

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Obsolete
Core Processor	PowerPC e300c2
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	333MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8323vrafdc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.2 Power Supply Voltage Specification

Table 2 provides the recommended operating conditions for the MPC8323E. Note that these values are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

Characteristic	Symbol	Recommended Value	Unit	Notes
Core supply voltage	V _{DD}	1.0 V ± 50 mV	V	1
PLL supply voltage	AV _{DD}	1.0 V ± 50 mV	V	1
DDR1 and DDR2 DRAM I/O voltage	GV _{DD}	2.5 V ± 125 mV 1.8 V ± 90 mV	V	1
PCI, local bus, DUART, system control and power management, I ² C, SPI, and JTAG I/O voltage	OV _{DD}	3.3 V ± 300 mV	V	1
Junction temperature	T _A /T _J	0 to 105	°C	2

Table 2. Recommended Operating Conditions³

Note:

1. GV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.

2. Minimum temperature is specified with T_A; maximum temperature is specified with T_J.

3. All IO pins should be interfaced with peripherals operating at same voltage level.

4. This voltage is the input to the filter discussed in Section 24.2, "PLL Power Supply Filtering" and not necessarily the voltage at the AVDD pin, which may be reduced due to voltage drop across the filter.

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8323E

Figure 2. Overshoot/Undershoot Voltage for GV_{DD}/OV_{DD}

Parameter/Condition	Min	Max	Unit	Notes
HRESET/SRESET assertion (output)	512	_	t _{PCI_SYNC_IN}	1
HRESET negation to SRESET negation (output)	16		t _{PCI_SYNC_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8323E is in PCI host mode	4	_	^t CLKIN	2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8323E is in PCI agent mode	4	_	^t PCI_SYNC_IN	1
Input hold time for POR config signals with respect to negation of HRESET	0	_	ns	—
Time for the MPC8323E to turn off POR configuration signals with respect to the assertion of $\overrightarrow{\text{HRESET}}$	_	4	ns	3
Time for the MPC8323E to turn on POR configuration signals with respect to the negation of HRESET	1	_	^t PCI_SYNC_IN	1, 3

Table 9. RESET Initialization Timing Specifications (continued)

Notes:

1. t_{PCI_SYNC_IN} is the clock period of the input clock applied to PCI_SYNC_IN. When the MPC8323E is In PCI host mode the primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. See the *MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual* for more details.

 t_{CLKIN} is the clock period of the input clock applied to CLKIN. It is only valid when the MPC8323E is in PCI host mode. See the MPC8323E PowerQUICC II Pro Integrated Communications Processor Reference Manual for more details.

3. POR configuration signals consists of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.

Table 10 provides the PLL lock times.

Table 10. PLL Lock Times

Parameter/Condition	Min	Мах	Unit	Notes
PLL lock times		100	μs	_

5.1 Reset Signals DC Electrical Characteristics

Table 11 provides the DC electrical characteristics for the MPC8323E reset signals mentioned in Table 9.

Table 11. Reset Signals DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit	Notes
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	—	V	1
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V	1
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V	1
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V	1
Input low voltage	V _{IL}	_	-0.3	0.8	V	_

DDR1 and DDR2 SDRAM

Table 13. DDR2 SDRAM Capacitance for Dn_GV_{DD}(typ) = 1.8 V

Delta input/output capacitance: DQ, DQS	C _{DIO}	-	0.5	pF	1

Note:

1. This parameter is sampled. $Dn_GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$, f = 1 MHz, T_A = 25 °C, V_{OUT} = $Dn_GV_{DD} \div 2$,

V_{OUT} (peak-to-peak) = 0.2 V.

Table 14 provides the recommended operating conditions for the DDR1 SDRAM component(s) of the MPC8323E when $Dn_GV_{DD}(typ) = 2.5 V.$

Parameter/Condition Symbol Min Max Unit Notes V I/O supply voltage 2.375 2.625 Dn_GV_{DD} 1 I/O reference voltage MVREF n_{REF} $0.49 \times Dn_GV_{DD}$ $0.51 \times Dn_GV_{DD}$ V 2 I/O termination voltage MVREF n_{REF} - 0.04 MVREFn_{REF} + 0.04 ٧ 3 VTT Input high voltage VIH MVREFn_{REF} + 0.15 $Dn_GV_{DD} + 0.3$ ٧ ٧ Input low voltage VIL -0.3 MVREFn_{REF} – 0.15 Output leakage current -9.9 loz -9.9 μΑ 4 Output high current (V_{OUT} = 1.95 V) -16.2 mΑ I_{OH} Output low current (V_{OUT} = 0.35 V) 16.2 mΑ I_{OL}

Table 14. DDR1 SDRAM DC Electrical Characteristics for Dn_GV_{DD}(typ) = 2.5 V

Notes:

1. Dn_GV_{DD} is expected to be within 50 mV of the DRAM Dn_GV_{DD} at all times.

2. MVREF n_{BEF} is expected to be equal to $0.5 \times Dn_{\text{GV}DD}$, and to track $Dn_{\text{GV}DD}$ DC variations as measured at the receiver. Peak-to-peak noise on MVREF nREF may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREFn_{REF}. This rail should track variations in the DC level of MVREFn_{REF}.

4. Output leakage is measured with all outputs disabled, $0 V \le V_{OUT} \le Dn_GV_{DD}$.

Table 15 provides the DDR1 capacitance $Dn_GV_{DD}(typ) = 2.5$ V.

Table 15. DDR1 SDRAM Capacitance for Dn_GV_{DD}(typ) = 2.5 V Interface

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input/output capacitance: DQ,DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}		0.5	pF	1

Note:

1. This parameter is sampled. $Dn_GV_{DD} = 2.5 \text{ V} \pm 0.125 \text{ V}$, f = 1 MHz, $T_A = 25^{\circ} \text{ C}$, $V_{OUT} = Dn_GV_{DD} \div 2$, V_{OUT} (peak-to-peak) = 0.2 V.

Table 23. MII Transmit AC Timing Specifications (continued)

At recommended operating conditions with OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Max	Unit
TX_CLK data clock fall time	t _{MTXF}	1.0	_	4.0	ns

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

Figure 7 shows the MII transmit AC timing diagram.

Figure 7. MII Transmit AC Timing Diagram

8.2.1.2 MII Receive AC Timing Specifications

Table 24 provides the MII receive AC timing specifications.

Table 24. MII Receive AC Timing Specifications

At recommended operating conditions with OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise time	t _{MRXR}	1.0	—	4.0	ns

Ethernet and MII Management

Table 26. RMII Receive AC Timing Specifications (continued)

At recommended operating conditions with OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit
REF_CLK clock fall time $V_{IH}(max)$ to $V_{IL}(min)$	t _{RMXF}	1.0		4.0	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first three letters of functional block)(signal)(state)(reference)(state)(signal)(state) for outputs. For example, t_{RMRDVKH} symbolizes RMII receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{RMX} clock reference (K) going to the high (H) state or setup time. Also, t_{RMRDXKL} symbolizes RMII receive timing (RMR) with respect to the tinvalid (X) relative to the t_{RMX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII (RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 11 provides the AC test load.

Figure 11. AC Test Load

Figure 12 shows the RMII receive AC timing diagram.

Figure 12. RMII Receive AC Timing Diagram

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for MII, and RMII are specified in Section 8.1, "Ethernet Controller (10/100 Mbps)—MII/RMII Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 27.

Parameter	Symbol	Conditions		Min	Мах	Unit		
Supply voltage (3.3 V)	OV _{DD}	—		_		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	OV _{DD} = Min	2.10	OV _{DD} + 0.3	V		
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	OV _{DD} = Min	GND	0.50	V		
Input high voltage	V _{IH}	-	_	2.00	—	V		
Input low voltage	V _{IL}	—		—	0.80	V		
Input current	I _{IN}	$0 V \le V_{IN} \le OV_{DD}$		—	±5	μA		

Table 27. MII Management DC Electrical Characteristics When Powered at 3.3 V

8.3.2 MII Management AC Electrical Specifications

Table 28 provides the MII management AC timing specifications.

Table 28. MII Management AC Timing Specifications

At recommended operating conditions with OV_{DD} is 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit	Notes
MDC frequency	f _{MDC}	—	2.5	—	MHz	_
MDC period	t _{MDC}	—	400	—	ns	_
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	_
MDC to MDIO delay	t _{MDKHDX}	10	—	70	ns	_
MDIO to MDC setup time	t _{MDDVKH}	5	—	—	ns	_
MDIO to MDC hold time	t _{MDDXKH}	0	—	—	ns	_
MDC rise time	t _{MDCR}	—	—	10	ns	_
MDC fall time	t _{MDHF}	—	—	10	ns	

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

Figure 15 through Figure 17 show the local bus signals.

Figure 21 provides the boundary-scan timing diagram.

Figure 21. Boundary-Scan Timing Diagram

Figure 22. Test Access Port Timing Diagram

1²C

Table 34. I²C AC Electrical Specifications (continued)

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 33).

Parameter	Symbol ¹	Min	Мах	Unit
Rise time of both SDA and SCL signals	t _{l2CR}	20 + 0.1 C _b ⁴	300	ns
Fall time of both SDA and SCL signals	t _{I2CF}	20 + 0.1 C _b ⁴	300	ns
Setup time for STOP condition	t _{I2PVKH}	0.6		μs
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3		μs
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	Ι	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times \text{OV}_{\text{DD}}$	_	V

Notes:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

- MPC8323E provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IH}(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t_{I2DVKH} has only to be met if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.

4. C_B = capacitance of one bus line in pF.

Figure 23 provides the AC test load for the I^2C .

Figure 23. I²C AC Test Load

Figure 24 shows the AC timing diagram for the I^2C bus.

Figure 24. I²C Bus AC Timing Diagram

Figure 27 shows the PCI output AC timing conditions.

Figure 27. PCI Output AC Timing Measurement Condition

13 Timers

This section describes the DC and AC electrical specifications for the timers of the MPC8323E.

13.1 Timer DC Electrical Characteristics

Table 38 provides the DC electrical characteristics for the MPC8323E timer pins, including TIN, TOUT, TGATE, and RTC_CLK.

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	-	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0 \text{ V} \leq \text{V}_{\text{IN}} \leq \text{OV}_{\text{DD}}$	—	±5	μA

Table 38. Timer DC Electrical Characteristics

13.2 Timer AC Timing Specifications

Table 39 provides the timer input and output AC timing specifications.

Table 39. Timer Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
Timers inputs—minimum pulse width	t _{TIWID}	20	ns

Notes:

1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by any external synchronous logic. Timer inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation.

21 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8323E is available in a thermally enhanced Plastic Ball Grid Array (PBGA); see Section 21.1, "Package Parameters for the MPC8323E PBGA," and Section 21.2, "Mechanical Dimensions of the MPC8323E PBGA," for information on the PBGA.

21.1 Package Parameters for the MPC8323E PBGA

The package parameters are as provided in the following list. The package type is $27 \text{ mm} \times 27 \text{ mm}$, 516 PBGA.

Package outline	$27 \text{ mm} \times 27 \text{ mm}$
Interconnects	516
Pitch	1.00 mm
Module height (typical)	2.25 mm
Solder Balls	62 Sn/36 Pb/2 Ag (ZQ package) 95.5 Sn/0.5 Cu/4Ag (VR package)
Ball diameter (typical)	0.6 mm

21.2 Mechanical Dimensions of the MPC8323E PBGA

Figure 42 shows the mechanical dimensions and bottom surface nomenclature of the MPC8323E, 516-PBGA package.

21.3 Pinout Listings

Table 55 shows the pin list of the MPC8323E.

Table 55. MPC8323E PBGA Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes						
DDR Memory Controller Interface										
MEMC_MDQ0	AE9	IO	GV _{DD}	—						
MEMC_MDQ1	AD10	IO	GV _{DD}	—						
MEMC_MDQ2	AF10	IO	GV _{DD}	—						
MEMC_MDQ3	AF9	IO	GV _{DD}	—						
MEMC_MDQ4	AF7	IO	GV _{DD}	—						
MEMC_MDQ5	AE10	IO	GV _{DD}	—						
MEMC_MDQ6	AD9	IO	GV _{DD}	—						
MEMC_MDQ7	AF8	IO	GV _{DD}	—						
MEMC_MDQ8	AE6	IO	GV _{DD}	—						
MEMC_MDQ9	AD7	IO	GV _{DD}	—						
MEMC_MDQ10	AF6	IO	GV _{DD}	—						
MEMC_MDQ11	AC7	IO	GV _{DD}	—						
MEMC_MDQ12	AD8	IO	GV _{DD}	—						
MEMC_MDQ13	AE7	IO	GV _{DD}	—						
MEMC_MDQ14	AD6	IO	GV _{DD}	—						
MEMC_MDQ15	AF5	IO	GV _{DD}	—						
MEMC_MDQ16	AD18	IO	GV _{DD}	—						
MEMC_MDQ17	AE19	IO	GV _{DD}	—						
MEMC_MDQ18	AF17	IO	GV _{DD}	—						
MEMC_MDQ19	AF19	IO	GV _{DD}	—						
MEMC_MDQ20	AF18	IO	GV _{DD}	—						
MEMC_MDQ21	AE18	IO	GV _{DD}	—						
MEMC_MDQ22	AF20	Ю	GV _{DD}	—						
MEMC_MDQ23	AD19	IO	GV _{DD}	—						
MEMC_MDQ24	AD21	IO	GV _{DD}	—						
MEMC_MDQ25	AF22	IO	GV _{DD}	—						
MEMC_MDQ26	AC21	IO	GV _{DD}	—						
MEMC_MDQ27	AF21	IO	GV _{DD}	—						
MEMC_MDQ28	AE21	IO	GV _{DD}							

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes				
LCS1	AB25	0	OV _{DD}	4				
LCS2	AA23	0	OV _{DD}	4				
LCS3	AA24	0	OV _{DD}	4				
LWE0	Y23	0	OV _{DD}	4				
LWE1	W25	0	OV _{DD}	4				
LBCTL	V25	0	OV _{DD}	4				
LALE	V24	0	OV _{DD}	7				
CFG_RESET_SOURCE[0]/LSDA10/LGPL0	L23	IO	OV _{DD}	—				
CFG_RESET_SOURCE[1]/LSDWE/LGPL1	K23	IO	OV _{DD}	—				
LSDRAS/LGPL2/LOE	J23	0	OV _{DD}	4				
CFG_RESET_SOURCE[2]/LSDCAS/LGPL3	H23	IO	OV _{DD}	—				
LGPL4/LGTA/LUPWAIT/LPBSE	G23	IO	OV _{DD}	4, 8				
LGPL5	AC22	0	OV _{DD}	4				
LCLK0	Y24	0	OV _{DD}	7				
LCLK1	Y25	0	OV _{DD}	7				
	DUART			•				
UART_SOUT1/MSRCID0 (DDR ID)/LSRCID0	G1	IO	OV _{DD}	—				
UART_SIN1/MSRCID1 (DDR ID)/LSRCID1	G2	IO	OV _{DD}	—				
UART_CTS1/MSRCID2 (DDR ID)/LSRCID2	H3	IO	OV _{DD}	—				
UART_RTS1/MSRCID3 (DDR ID)/LSRCID3	K3	IO	OV _{DD}	—				
UART_SOUT2/MSRCID4 (DDR ID)/LSRCID4	H2	IO	OV _{DD}	—				
UART_SIN2/MDVAL (DDR ID)/LDVAL	H1	IO	OV _{DD}	—				
UART_CTS2	J3	IO	OV _{DD}	—				
UART_RTS2	K4	IO	OV _{DD}	—				
I ² C interface								
IIC_SDA/CKSTOP_OUT	AE24	IO	OV _{DD}	2				
IIC_SCL/CKSTOP_IN	AF24	IO	OV _{DD}	2				
Programm	able Interrupt Controller			•				
MCP_OUT	AD25	0	OV _{DD}	—				
IRQ0/MCP_IN	AD26	I	OV _{DD}	—				
IRQ1	K1	IO	OV _{DD}	—				
IRQ2	K2	I	OV _{DD}	—				

Table 55. MPC8323E PBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
IRQ3	J2	1	OV _{DD}	—
IRQ4	J1	I	OV _{DD}	—
IRQ5	AE26	I	OV _{DD}	—
IRQ6/CKSTOP_OUT	AE25	IO	OV _{DD}	—
IRQ7/CKSTOP_IN	AF25	I	OV _{DD}	—
CFG_CLKIN_DIV	F1	I	OV _{DD}	—
CFG_LBIU_MUX_EN	M23	I	OV _{DD}	—
	JTAG		•	
тск	W26	I	OV _{DD}	—
TDI	Y26	I	OV _{DD}	4
TDO	AA26	0	OV _{DD}	3
TMS	AB26	I	OV _{DD}	4
TRST	AC26	I	OV _{DD}	4
	TEST		•	
TEST_MODE	N23	I	OV _{DD}	6
	РМС		•	
QUIESCE	T23	0	OV _{DD}	—
	System Control			
HRESET	AC23	IO	OV _{DD}	1
PORESET	AD23	I	OV _{DD}	—
SRESET	AD24	IO	OV _{DD}	2
	Clocks			
CLKIN	R3	I	OV _{DD}	_
CLKIN	P4	0	OV _{DD}	—
PCI_SYNC_OUT	V1	0	OV _{DD}	3
RTC_PIT_CLOCK	U23	I	OV _{DD}	—
PCI_SYNC_IN/PCI_CLK	V2	I	OV _{DD}	—
PCI_CLK0/clkpd_cerisc1_ipg_clkout/DPTC_OSC	ТЗ	0	OV _{DD}	—
PCI_CLK1/clkpd_half_cemb4ucc1_ipg_clkout/ CLOCK_XLB_CLOCK_OUT	U2	0	OV _{DD}	—
PCI_CLK2/clkpd_third_cesog_ipg_clkout/ cecl_ipg_ce_clock	R4	0	OV _{DD}	

Table 55. MPC8323E PBGA Pinout Listing (continued)

Package and Pin Listings

Table 55. MPC8323E PBGA Pinout Listing (continued)

Signal	Package Pin Number Pin Type		Power Supply	Notes						
Power and Ground Supplies										
AV _{DD} 1	P3	I	AV _{DD} 1							
AV _{DD} 2	AA1	I	AV _{DD} 2	_						
AV _{DD} 3	AB15	I	AV _{DD} 3	—						
AV _{DD} 4	C24	I	AV _{DD} 4	—						
MVREF1	AB8	I	DDR reference voltage	_						
MVREF2	AB17	I	DDR reference voltage	_						
	PCI									
PCI_INTA /IRQ_OUT	AF2	0	OV _{DD}	2						
PCI_RESET_OUT	AE2	0	OV _{DD}	_						
PCI_AD0/MSRCID0 (DDR ID)	L1	Ю	OV _{DD}	_						
PCI_AD1/MSRCID1 (DDR ID)	L2	Ю	OV _{DD}	—						
PCI_AD2/MSRCID2 (DDR ID)	M1	Ю	OV _{DD}	—						
PCI_AD3/MSRCID3 (DDR ID)	M2	Ю	OV _{DD}							
PCI_AD4/MSRCID4 (DDR ID)	L3	Ю	OV _{DD}	—						
PCI_AD5/MDVAL (DDR ID)	N1	Ю	OV _{DD}	—						
PCI_AD6	N2	Ю	OV _{DD}	—						
PCI_AD7	M3	Ю	OV _{DD}	—						
PCI_AD8	P1	IO	OV _{DD}							
PCI_AD9	R1	Ю	OV _{DD}	—						
PCI_AD10	N3	Ю	OV _{DD}	—						
PCI_AD11	N4	Ю	OV _{DD}	—						
PCI_AD12	T1	Ю	OV _{DD}	—						
PCI_AD13	R2	Ю	OV _{DD}	—						
PCI_AD14/ECID_TMODE_IN	T2	Ю	OV _{DD}							
PCI_AD15	U1	IO	OV _{DD}	—						
PCI_AD16	Y2	Ю	OV _{DD}							
PCI_AD17	Y1	Ю	OV _{DD}							
PCI_AD18	AA2	IO	OV _{DD}							
PCI_AD19	AB1	IO	OV _{DD}	—						

Package and Pin Listings

Table 55. MPC8323E PBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
GPIO_PB17/BRGO1/CE_EXT_REQ1	D10	IO	OV _{DD}	
GPIO_PB18/Enet4_TXD[0]/SER4_TXD[0]/ TDMD_TXD[0]	C10	IO	OV _{DD}	—
GPIO_PB19/Enet4_TXD[1]/SER4_TXD[1]/ TDMD_TXD[1]	C9	IO	OV _{DD}	—
GPIO_PB20/Enet4_TXD[2]/SER4_TXD[2]/ TDMD_TXD[2]	D8	IO	OV _{DD}	—
GPIO_PB21/Enet4_TXD[3]/SER4_TXD[3]/ TDMD_TXD[3]	C8	IO	OV _{DD}	—
GPIO_PB22/Enet4_RXD[0]/SER4_RXD[0]/ TDMD_RXD[0]	C15	IO	OV _{DD}	—
GPIO_PB23/Enet4_RXD[1]/SER4_RXD[1]/ TDMD_RXD[1]	C14	IO	OV _{DD}	—
GPIO_PB24/Enet4_RXD[2]/SER4_RXD[2]/ TDMD_RXD[2]	D13	IO	OV _{DD}	—
GPIO_PB25/Enet4_RXD[3]/SER4_RXD[3]/ TDMD_RXD[3]	C13	IO	OV _{DD}	—
GPIO_PB26/Enet4_RX_ER/SER4_CD/TDMD_REQ	C12	IO	OV _{DD}	
GPIO_PB27/Enet4_TX_ER/TDMD_CLKO	D11	IO	OV _{DD}	
GPIO_PB28/Enet4_RX_DV/SER4_CTS/ TDMD_RSYNC	D12	IO	OV _{DD}	—
GPIO_PB29/Enet4_COL/RXD[4]/SER4_RXD[4]/ TDMD_STROBE	D7	IO	OV _{DD}	_
GPIO_PB30/Enet4_TX_EN/SER4_RTS/ TDMD_TSYNC	C11	IO	OV _{DD}	—
GPIO_PB31/Enet4_CRS/SDET	C7	IO	OV _{DD}	_
GPIO_PC0/UPC1_TxDATA[0]/SER5_TXD[0]	A18	Ю	OV_{DD}	_
GPIO_PC1/UPC1_TxDATA[1]/SER5_TXD[1]	A19	Ю	OV_{DD}	_
GPIO_PC2/UPC1_TxDATA[2]/SER5_TXD[2]	B18	Ю	OV _{DD}	—
GPIO_PC3/UPC1_TxDATA[3]/SER5_TXD[3]	B19	Ю	OV _{DD}	_
GPIO_PC4/UPC1_TxDATA[4]	A24	Ю	OV_{DD}	_
GPIO_PC5/UPC1_TxDATA[5]	B24	Ю	OV _{DD}	—
GPIO_PC6/UPC1_TxDATA[6]	A23	Ю	OV_{DD}	_
GPIO_PC7/UPC1_TxDATA[7]	B26	IO	OV _{DD}	
GPIO_PC8/UPC1_RxDATA[0]/SER5_RXD[0]	A21	Ю	OV _{DD}	
GPIO_PC9/UPC1_RxDATA[1]/SER5_RXD[1]	B20	IO	OV _{DD}	

22.7 Suggested PLL Configurations

To simplify the PLL configurations, the MPC8323E might be separated into two clock domains. The first domain contain the CSB PLL and the core PLL. The core PLL is connected serially to the CSB PLL, and has the csb_clk as its input clock. The second clock domain has the QUICC Engine PLL. The clock domains are independent, and each of their PLLs are configured separately. Both of the domains has one common input clock. Table 63 shows suggested PLL configurations for 33, 25, and 66 MHz input clocks.

Conf No.	SPMF	Core PLL	CEMF	CEDF	Input Clock Frequency (MHz)	CSB Frequency (MHz)	Core Frequency (MHz)	QUICC Engine Frequency (MHz)
1	0100	0000100	0110	0	33.33	133.33	266.66	200
2	0100	0000101	1000	0	25	100	250	200
3	0010	0000100	0011	0	66.67	133.33	266.66	200
4	0100	0000101	0110	0	33.33	133.33	333.33	200
5	0101	0000101	1000	0	25	125	312.5	200
6	0010	0000101	0011	0	66.67	133.33	333.33	200

Table 63. Suggested PLL Configurations

23 Thermal

This section describes the thermal specifications of the MPC8323E.

23.1 **Thermal Characteristics**

Table 64 provides the package thermal characteristics for the 516 27×27 mm PBGA of the MPC8323E.

Table 64. Package Thermal Characteristics for PBGA								
Characteristic	Board type	Symbol	Value	Unit	Notes			
Junction-to-ambient natural convection	Single-layer board (1s)	R _{θJA}	28	°C/W	1, 2			
Junction-to-ambient natural convection	Four-layer board (2s2p)	R _{θJA}	21	°C/W	1, 2, 3			
Junction-to-ambient (@200 ft/min)	Single-layer board (1s)	R _{0JMA}	23	°C/W	1, 3			
Junction-to-ambient (@200 ft/min)	Four-layer board (2s2p)	R _{0JMA}	18	°C/W	1, 3			
Junction-to-board	_	R _{θJB}	13	°C/W	4			
Junction-to-case	_	R _{θJC}	9	°C/W	5			

. . ----

(edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_B + (R_{\theta JB} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_B = board temperature at the package perimeter (°C)

 $R_{\theta IB}$ = junction-to-board thermal resistance (°C/W) per JESD51-8

 P_D = power dissipation in package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

23.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_T = thermocouple temperature on top of package (°C)

 Ψ_{JT} = thermal characterization parameter (°C/W)

 P_D = power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

23.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

In some application environments, a heat sink is required to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case to ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

NP

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

Figure 44 shows the PLL power supply filter circuit.

Figure 44. PLL Power Supply Filter Circuit

24.3 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, the MPC8323E can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8323E system, and the MPC8323E itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , OV_{DD} , and GV_{DD} pins of the MPC8323E. These decoupling capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , OV_{DD} , and GV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo OSCON).

24.4 Connection Recommendations

To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} , or GV_{DD} as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} , GV_{DD} , OV_{DD} , and GND pins of the MPC8323E.

24.5 Output Buffer DC Impedance

The MPC8323E drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then, the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 45). The

While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins while HRESET is asserted, is latched when HRESET deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

24.7 Pull-Up Resistor Requirements

The MPC8323E requires high resistance pull-up resistors (10 k Ω is recommended) on open drain type pins including I²C pins, Ethernet Management MDIO pin, and IPIC interrupt pins.

For more information on required pull-up resistors and the connections required for the JTAG interface, see AN3361, "MPC8321E/MPC8323E PowerQUICC Design Checklist," Rev. 1.

25 Ordering Information

This section presents ordering information for the devices discussed in this document, and it shows an example of how the parts are marked. Ordering information for the devices fully covered by this document is provided in Section 25.1, "Part Numbers Fully Addressed by This Document."

25.1 Part Numbers Fully Addressed by This Document

Table 66 provides the Freescale part numbering nomenclature for the MPC8323E family. Note that the individual part numbers correspond to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. In addition to the maximum processor core frequency, the part numbering scheme also includes the maximum effective DDR memory speed and QUICC Engine bus frequency. Each part number also contains a revision code which refers to the die mask revision number.

		-	U		7.11	-	•	<i>.</i>
Product Code	Part Identifier	Encryption Acceleration	Temperature Range ¹	Package ²	e300 Core Frequency ³	DDR Frequency	QUICC Engine Frequency	Revision Level
MPC	8323	Blank = Not included E = included	Blank = 0 to 105°C C = -40 to 105°C	VR = Pb-free PBGA ZQ = Pb PBGA	AD = 266 MHz AF = 333 MHz	D = 266 MHz	C = 200 MHz	Contact local Freescale sales office

Table 66	Part Nu	mbering	Nomencla	ture
----------	---------	---------	----------	------

ΔF

С

Δ

Л

VR

Notes:

MPC nnnn

1. Contact local Freescale office on availability of parts with C temperature range.

2. See Section 21, "Package and Pin Listings," for more information on available package types.

 Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.