to 2 Mbps
 - QUICC multi-channel controller (QMC) for 64 TDM channels
- One UTOPIA interface (UPC1) supporting 31 multi-PHYs (MPC8323E- and MPC8323-specific)
- Two serial peripheral interfaces (SPI). SPI2 is dedicated to Ethernet PHY management.
- Four TDM interfaces
- Thirteen independent baud rate generators and 19 input clock pins for supplying clocks to UCC serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers

The UCCs are similar to the PowerQUICC II peripherals: SCC (BISYNC, UART, and HDLC bus) and FCC (fast Ethernet, HDLC, transparent, and ATM).

Clock Input Timing

Local bus I/O load = 25 pF 1 pair of clocks	66 MHz, 32 bits		_	0.12	W	_
PCI I/O load = 30 pF	66 MHz, 32 bits	—	—	0.057	W	—
QUICC Engine block and	UTOPIA 8-bit 31 PHYs	—	—	0.041	W	Multiply by
other I/Os	TDM serial	—	—	0.001	W	number of interfaces used.
	TDM nibble	—	—	0.004	W	
	HDLC/TRAN serial	—	—	0.003	W	
	HDLC/TRAN nibble	—	—	0.025	W	
	DUART	—	—	0.017	W	
	MIIs	—	—	0.009	W	
	RMII	—	—	0.009	W	
	Ethernet management	_	_	0.002	W	
	USB	_	_	0.001	W	
	SPI	—	—	0.001	W	
	Timer output	—	—	0.002	W	

Table 6. Estimated Typical I/O Power Dissipation (continued)

NOTE

 $AV_{DD}n$ (1.0 V) is estimated to consume 0.05 W (under normal operating conditions and ambient temperature).

4 Clock Input Timing

This section provides the clock input DC and AC electrical characteristics for the MPC8323E.

NOTE

The rise/fall time on QUICC Engine input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

4.1 DC Electrical Characteristics

Table 7 provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the MPC8323E.

Parameter	Condition	Symbol	Min	Мах	Unit
Input high voltage	_	V _{IH}	2.7	OV _{DD} + 0.3	V
Input low voltage	_	V _{IL}	-0.3	0.4	V

Table 7. CLKIN DC Electrical Characteristics

6.2 DDR1 and DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR1 and DDR2 SDRAM interface.

6.2.1 DDR1 and DDR2 SDRAM Input AC Timing Specifications

Table 16 provides the input AC timing specifications for the DDR2 SDRAM ($Dn_GV_{DD}(typ) = 1.8 \text{ V}$).

Table 16. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions with Dn_GV_{DD} of 1.8 ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	—	MVREFn _{REF} – 0.25	V	—
AC input high voltage	V _{IH}	MVREF <i>n</i> _{REF} + 0.25	_	V	—

Table 17 provides the input AC timing specifications for the DDR1 SDRAM ($Dn_GV_{DD}(typ) = 2.5 V$).

Table 17. DDR1 SDRAM Input AC Timing Specifications for 2.5 V Interface

At recommended operating conditions with Dn_GV_{DD} of 2.5 ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	—	MVREFn _{REF} – 0.31	V	—
AC input high voltage	V _{IH}	MVREF <i>n</i> _{REF} + 0.31	_	V	—

Table 18 provides the input AC timing specifications for the DDR1 and DDR2 SDRAM interface.

Table 18. DDR1 and DDR2 SDRAM Input AC Timing Specifications

At recommended operating conditions with Dn_GV_{DD} of (1.8 or 2.5 V) ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
Controller skew for MDQS—MDQ/MDM	t _{CISKEW}			ps	1, 2
266 MHz		-750	750		
200 MHz		-1250	1250		

Notes:

1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is captured with MDQS[n]. This should be subtracted from the total timing budget.

 The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the following equation: t_{DISKEW} = ±(T/4 – abs(t_{CISKEW})) where T is the clock period and abs(t_{CISKEW}) is the absolute value of t_{CISKEW}.

DDR1 and DDR2 SDRAM

Figure 5 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

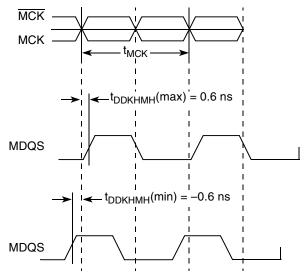


Figure 5. Timing Diagram for t_{DDKHMH}

Figure 6 shows the DDR1 and DDR2 SDRAM output timing diagram.

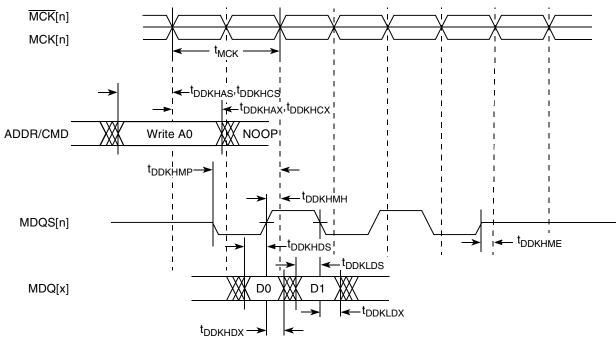


Figure 6. DDR1 and DDR2 SDRAM Output Timing Diagram

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8323E.

7.1 DUART DC Electrical Characteristics

Table 20 provides the DC electrical characteristics for the DUART interface of the MPC8323E.

Table 20. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage OV _{DD}	V _{IL}	-0.3	0.8	V
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} – 0.2	—	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V
Input current (0 V \leq V _{IN} \leq OV _{DD}) ¹	I _{IN}	—	±5	μA

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

7.2 DUART AC Electrical Specifications

Table 21 provides the AC timing parameters for the DUART interface of the MPC8323E.

Parameter	Value	Unit	Notes
Minimum baud rate	256	baud	
Maximum baud rate	> 1,000,000	baud	1
Oversample rate	16	_	2

Notes:

1. Actual attainable baud rate is limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Ethernet and MII Management

This section provides the AC and DC electrical characteristics for Ethernet and MII management.

8.1 Ethernet Controller (10/100 Mbps)—MII/RMII Electrical Characteristics

The electrical characteristics specified here apply to all MII (media independent interface) and RMII (reduced media independent interface), except MDIO (management data input/output) and MDC

12 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8323E.

12.1 PCI DC Electrical Characteristics

Table 35 provides the DC electrical characteristics for the PCI interface of the MPC8323E.

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	$V_{OUT} \le V_{OL}$ (max)	-0.3	0.8	V
High-level output voltage	V _{OH}	OV _{DD} = min, I _{OH} = −100 μA	OV _{DD} – 0.2	_	V
Low-level output voltage	V _{OL}	OV _{DD} = min, I _{OL} = 100 μA	—	0.2	V
Input current	I _{IN}	$0 V \le V_{IN} \le OV_{DD}$	—	±5	μA

Table 35. PCI DC Electrical Characteristics^{1,2}

Notes:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

2. Ranges listed do not meet the full range of the DC specifications of the PCI 2.3 Local Bus Specifications.

12.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the MPC8323E. Note that the PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the MPC8323E is configured as a host or agent device. Table 36 shows the PCI AC timing specifications at 66 MHz.

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	^t PCKHOV	_	6.0	ns	2
Output hold from clock	t _{РСКНОХ}	1	—	ns	2
Clock to output high impedence	t _{PCKHOZ}	_	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	—	ns	2, 4
Input hold from clock	t _{PCIXKH}	0	—	ns	2, 4

Table 36. PCI AC Timing Specifications at 66 MHz

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

TDM/SI

Table 46. TDM/SI DC Electrical Characteristics (c	continued)
---	------------

Characteristic	Symbol	Condition	Min	Мах	Unit
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0 \ V \leq V_{IN} \leq OV_{DD}$		±5	μA

17.2 TDM/SI AC Timing Specifications

Table 47 provides the TDM/SI input and output AC timing specifications.

Table 47. TDM/SI AC Timing Specifications¹

Characteristic	Symbol ²	Min	Мах	Unit
TDM/SI outputs—External clock delay	t _{SEKHOV}	2	12	ns
TDM/SI outputs—External clock High Impedance	t _{SEKHOX}	2	10	ns
TDM/SI inputs—External clock input setup time	t _{SEIVKH}	5	—	ns
TDM/SI inputs—External clock input hold time	t _{SEIXKH}	2	—	ns

Notes:

1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

2. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{SEKHOX} symbolizes the TDM/SI outputs external timing (SE) for the time t_{TDM/SI} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).}

Figure 33 provides the AC test load for the TDM/SI.

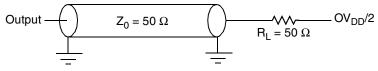


Figure 33. TDM/SI AC Test Load

Figure 34 represents the AC timing from Table 47. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

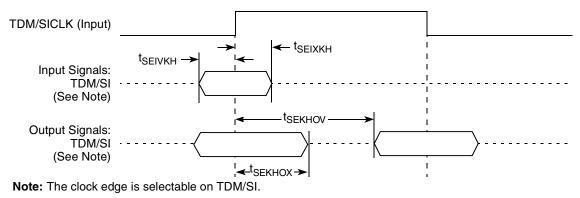


Figure 34. TDM/SI AC Timing (External Clock) Diagram

21 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8323E is available in a thermally enhanced Plastic Ball Grid Array (PBGA); see Section 21.1, "Package Parameters for the MPC8323E PBGA," and Section 21.2, "Mechanical Dimensions of the MPC8323E PBGA," for information on the PBGA.

21.1 Package Parameters for the MPC8323E PBGA

The package parameters are as provided in the following list. The package type is $27 \text{ mm} \times 27 \text{ mm}$, 516 PBGA.

Package outline	$27 \text{ mm} \times 27 \text{ mm}$
Interconnects	516
Pitch	1.00 mm
Module height (typical)	2.25 mm
Solder Balls	62 Sn/36 Pb/2 Ag (ZQ package) 95.5 Sn/0.5 Cu/4Ag (VR package)
Ball diameter (typical)	0.6 mm

21.2 Mechanical Dimensions of the MPC8323E PBGA

Figure 42 shows the mechanical dimensions and bottom surface nomenclature of the MPC8323E, 516-PBGA package.

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MEMC_MCKE	AD14	0	GV _{DD}	3
MEMC_MCK	AF14	0	GV _{DD}	_
MEMC_MCK	AE14	0	GV _{DD}	_
MEMC_MODT	AF11	0	GV _{DD}	_
	Local Bus Controller Interface	1		1
LAD0	N25	IO	OV _{DD}	7
LAD1	P26	IO	OV _{DD}	7
LAD2	P25	IO	OV _{DD}	7
LAD3	R26	IO	OV _{DD}	7
LAD4	R25	IO	OV _{DD}	7
LAD5	T26	IO	OV _{DD}	7
LAD6	T25	IO	OV _{DD}	7
LAD7	U25	IO	OV _{DD}	7
LAD8	M24	IO	OV _{DD}	7
LAD9	N24	IO	OV _{DD}	7
LAD10	P24	IO	OV _{DD}	7
LAD11	R24	IO	OV _{DD}	7
LAD12	T24	IO	OV _{DD}	7
LAD13	U24	IO	OV _{DD}	7
LAD14	U26	IO	OV _{DD}	7
LAD15	V26	IO	OV _{DD}	7
LA16	K25	0	OV _{DD}	7
LA17	L25	0	OV _{DD}	7
LA18	L26	0	OV _{DD}	7
LA19	L24	0	OV _{DD}	7
LA20	M26	0	OV _{DD}	7
LA21	M25	0	OV _{DD}	7
LA22	N26	0	OV _{DD}	7
LA23	AC24	0	OV _{DD}	7
LA24	AC25	0	OV _{DD}	7
LA25	AB23	0	OV _{DD}	7
LCSO	AB24	0	OV _{DD}	4

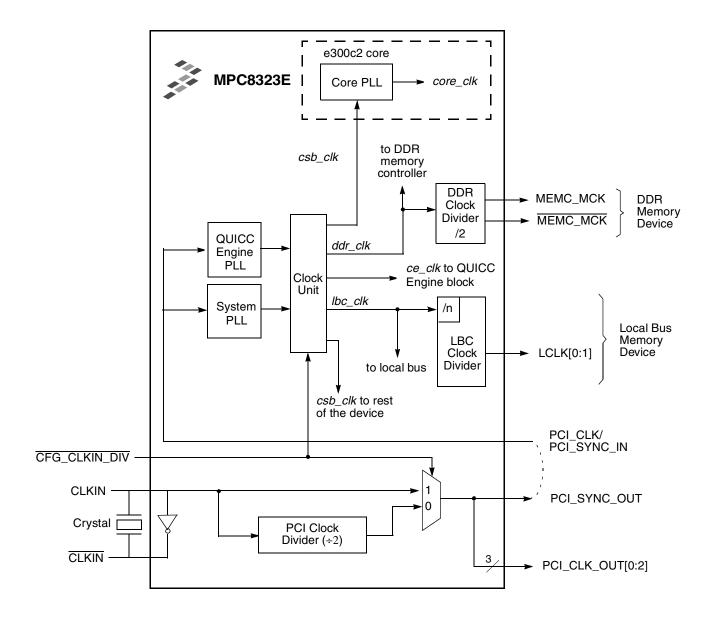
Table 55. MPC8323E PBGA Pinout Listing (continued)

Package and Pin Listings

Table 55. MPC8323E PBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	Power and Ground Supplies			
AV _{DD} 1	P3	I	AV _{DD} 1	—
AV _{DD} 2	AA1	I	AV _{DD} 2	—
AV _{DD} 3	AB15	I	AV _{DD} 3	—
AV _{DD} 4	C24	I	AV _{DD} 4	—
MVREF1	AB8	I	DDR reference voltage	
MVREF2	AB17	I	DDR reference voltage	
	PCI		I	
PCI_INTA /IRQ_OUT	AF2	0	OV _{DD}	2
PCI_RESET_OUT	AE2	0	OV _{DD}	—
PCI_AD0/MSRCID0 (DDR ID)	L1	IO	OV _{DD}	
PCI_AD1/MSRCID1 (DDR ID)	L2	IO	OV _{DD}	_
PCI_AD2/MSRCID2 (DDR ID)	M1	IO	OV _{DD}	_
PCI_AD3/MSRCID3 (DDR ID)	M2	IO	OV _{DD}	_
PCI_AD4/MSRCID4 (DDR ID)	L3	IO	OV _{DD}	_
PCI_AD5/MDVAL (DDR ID)	N1	IO	OV _{DD}	_
PCI_AD6	N2	IO	OV _{DD}	_
PCI_AD7	M3	IO	OV _{DD}	
PCI_AD8	P1	IO	OV _{DD}	
PCI_AD9	R1	IO	OV _{DD}	
PCI_AD10	N3	IO	OV _{DD}	
PCI_AD11	N4	IO	OV _{DD}	—
PCI_AD12	T1	IO	OV _{DD}	_
PCI_AD13	R2	IO	OV _{DD}	_
PCI_AD14/ECID_TMODE_IN	T2	IO	OV _{DD}	_
PCI_AD15	U1	IO	OV _{DD}	_
PCI_AD16	Y2	IO	OV _{DD}	_
PCI_AD17	Y1	IO	OV _{DD}	_
PCI_AD18	AA2	IO	OV _{DD}	_
PCI_AD19	AB1	IO	OV _{DD}	_

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PCI_AD20	AB2	IO	OV _{DD}	—
PCI_AD21	¥4	IO	OV _{DD}	—
PCI_AD22	AC1	IO	OV _{DD}	-
PCI_AD23	AA3	IO	OV _{DD}	-
PCI_AD24	AA4	IO	OV _{DD}	-
PCI_AD25	AD1	IO	OV _{DD}	—
PCI_AD26	AD2	IO	OV _{DD}	—
PCI_AD27	AB3	IO	OV _{DD}	—
PCI_AD28	AB4	IO	OV _{DD}	—
PCI_AD29	AE1	IO	OV _{DD}	—
PCI_AD30	AC3	IO	OV _{DD}	—
PCI_AD31	AC4	IO	OV _{DD}	-
PCI_C_BE0	M4	IO	OV _{DD}	—
PCI_C_BE1	T4	IO	OV _{DD}	—
PCI_C_BE2	Y3	IO	OV _{DD}	—
PCI_C_BE3	AC2	IO	OV _{DD}	—
PCI_PAR	U3	IO	OV _{DD}	—
PCI_FRAME	W1	IO	OV _{DD}	5
PCI_TRDY	W4	IO	OV _{DD}	5
PCI_IRDY	W2	IO	OV _{DD}	5
PCI_STOP	V4	IO	OV _{DD}	5
PCI_DEVSEL	W3	IO	OV _{DD}	5
PCI_IDSEL	P2	I	OV _{DD}	—
PCI_SERR	U4	IO	OV _{DD}	5
PCI_PERR	V3	IO	OV _{DD}	5
PCI_REQ0	AD4	IO	OV _{DD}	-
PCI_REQ1/CPCI_HS_ES	AE3	I	OV _{DD}	-
PCI_REQ2	AF3	I	OV _{DD}	-
PCI_GNT0	AD3	IO	OV _{DD}	-
PCI_GNT1/CPCI_HS_LED	AE4	0	OV _{DD}	_
PCI_GNT2/CPCI_HS_ENUM	AF4	0	OV _{DD}	—
M66EN	L4	I	OV _{DD}	_


Table 55. MPC8323E PBGA Pinout Listing (continued)

Clocking

22 Clocking

Figure 43 shows the internal distribution of clocks within the MPC8323E.

Figure 43. MPC8323E Clock Subsystem

The primary clock source for the MPC8323E can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode, respectively.

Characteristic ¹	Max Operating Frequency	Unit
DDR1/DDR2 memory bus frequency (MCLK) ²	133	MHz
Local bus frequency (LCLKn) ³	66	MHz
PCI input frequency (CLKIN or PCI_CLK)	66	MHz

Table 57. Operating Frequencies for PBGA (continued)

¹ The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen such that the resulting *csb_clk*, MCLK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies.

² The DDR1/DDR2 data rate is 2× the DDR1/DDR2 memory bus frequency.

³ The local bus frequency is 1/2, 1/4, or 1/8 of the *lb_clk* frequency (depending on LCRR[CLKDIV]) which is in turn 1× or 2× the *csb_clk* frequency (depending on RCWL[LBCM]).

22.4 System PLL Configuration

The system PLL is controlled by the RCWL[SPMF] parameter. Table 58 shows the multiplication factor encodings for the system PLL.

NOTE

System PLL VCO frequency = $2 \times (CSB \text{ frequency}) \times (System PLL VCO divider})$.

The VCO divider needs to be set properly so that the System PLL VCO frequency is in the range of 300–600 MHz.

RCWL[SPMF]	System PLL Multiplication Factor
0000	Reserved
0001	Reserved
0010	× 2
0011	× 3
0100	× 4
0101	× 5
0110	× 6
0111–1111	Reserved

Table 58. System PLL Multiplication Factors

As described in Section 22, "Clocking," the LBCM, DDRCM, and SPMF parameters in the reset configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (*csb_clk*). Table 59

22.7 Suggested PLL Configurations

To simplify the PLL configurations, the MPC8323E might be separated into two clock domains. The first domain contain the CSB PLL and the core PLL. The core PLL is connected serially to the CSB PLL, and has the csb_clk as its input clock. The second clock domain has the QUICC Engine PLL. The clock domains are independent, and each of their PLLs are configured separately. Both of the domains has one common input clock. Table 63 shows suggested PLL configurations for 33, 25, and 66 MHz input clocks.

Conf No.	SPMF	Core PLL	CEMF	CEDF	Input Clock Frequency (MHz)	CSB Frequency (MHz)	Core Frequency (MHz)	QUICC Engine Frequency (MHz)
1	0100	0000100	0110	0	33.33	133.33	266.66	200
2	0100	0000101	1000	0	25	100	250	200
3	0010	0000100	0011	0	66.67	133.33	266.66	200
4	0100	0000101	0110	0	33.33	133.33	333.33	200
5	0101	0000101	1000	0	25	125	312.5	200
6	0010	0000101	0011	0	66.67	133.33	333.33	200

Table 63. Suggested PLL Configurations

23 Thermal

This section describes the thermal specifications of the MPC8323E.

23.1 **Thermal Characteristics**

Table 64 provides the package thermal characteristics for the 516 27×27 mm PBGA of the MPC8323E.

Table 64. Package Thermal Characteristics for PBGA					
Characteristic	Board type	Symbol	Value	Unit	Notes
Junction-to-ambient natural convection	Single-layer board (1s)	R _{θJA}	28	°C/W	1, 2
Junction-to-ambient natural convection	Four-layer board (2s2p)	R _{θJA}	21	°C/W	1, 2, 3
Junction-to-ambient (@200 ft/min)	Single-layer board (1s)	R _{0JMA}	23	°C/W	1, 3
Junction-to-ambient (@200 ft/min)	Four-layer board (2s2p)	R _{0JMA}	18	°C/W	1, 3
Junction-to-board	_	R _{θJB}	13	°C/W	4
Junction-to-case	—	$R_{ extsf{ heta}JC}$	9	°C/W	5

. . ----

(edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_B + (R_{\theta JB} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_B = board temperature at the package perimeter (°C)

 $R_{\theta IB}$ = junction-to-board thermal resistance (°C/W) per JESD51-8

 P_D = power dissipation in package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

23.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_T = thermocouple temperature on top of package (°C)

 Ψ_{JT} = thermal characterization parameter (°C/W)

 P_D = power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

23.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

In some application environments, a heat sink is required to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case to ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

System Design Information

output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_P is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.

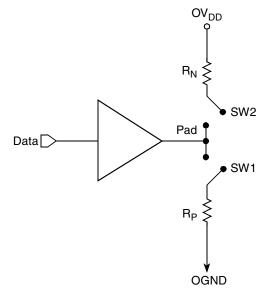


Figure 45. Driver Impedance Measurement

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = (1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

Table 65 summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	20 Target	Z ₀	W
R _P	42 Target	25 Target	20 Target	Z ₀	W
Differential	NA	NA	NA	Z _{DIFF}	W

Table 65. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_i = 105^{\circ}C$.

24.6 Configuration Pin Multiplexing

The MPC8323E provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

Document Revision History

Table 67. Document Revision History

Rev. No.	Date	Substantive Change(s)
2	4/2008	 Removed Figures 2 and 3 overshoot and undershoot voltage specs from Section 2.1.2, "Power Supply Voltage Specification," and footnotes 4 and 5 from Table 1. Corrected QUIESCE signal to be an output signal in Table 55. Added column for GVDD (1.8 V) - DDR2 - to Table 6 with 0.212-W typical power dissipation. Added Figure 4 DDR input timing diagram. Removed CE_TRB* and CE_PIO* signals from Table 55. Added three local bus AC specifications to Table 30 (duty cycle, jitter, delay between input clock and local bus clock). Added row in Table 2 stating junction temperature range of 0 to 105•C. Modified Section 2.2, "Power Sequencing," to include PORESET requirement.
1	6/2007	Correction to descriptive text in Section 2.2.
0	6/2007	Initial release.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, and PowerQUICC are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2010 Freescale Semiconductor, Inc.

Document Number: MPC8323EEC Rev. 4 09/2010

