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Overview

1.3 Security Engine
The security engine is optimized to handle all the algorithms associated with IPSec, IEEE 802.11i™ 
standard, and iSCSI. The security engine contains one crypto-channel, a controller, and a set of crypto 
execution units (EUs). The execution units are:

• Data encryption standard execution unit (DEU), supporting DES and 3DES

• Advanced encryption standard unit (AESU), supporting AES

• Message digest execution unit (MDEU), supporting MD5, SHA1, SHA-256, and HMAC with any 
algorithm

• One crypto-channel supporting multi-command descriptor chains

1.4 DDR Memory Controller
The MPC8323E DDR1/DDR2 memory controller includes the following features:

• Single 32-bit interface supporting both DDR1 and DDR2 SDRAM

• Support for up to 266-MHz data rate

• Support for two ×16 devices

• Support for up to 16 simultaneous open pages

• Supports auto refresh

• On-the-fly power management using CKE

• 1.8-/2.5-V SSTL2 compatible I/O

• Support for 1 chip select only

• FCRAM, ECC, hardware/software calibration, bit deskew, QIN stage, or atomic logic are not 
supported. 

1.5 PCI Controller
The MPC8323E PCI controller includes the following features:

• PCI Specification Revision 2.3 compatible

• Single 32-bit data PCI interface operates up to 66 MHz

• PCI 3.3-V compatible (not 5-V compatible) 

• Support for host and agent modes

• On-chip arbitration, supporting three external masters on PCI

• Selectable hardware-enforced coherency

1.6 Programmable Interrupt Controller (PIC) 
The programmable interrupt controller (PIC) implements the necessary functions to provide a flexible 
solution for general-purpose interrupt control. The PIC programming model is compatible with the 
MPC8260 interrupt controller, and it supports 8 external and 35 internal discrete interrupt sources. 
Interrupts can also be redirected to an external interrupt controller.
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Electrical Characteristics

2 Electrical Characteristics
This section provides the AC and DC electrical specifications and thermal characteristics for the 
MPC8323E. The MPC8323E is currently targeted to these specifications. Some of these specifications are 
independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer 
design specifications.

2.1 Overall DC Electrical Characteristics
This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings
Table 1 provides the absolute maximum ratings.

Table 1. Absolute Maximum Ratings1

Characteristic Symbol Max Value Unit Notes

Core supply voltage VDD –0.3 to 1.26 V —

PLL supply voltage AVDDn –0.3 to 1.26 V —

DDR1 and DDR2 DRAM I/O voltage GVDD –0.3 to 2.75
–0.3 to 1.98

V —

PCI, local bus, DUART, system control and power management, I2C, 
SPI, MII, RMII, MII management, and JTAG I/O voltage

OVDD –0.3 to 3.6 V —

Input voltage DDR1/DDR2 DRAM signals MVIN –0.3 to (GVDD + 0.3) V 2

DDR1/DDR2 DRAM reference MVREF –0.3 to (GVDD + 0.3) V 2

Local bus, DUART, CLKIN, system 
control and power management, 
I2C, SPI, and JTAG signals

OVIN –0.3 to (OVDD + 0.3) V 3

PCI OVIN –0.3 to (OVDD + 0.3) V  5

Storage temperature range TSTG –55 to 150 °C —

Notes: 
1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and 

functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause 
permanent damage to the device.

2. Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during 
power-on reset and power-down sequences.

3. Caution: OVIN must not exceed OVDD by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during 
power-on reset and power-down sequences.
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2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are 
preliminary estimates.

2.1.4 Input Capacitance Specification

Table 4 describes the input capacitance for the CLKIN pin in the MPC8323E.

2.2 Power Sequencing
The device does not require the core supply voltage (VDD) and IO supply voltages (GVDD and OVDD) to 
be applied in any particular order. Note that during power ramp-up, before the power supplies are stable 
and if the I/O voltages are supplied before the core voltage, there might be a period of time that all input 
and output pins are actively driven and cause contention and excessive current. In order to avoid actively 
driving the I/O pins and to eliminate excessive current draw, apply the core voltage (VDD) before the I/O 
voltage (GVDD and OVDD) and assert PORESET before the power supplies fully ramp up. In the case 
where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal value before 
the I/O supplies reach 0.7 V; see Figure 3. Once both the power supplies (I/O voltage and core voltage) are 
stable, wait for a minimum of 32 clock cycles before negating PORESET.

Note that there is no specific power down sequence requirement for the device. I/O voltage supplies 
(GVDD and OVDD) do not have any ordering requirements with respect to one another.

Table 3. Output Drive Capability

Driver Type
Output Impedance

(Ω)
Supply
Voltage

Local bus interface utilities signals 42 OVDD = 3.3 V

PCI signals 25

DDR1 signal 18 GVDD = 2.5 V

DDR2 signal 18 GVDD = 1.8 V

DUART, system control, I2C, SPI, JTAG 42 OVDD = 3.3 V

GPIO signals 42 OVDD = 3.3 V

Table 4. Input Capacitance Specification

Parameter/Condition Symbol Min Max Unit Notes

Input capacitance for all pins except CLKIN CI 6 8 pF —

Input capacitance for CLKIN CICLKIN 10 — pF 1

Note:
1. The external clock generator should be able to drive 10 pF.
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DDR1 and DDR2 SDRAM

Figure 5 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (tDDKHMH).

Figure 5. Timing Diagram for tDDKHMH

Figure 6 shows the DDR1 and DDR2 SDRAM output timing diagram.

Figure 6. DDR1 and DDR2 SDRAM Output Timing Diagram
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Figure 14 provides the AC test load for the local bus.

Figure 14. Local Bus C Test Load

LALE output fall to LAD output transition (LATCH hold time) tLBOTOT2 3 — ns 6

LALE output fall to LAD output transition (LATCH hold time) tLBOTOT3 2.5 — ns 7

Local bus clock (LCLKn) to output valid tLBKHOV — 3 ns 3

Local bus clock (LCLKn) to output high impedance for LAD/LDP tLBKHOZ — 4 ns 8

Local bus clock (LCLKn) duty cycle tLBDC 47 53 % —

Local bus clock (LCLKn) jitter specification tLBRJ — 400 ps —

Delay between the input clock (PCI_SYNC_IN) of local bus 
output clock (LCLKn)

tLBCDL — 1.7 ns —

Notes:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus 
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case for 
clock one(1). 

2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of 
LCLK0 (for all other inputs).

3. All signals are measured from OVDD/2 of the rising/falling edge of LCLK0 to 0.4 × OVDD of the signal in question for 3.3-V 
signaling levels.

4. Input timings are measured at the pin.
5. tLBOTOT1 should be used when RCWH[LALE] is not set and the load on LALE output pin is at least 10 pF less than the load 

on LAD output pins.
6. tLBOTOT2 should be used when RCWH[LALE] is set and the load on LALE output pin is at least 10 pF less than the load on 

LAD output pins.
7. tLBOTOT3 should be used when RCWH[LALE] is set and the load on LALE output pin equals to the load on LAD output pins. 
8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.

Table 30. Local Bus General Timing Parameters (continued)

Parameter Symbol1 Min Max Unit Notes

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω



MPC8323E PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 4

Freescale Semiconductor 31
 

JTAG

Figure 18 provides the AC test load for TDO and the boundary-scan outputs of the MPC8323E.

Figure 18. AC Test Load for the JTAG Interface

Figure 19 provides the JTAG clock input timing diagram.

Figure 19. JTAG Clock Input Timing Diagram

Figure 20 provides the TRST timing diagram.

Figure 20. TRST Timing Diagram

JTAG external clock to output high impedance:
Boundary-scan data

TDO
tJTKLDZ
tJTKLOZ

2
2

19
9

ns
5, 6

6

Notes:
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question. 

The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 14). 
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG device 
timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference (K) 
going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input signals 
(D) went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that, in general, the clock reference 
symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the 
latter convention is used with the appropriate letter: R (rise) or F (fall).

3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
4. Non-JTAG signal input timing with respect to tTCLK.
5. Non-JTAG signal output timing with respect to tTCLK.
6. Guaranteed by design and characterization.

Table 32. JTAG AC Timing Specifications (Independent of CLKIN)1 (continued)
At recommended operating conditions (see Table 2).

Parameter Symbol2 Min Max Unit Notes

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

JTAG

tJTKHKL tJTGR

External Clock VMVMVM

tJTG tJTGF

VM = Midpoint Voltage (OVDD/2)

TRST

VM = Midpoint Voltage (OVDD/2)

VM VM

tTRST
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Figure 27 shows the PCI output AC timing conditions.

Figure 27. PCI Output AC Timing Measurement Condition

13 Timers
This section describes the DC and AC electrical specifications for the timers of the MPC8323E.

13.1 Timer DC Electrical Characteristics
Table 38 provides the DC electrical characteristics for the MPC8323E timer pins, including TIN, TOUT, 
TGATE, and RTC_CLK.

13.2 Timer AC Timing Specifications
Table 39 provides the timer input and output AC timing specifications. 

Table 38. Timer DC Electrical Characteristics

Characteristic Symbol Condition Min Max Unit

Output high voltage VOH IOH = –6.0 mA 2.4 — V

Output low voltage VOL  IOL = 6.0 mA — 0.5 V

Output low voltage VOL IOL = 3.2 mA — 0.4 V

Input high voltage VIH — 2.0 OVDD + 0.3 V

Input low voltage VIL — –0.3 0.8 V

Input current IIN 0 V ≤ VIN ≤ OVDD — ±5 μA

Table 39. Timer Input AC Timing Specifications1

Characteristic Symbol2 Min Unit

Timers inputs—minimum pulse width tTIWID 20 ns

Notes:
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are 

measured at the pin.
2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by any 

external synchronous logic. Timer inputs are required to be valid for at least tTIWID ns to ensure proper operation.

CLK

Output Delay

tPCKHOV

High-Impedance

tPCKHOZ

Output

tPCKHOX
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Figure 28 provides the AC test load for the timers.

Figure 28. Timers AC Test Load

14 GPIO
This section describes the DC and AC electrical specifications for the GPIO of the MPC8323E.

14.1 GPIO DC Electrical Characteristics
Table 11 provides the DC electrical characteristics for the MPC8323E GPIO.

14.2 GPIO AC Timing Specifications
Table 41 provides the GPIO input and output AC timing specifications. 

Table 40. GPIO DC Electrical Characteristics

Characteristic Symbol Condition Min Max Unit Notes

Output high voltage VOH IOH = –6.0 mA 2.4 — V 1

Output low voltage VOL  IOL = 6.0 mA — 0.5 V 1

Output low voltage VOL IOL = 3.2 mA — 0.4 V 1

Input high voltage VIH — 2.0 OVDD + 0.3 V 1

Input low voltage VIL — –0.3 0.8 V —

Input current IIN 0 V ≤ VIN ≤ OVDD — ±5 μA —

Note: 
1. This specification applies when operating from 3.3-V supply. 

Table 41. GPIO Input AC Timing Specifications1

Characteristic Symbol2 Min Unit

GPIO inputs—minimum pulse width tPIWID 20 ns

Notes:
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are 

measured at the pin.
2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any 

external synchronous logic. GPIO inputs are required to be valid for at least tPIWID ns to ensure proper operation.

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω
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16 SPI
This section describes the DC and AC electrical specifications for the SPI of the MPC8323E.

16.1 SPI DC Electrical Characteristics
Table 44 provides the DC electrical characteristics for the MPC8323E SPI.

16.2 SPI AC Timing Specifications
Table 45 and provide the SPI input and output AC timing specifications. 

Figure 30 provides the AC test load for the SPI.

Figure 30. SPI AC Test Load

Table 44. SPI DC Electrical Characteristics

Characteristic Symbol Condition Min Max Unit

Output high voltage VOH IOH = –6.0 mA 2.4 — V

Output low voltage VOL  IOL = 6.0 mA — 0.5 V

Output low voltage VOL IOL = 3.2 mA — 0.4 V

Input high voltage VIH — 2.0 OVDD + 0.3 V

Input low voltage VIL — –0.3 0.8 V

Input current IIN 0 V ≤ VIN ≤ OVDD — ±5 μA

Table 45. SPI AC Timing Specifications1

Characteristic Symbol2 Min Max Unit

SPI outputs—Master mode (internal clock) delay tNIKHOV 0.5 6 ns

SPI outputs—Slave mode (external clock) delay tNEKHOV 2 8 ns

SPI inputs—Master mode (internal clock) input setup time tNIIVKH 6 — ns

SPI inputs—Master mode (internal clock) input hold time tNIIXKH 0 — ns

SPI inputs—Slave mode (external clock) input setup time tNEIVKH 4 — ns

SPI inputs—Slave mode (external clock) input hold time tNEIXKH 2 — ns

Notes:
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings 

are measured at the pin.
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOV symbolizes the NMSI 
outputs internal timing (NI) for the time tSPI memory clock reference (K) goes from the high state (H) until outputs (O) are 
valid (V). 

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω
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HDLC, BISYNC, Transparent, and Synchronous UART

Figure 39 shows the timing with external clock.

Figure 39.  AC Timing (External Clock) Diagram

Figure 40 shows the timing with internal clock.

Figure 40.  AC Timing (Internal Clock) Diagram

Serial CLK (Input)

tHEIXKH
tHEIVKH

tHEKHOV

Input Signals:
(See Note)

Output Signals:
(See Note)

Note: The clock edge is selectable. 
tHEKHOX

Serial CLK (Output)

tHIIXKH

tHIKHOV

Input Signals:
(See Note)

Output Signals:
(See Note)

tHIIVKH

tHIKHOX
Note: The clock edge is selectable. 
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MEMC_MDQ29 AD20 IO GVDD —

MEMC_MDQ30 AF23 IO GVDD —

MEMC_MDQ31 AD22 IO GVDD —

MEMC_MDM0 AC9 O GVDD —

MEMC_MDM1 AD5 O GVDD —

MEMC_MDM2 AE20 O GVDD —

MEMC_MDM3 AE22 O GVDD —

MEMC_MDQS0 AE8 IO GVDD —

MEMC_MDQS1 AE5 IO GVDD —

MEMC_MDQS2 AC19 IO GVDD —

MEMC_MDQS3 AE23 IO GVDD —

MEMC_MBA0 AD16 O GVDD —

MEMC_MBA1 AD17 O GVDD —

MEMC_MBA2 AE17 O GVDD —

MEMC_MA0 AD12 O GVDD —

MEMC_MA1 AE12 O GVDD —

MEMC_MA2 AF12 O GVDD —

MEMC_MA3 AC13 O GVDD —

MEMC_MA4 AD13 O GVDD —

MEMC_MA5 AE13 O GVDD —

MEMC_MA6 AF13 O GVDD —

MEMC_MA7 AC15 O GVDD —

MEMC_MA8 AD15 O GVDD —

MEMC_MA9 AE15 O GVDD —

MEMC_MA10 AF15 O GVDD —

MEMC_MA11 AE16 O GVDD —

MEMC_MA12 AF16 O GVDD —

MEMC_MA13 AB16 O GVDD —

MEMC_MWE AC17 O GVDD —

MEMC_MRAS AE11 O GVDD —

MEMC_MCAS AD11 O GVDD —

MEMC_MCS AC11 O GVDD —

Table 55. MPC8323E PBGA Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power 
Supply

Notes
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IRQ3 J2 I OVDD —

IRQ4 J1 I OVDD —

IRQ5 AE26 I OVDD —

IRQ6/CKSTOP_OUT AE25 IO OVDD —

IRQ7/CKSTOP_IN AF25 I OVDD —

CFG_CLKIN_DIV F1 I OVDD —

CFG_LBIU_MUX_EN M23 I OVDD —

JTAG

TCK W26 I OVDD —

TDI Y26 I OVDD 4

TDO AA26 O OVDD 3

TMS AB26 I OVDD 4

TRST AC26 I OVDD 4

TEST

TEST_MODE N23 I OVDD 6

PMC

QUIESCE T23 O OVDD —

System Control

HRESET AC23 IO OVDD 1

PORESET AD23 I OVDD —

SRESET AD24 IO OVDD 2

Clocks

CLKIN R3 I OVDD —

CLKIN P4 O OVDD —

PCI_SYNC_OUT V1 O OVDD 3

RTC_PIT_CLOCK U23 I OVDD —

PCI_SYNC_IN/PCI_CLK V2 I OVDD —

PCI_CLK0/clkpd_cerisc1_ipg_clkout/DPTC_OSC T3 O OVDD —

PCI_CLK1/clkpd_half_cemb4ucc1_ipg_clkout/
CLOCK_XLB_CLOCK_OUT

U2 O OVDD —

PCI_CLK2/clkpd_third_cesog_ipg_clkout/
cecl_ipg_ce_clock

R4 O OVDD —

Table 55. MPC8323E PBGA Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power 
Supply

Notes
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shows the expected frequency values for the CSB frequency for select csb_clk to CLKIN/PCI_SYNC_IN 
ratios.

Table 59. CSB Frequency Options

CFG_CLKIN_DIV_B 
at Reset1

1 CFG_CLKIN_DIV_B is only used for host mode; CLKIN must be tied low and 
CFG_CLKIN_DIV_B must be pulled up (high) in agent mode.

SPMF
csb_clk :

Input Clock 
Ratio 2

2 CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

Input Clock Frequency (MHz)2

25 33.33 66.67

csb_clk Frequency (MHz)

High 0010 2 : 1 133

High 0011 3 : 1 100

High 0100 4 : 1 100 133

High 0101 5 : 1 125

High 0110 6 : 1

High 0111 7 : 1

High 1000 8 : 1

High 1001 9 : 1

High 1010 10 : 1

High 1011 11 : 1

High 1100 12 : 1

High 1101 13 : 1

High 1110 14 : 1

High 1111 15 : 1

High 0000 16 : 1

Low 0010 2 : 1 133

Low 0011 3 : 1 100

Low 0100 4 : 1 133

Low 0101 5 : 1

Low 0110 6 : 1

Low 0111 7 : 1

Low 1000 8 : 1

Low 1001 9 : 1

Low 1010 10 : 1

Low 1011 11 : 1

Low 1100 12 : 1

Low 1101 13 : 1

Low 1110 14 : 1

Low 1111 15 : 1

Low 0000 16 : 1
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22.6 QUICC Engine PLL Configuration
The QUICC Engine PLL is controlled by the RCWL[CEPMF] and RCWL[CEPDF] parameters. Table 61 
shows the multiplication factor encodings for the QUICC Engine PLL.

The RCWL[CEVCOD] denotes the QUICC Engine PLL VCO internal frequency as shown in Table 62.

NOTE

The VCO divider (RCWL[CEVCOD]) must be set properly so that the 
QUICC Engine VCO frequency is in the range of 300–600 MHz. The 
QUICC Engine frequency is not restricted by the CSB and core frequencies. 
The CSB, core, and QUICC Engine frequencies should be selected 
according to the performance requirements.

The QUICC Engine VCO frequency is derived from the following 
equations:

ce_clk = (primary clock input × CEPMF) ÷ (1 + CEPDF)

QUICC Engine VCO Frequency = ce_clk × VCO divider × (1 + CEPDF)

Table 61. QUICC Engine PLL Multiplication Factors

RCWL[CEPMF] RCWL[CEPDF]
QUICC Engine PLL Multiplication 

Factor = RCWL[CEPMF]/ 
(1 + RCWL[CEPDF)

00000–00001 0 Reserved

00010 0 × 2

00011 0 × 3

00100 0 × 4

00101 0 × 5

00110 0 × 6

00111 0 × 7

01000 0 × 8

01001–11111 0 Reserved

Table 62. QUICC Engine PLL VCO Divider

RCWL[CEVCOD] VCO Divider

00 4

01 8

10 2

11 Reserved
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23.2 Thermal Management Information
For the following sections, PD = (VDD × IDD) + PI/O, where PI/O is the power dissipation of the I/O drivers. 

23.2.1 Estimation of Junction Temperature with Junction-to-Ambient 
Thermal Resistance

An estimation of the chip junction temperature, TJ, can be obtained from the equation:

TJ = TA + (RθJA × PD)

where:

TJ = junction temperature (°C)

TA = ambient temperature for the package (°C)

RθJA = junction-to-ambient thermal resistance (°C/W)

PD = power dissipation in the package (W) 

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy 
estimation of thermal performance. As a general statement, the value obtained on a single layer board is 
appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal 
planes is usually appropriate if the board has low power dissipation and the components are well separated. 
Test cases have demonstrated that errors of a factor of two (in the quantity TJ – TA) are possible.

23.2.2 Estimation of Junction Temperature with Junction-to-Board 
Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal 
resistance. The thermal performance of any component is strongly dependent on the power dissipation of 
surrounding components. In addition, the ambient temperature varies widely within the application. For 
many natural convection and especially closed box applications, the board temperature at the perimeter 

Junction-to-package top Natural convection ΨJT  2 °C/W 6

Notes:
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) 

temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal 
resistance.

2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
3. Per JEDEC JESD51-6 with the board horizontal.
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on 

the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 

1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature 

per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

Table 64. Package Thermal Characteristics for PBGA (continued)

Characteristic Board type Symbol Value Unit Notes
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(edge) of the package is approximately the same as the local air temperature near the device. Specifying 
the local ambient conditions explicitly as the board temperature provides a more precise description of the 
local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

TJ = TB + (RθJB × PD)

where:

TJ = junction temperature (°C)

TB = board temperature at the package perimeter (°C)

RθJB = junction-to-board thermal resistance (°C/W) per JESD51-8

PD = power dissipation in package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction 
temperature can be made. The application board should be similar to the thermal test condition: the 
component is soldered to a board with internal planes.

23.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, the 
thermal characterization parameter (ΨJT) can be used to determine the junction temperature with a 
measurement of the temperature at the top center of the package case using the following equation:

TJ = TT + (ΨJT × PD)

where:

TJ = junction temperature (°C)

TT = thermocouple temperature on top of package (°C)

ΨJT = thermal characterization parameter (°C/W)

PD = power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T 
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so 
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the 
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire 
is placed flat against the package case to avoid measurement errors caused by cooling effects of the 
thermocouple wire.

23.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

In some application environments, a heat sink is required to provide the necessary thermal management of 
the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case 
thermal resistance and a case to ambient thermal resistance:

RθJA = RθJC + RθCA
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Wakefield Engineering 603-635-5102
33 Bridge St.
Pelham, NH 03076
Internet: www.wakefield.com 

Interface material vendors include the following:

Chomerics, Inc. 781-935-4850
77 Dragon Ct.
Woburn, MA 01801
Internet: www.chomerics.com

Dow-Corning Corporation 800-248-2481
Dow-Corning Electronic Materials
P.O. Box 994
Midland, MI 48686-0997
Internet: www.dowcorning.com

Shin-Etsu MicroSi, Inc. 888-642-7674
10028 S. 51st St.
Phoenix, AZ 85044
Internet: www.microsi.com

The Bergquist Company 800-347-4572
18930 West 78th St.
Chanhassen, MN 55317
Internet: www.bergquistcompany.com

23.3 Heat Sink Attachment
When attaching heat sinks to these devices, an interface material is required. The best method is to use 
thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the 
board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would 
lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint 
lifetime of the package. Recommended maximum force on the top of the package is 10 lb (4.5 kg) force.   
If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or plastic 
surfaces and its performance verified under the application requirements. 

23.3.1 Experimental Determination of the Junction Temperature with a 
Heat Sink

When heat sink is used, the junction temperature is determined from a thermocouple inserted at the 
interface between the case of the package and the interface material. A clearance slot or hole is normally 
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in 
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the 
experimental difficulties with this technique, many engineers measure the heat sink temperature and then 
back calculate the case temperature using a separate measurement of the thermal resistance of the 
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interface. From this case temperature, the junction temperature is determined from the junction-to-case 
thermal resistance. 

TJ = TC + (RθJC × PD)

where:

TC = case temperature of the package (°C)

RθJC = junction-to-case thermal resistance (°C/W)

PD = power dissipation (W)

24 System Design Information
This section provides electrical and thermal design recommendations for successful application of the 
MPC8323E.

24.1 System Clocking
The MPC8323E includes three PLLs.

• The system PLL (AVDD2) generates the system clock from the externally supplied CLKIN input. 
The frequency ratio between the system and CLKIN is selected using the system PLL ratio 
configuration bits as described in Section 22.4, “System PLL Configuration.”

• The e300 core PLL (AVDD3) generates the core clock as a slave to the system clock. The frequency 
ratio between the e300 core clock and the system clock is selected using the e300 PLL ratio 
configuration bits as described in Section 22.5, “Core PLL Configuration.”

• The QUICC Engine PLL (AVDD1) which uses the same reference as the system PLL. The QUICC 
Engine block generates or uses external sources for all required serial interface clocks.

24.2 PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins. The voltage 
level at each AVDDn pin should always be equivalent to VDD, and preferably these voltages are derived 
directly from VDD through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide five independent filter circuits as illustrated in Figure 44, one to each of the five AVDD pins. By 
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the 
other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It should be built with surface mount capacitors with minimum effective series inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.
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output impedance is the average of two components, the resistances of the pull-up and pull-down devices. 
When data is held high, SW1 is closed (SW2 is open) and RP is trimmed until the voltage at the pad equals 
OVDD/2. RP then becomes the resistance of the pull-up devices. RP and RN are designed to be close to each 
other in value. Then, Z0 = (RP + RN)/2.

Figure 45. Driver Impedance Measurement

The value of this resistance and the strength of the driver’s current source can be found by making two 
measurements. First, the output voltage is measured while driving logic 1 without an external differential 
termination resistor. The measured voltage is V1 = Rsource × Isource. Second, the output voltage is measured 
while driving logic 1 with an external precision differential termination resistor of value Rterm. The 
measured voltage is V2 = (1/(1/R1 + 1/R2)) × Isource. Solving for the output impedance gives Rsource = 
Rterm × (V1/V2 – 1). The drive current is then Isource = V1/Rsource.

Table 65 summarizes the signal impedance targets. The driver impedance are targeted at minimum VDD, 
nominal OVDD, 105°C.

24.6 Configuration Pin Multiplexing
The MPC8323E provides the user with power-on configuration options which can be set through the use 
of external pull-up or pull-down resistors of 4.7 kΩ on certain output pins (see customer visible 
configuration pins). These pins are generally used as output only pins in normal operation. 

Table 65. Impedance Characteristics

Impedance
Local Bus, Ethernet, DUART, Control, 

Configuration, Power Management
PCI DDR DRAM Symbol Unit

RN 42 Target 25 Target 20 Target Z0 W

RP 42 Target 25 Target 20 Target Z0 W

Differential NA NA NA ZDIFF W

Note: Nominal supply voltages. See Table 1, Tj = 105°C.

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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