

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	PowerPC e300c2
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	333MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	
Ethernet	10/100Mbps (3)
SATA	
USB	USB 2.0 (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	
Package / Case	516-BBGA
Supplier Device Package	516-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8323vrafdca

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Electrical Characteristics

2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	42	OV _{DD} = 3.3 V
PCI signals	25	
DDR1 signal	18	GV _{DD} = 2.5 V
DDR2 signal	18	GV _{DD} = 1.8 V
DUART, system control, I2C, SPI, JTAG	42	OV _{DD} = 3.3 V
GPIO signals	42	OV _{DD} = 3.3 V

Table 3. Output Drive Capability

2.1.4 Input Capacitance Specification

Table 4 describes the input capacitance for the CLKIN pin in the MPC8323E.

Table 4. Input Capacitance Specification

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
Input capacitance for all pins except CLKIN	CI	6	8	pF	_
Input capacitance for CLKIN	C _{ICLKIN}	10		pF	1

Note:

1. The external clock generator should be able to drive 10 pF.

2.2 Power Sequencing

The device does not require the core supply voltage (V_{DD}) and IO supply voltages (GV_{DD}) and $OV_{DD})$ to be applied in any particular order. Note that during power ramp-up, before the power supplies are stable and if the I/O voltages are supplied before the core voltage, there might be a period of time that all input and output pins are actively driven and cause contention and excessive current. In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core voltage (V_{DD}) before the I/O voltage (GV_{DD}) and OV_{DD} and assert PORESET before the power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal value before the I/O supplies reach 0.7 V; see Figure 3. Once both the power supplies (I/O voltage and core voltage) are stable, wait for a minimum of 32 clock cycles before negating PORESET.

Note that there is no specific power down sequence requirement for the device. I/O voltage supplies (GV_{DD}) and OV_{DD} do not have any ordering requirements with respect to one another.

CLKIN input current	$0 \ V \leq V_{IN} \leq OV_{DD}$	I _{IN}	_	±5	μA
PCI_SYNC_IN input current	$\begin{array}{c} 0 \ V \leq V_{IN} \leq 0.5 \ V \ or \\ OV_{DD} - 0.5 \ V \leq V_{IN} \leq OV_{DD} \end{array}$	I _{IN}	_	±5	μA
PCI_SYNC_IN input current	$0.5~V \leq V_{IN} \leq OV_{DD} - 0.5~V$	I _{IN}	—	±50	μA

4.2 AC Electrical Characteristics

The primary clock source for the MPC8323E can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. Table 8 provides the clock input (CLKIN/PCI_CLK) AC timing specifications for the MPC8323E.

Parameter/Condition	Symbol	Min	Typical	Мах	Unit	Notes
CLKIN/PCI_CLK frequency	f _{CLKIN}	25	—	66.67	MHz	1
CLKIN/PCI_CLK cycle time	t _{CLKIN}	15	—	—	ns	—
CLKIN rise and fall time	t _{KH} , t _{KL}	0.6	0.8	4	ns	2
PCI_CLK rise and fall time	t _{PCH} , t _{PCL}	0.6	0.8	1.2	ns	2
CLKIN/PCI_CLK duty cycle	t _{KHK} /t _{CLKIN}	40	—	60	%	3
CLKIN/PCI_CLK jitter		—	—	±150	ps	4, 5

Table 8. CLKIN AC Timing Specifications

Notes:

1. **Caution:** The system, core, security, and QUICC Engine block must not exceed their respective maximum or minimum operating frequencies.

2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 and 2.7 V.

3. Timing is guaranteed by design and characterization.

4. This represents the total input jitter—short term and long term—and is guaranteed by design.

5. The CLKIN/PCI_CLK driver's closed loop jitter bandwidth should be < 500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.

5 **RESET Initialization**

This section describes the AC electrical specifications for the reset initialization timing requirements of the MPC8323E. Table 9 provides the reset initialization AC timing specifications for the reset component(s).

Table 9. RESET Initialization Timir	g Specifications
-------------------------------------	------------------

Parameter/Condition	Min	Max	Unit	Notes
Required assertion time of $\overrightarrow{\text{HRESET}}$ or $\overrightarrow{\text{SRESET}}$ (input) to activate reset flow	32	_	t _{PCI_SYNC_IN}	1
Required assertion time of $\overrightarrow{\text{PORESET}}$ with stable clock applied to CLKIN when the MPC8323E is in PCI host mode	32		t _{CLKIN}	2
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the MPC8323E is in PCI agent mode	32	_	^t PCI_SYNC_IN	1

DDR1 and DDR2 SDRAM

Figure 5 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

Figure 5. Timing Diagram for t_{DDKHMH}

Figure 6 shows the DDR1 and DDR2 SDRAM output timing diagram.

Figure 6. DDR1 and DDR2 SDRAM Output Timing Diagram

Table 23. MII Transmit AC Timing Specifications (continued)

At recommended operating conditions with OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Max	Unit
TX_CLK data clock fall time	t _{MTXF}	1.0	_	4.0	ns

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

Figure 7 shows the MII transmit AC timing diagram.

Figure 7. MII Transmit AC Timing Diagram

8.2.1.2 MII Receive AC Timing Specifications

Table 24 provides the MII receive AC timing specifications.

Table 24. MII Receive AC Timing Specifications

At recommended operating conditions with OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise time	t _{MRXR}	1.0	—	4.0	ns

Ethernet and MII Management

Table 24. MII Receive AC Timing Specifications (continued)

At recommended operating conditions with OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit
RX_CLK clock fall time	t _{MRXF}	1.0		4.0	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 8 provides the AC test load.

Figure 8. AC Test Load

Figure 9 shows the MII receive AC timing diagram.

Figure 9. MII Receive AC Timing Diagram

8.2.2 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.

8.3.1 MII Management DC Electrical Characteristics

MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 27.

Parameter	Symbol	Conditions		Min	Max	Unit
Supply voltage (3.3 V)	OV _{DD}	—		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	OV _{DD} = Min	2.10	OV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	OV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	-	—		—	V
Input low voltage	V _{IL}	—		—	0.80	V
Input current	I _{IN}	0 V ≤ V _{II}	$_{\rm N} \le {\rm OV}_{\rm DD}$	—	±5	μA

Table 27. MII Management DC Electrical Characteristics When Powered at 3.3 V

8.3.2 MII Management AC Electrical Specifications

Table 28 provides the MII management AC timing specifications.

Table 28. MII Management AC Timing Specifications

At recommended operating conditions with OV_{DD} is 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit	Notes
MDC frequency	f _{MDC}	—	2.5	—	MHz	_
MDC period	t _{MDC}	—	400	—	ns	_
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	_
MDC to MDIO delay	t _{MDKHDX}	10	—	70	ns	_
MDIO to MDC setup time	t _{MDDVKH}	5	—	—	ns	_
MDIO to MDC hold time	t _{MDDXKH}	0	—	—	ns	_
MDC rise time	t _{MDCR}	—	—	10	ns	_
MDC fall time	t _{MDHF}	—	—	10	ns	

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

JTAG

Table 31. JTAG Interface DC Electrical Characteristics (continued)
--	------------

Characteristic	Symbol	Condition	Min	Мах	Unit
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0~V \leq V_{IN} \leq OV_{DD}$	—	±5	μA

10.2 JTAG AC Electrical Characteristics

This section describes the AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the MPC8323E. Table 32 provides the JTAG AC timing specifications as defined in Figure 19 through Figure 22.

Table 32. JTAG AC Timing Specifications (Independent of CLKIN)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	
JTAG external clock cycle time	t _{JTG}	30	_	ns	_
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	11	—	ns	—
JTAG external clock rise and fall times	t _{JTGR} , t _{JTGF}	0	2	ns	—
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4		ns	4
Input hold times: Boundary-scan data TMS, TDI	^t jtdxkh t _{jtixkh}	10 10		ns	4
Valid times: Boundary-scan data TDO	tjtkldv tjtklov	2 2	15 15	ns	5
Output hold times: Boundary-scan data TDO	t _{jtkldx} t _{jtklox}	2 2	_	ns	5

Figure 35 provides the AC test load for the UTOPIA.

Figure 36 and Figure 37 represent the AC timing from Table 49. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 36 shows the UTOPIA timing with external clock.

Figure 36. UTOPIA AC Timing (External Clock) Diagram

Figure 37 shows the UTOPIA timing with internal clock.

Figure 37. UTOPIA AC Timing (Internal Clock) Diagram

HDLC, BISYNC, Transparent, and Synchronous UART

Table 51. HDLC, BISYNC, and Transparent UART AC Timing Specifications¹ (continued)

Characteristic	Symbol ²	Min	Мах	Unit
Inputs—External clock input hold time	t _{HEIXKH}	1	_	ns

Notes:

1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

2. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{HIKHOX} symbolizes the outputs internal timing (HI) for the time t_{serial} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).}

Table 52. Synchronous UART AC Timing Specifications¹

Characteristic	Symbol ²	Min	Мах	Unit
Outputs—Internal clock delay	t _{UAIKHOV}	0	5.5	ns
Outputs—External clock delay	t _{UAEKHOV}	1	10	ns
Outputs—Internal clock high impedance	t _{UAIKHOX}	0	5.5	ns
Outputs—External clock high impedance	t _{UAEKHOX}	1	8	ns
Inputs—Internal clock input setup time	t _{UAIIVKH}	6	—	ns
Inputs—External clock input setup time	t _{UAEIVKH}	4	—	ns
Inputs—Internal clock input hold time	t _{UAIIXKH}	0	—	ns
Inputs—External clock input hold time	t _{UAEIXKH}	1	—	ns

Notes:

- 1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.
- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{UAIKHOX} symbolizes the outputs internal timing (UAI) for the time t_{serial} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).
 </sub>

Figure 38 provides the AC test load.

Figure 38. AC Test Load

Figure 39 and Figure 40 represent the AC timing from Table 51. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 39 shows the timing with external clock.

Figure 40 shows the timing with internal clock.

Figure 40. AC Timing (Internal Clock) Diagram

USB

20 USB

This section provides the AC and DC electrical specifications for the USB interface of the MPC8323E.

20.1 USB DC Electrical Characteristics

Table 53 provides the DC electrical characteristics for the USB interface.

Table 53. USB DC Electrical Characteristics¹

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	OV _{DD} – 0.2	—	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V
Input current	I _{IN}	—	±5	μA

Note:

1. Note that the symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1 and Table 2.

20.2 USB AC Electrical Specifications

Table 54 describes the general timing parameters of the USB interface of the MPC8323E.

Table 54. 03D General Tilling Parameters	Table 54.	USB	General	Timing	Parameters
--	-----------	-----	---------	--------	------------

Parameter	Symbol ¹	Min	Мах	Unit	Notes
USB clock cycle time	t _{USCK}	20.83	—	ns	Full speed 48 MHz
USB clock cycle time	t _{USCK}	166.67	—	ns	Low speed 6 MHz
Skew between TXP and TXN	t _{USTSPN}	—	5	ns	—
Skew among RXP, RXN, and RXD	t _{USRSPND}	—	10	ns	Full speed transitions
Skew among RXP, RXN, and RXD	t _{USRPND}	—	100	ns	Low speed transitions

Notes:

 The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(state)(signal)} for receive signals and t_{(first two letters of functional block)(state)(signal)} for transmit signals. For example, t_{USRSPND} symbolizes USB timing (US) for the USB receive signals skew (RS) among RXP, RXN, and RXD (PND). Also, t_{USTSPN} symbolizes USB timing (US) for the USB transmit signals skew (TS) between TXP and TXN (PN).

2. Skew measurements are done at $OV_{DD}/2$ of the rising or falling edge of the signals.

Figure 41 provide the AC test load for the USB.

Figure 41. USB AC Test Load

21.3 Pinout Listings

Table 55 shows the pin list of the MPC8323E.

Table 55. MPC8323E PBGA Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes
DDR Men	nory Controller Interface			
MEMC_MDQ0	AE9	IO	GV _{DD}	—
MEMC_MDQ1	AD10	IO	GV _{DD}	—
MEMC_MDQ2	AF10	IO	GV _{DD}	—
MEMC_MDQ3	AF9	IO	GV _{DD}	—
MEMC_MDQ4	AF7	IO	GV _{DD}	—
MEMC_MDQ5	AE10	IO	GV _{DD}	—
MEMC_MDQ6	AD9	IO	GV _{DD}	—
MEMC_MDQ7	AF8	IO	GV _{DD}	—
MEMC_MDQ8	AE6	IO	GV _{DD}	—
MEMC_MDQ9	AD7	IO	GV _{DD}	—
MEMC_MDQ10	AF6	IO	GV _{DD}	—
MEMC_MDQ11	AC7	IO	GV _{DD}	—
MEMC_MDQ12	AD8	IO	GV _{DD}	—
MEMC_MDQ13	AE7	IO	GV _{DD}	—
MEMC_MDQ14	AD6	IO	GV _{DD}	—
MEMC_MDQ15	AF5	IO	GV _{DD}	—
MEMC_MDQ16	AD18	IO	GV _{DD}	—
MEMC_MDQ17	AE19	IO	GV _{DD}	—
MEMC_MDQ18	AF17	IO	GV _{DD}	—
MEMC_MDQ19	AF19	IO	GV _{DD}	—
MEMC_MDQ20	AF18	IO	GV _{DD}	—
MEMC_MDQ21	AE18	IO	GV _{DD}	—
MEMC_MDQ22	AF20	Ю	GV _{DD}	—
MEMC_MDQ23	AD19	IO	GV _{DD}	—
MEMC_MDQ24	AD21	IO	GV _{DD}	—
MEMC_MDQ25	AF22	IO	GV _{DD}	—
MEMC_MDQ26	AC21	IO	GV _{DD}	—
MEMC_MDQ27	AF21	IO	GV _{DD}	—
MEMC_MDQ28	AE21	IO	GV _{DD}	

Signal	Package Pin Number	Pin Type	Power Supply	Notes				
IRQ3	J2	1	OV _{DD}	—				
IRQ4	J1	I	OV _{DD}	—				
IRQ5	AE26	I	OV _{DD}	—				
IRQ6/CKSTOP_OUT	AE25	IO	OV _{DD}	—				
IRQ7/CKSTOP_IN	AF25	I	OV _{DD}	—				
CFG_CLKIN_DIV	F1	I	OV _{DD}	—				
CFG_LBIU_MUX_EN	M23	I	OV _{DD}	—				
	JTAG		•					
тск	W26	I	OV _{DD}	—				
TDI	Y26	I	OV _{DD}	4				
TDO	AA26	0	OV _{DD}	3				
TMS	AB26	I	OV _{DD}	4				
TRST	AC26	I	OV _{DD}	4				
TEST								
TEST_MODE	N23	I	OV _{DD}	6				
	РМС		•					
QUIESCE	T23	0	OV _{DD}	—				
	System Control							
HRESET	AC23	IO	OV _{DD}	1				
PORESET	AD23	I	OV _{DD}	—				
SRESET	AD24	IO	OV _{DD}	2				
	Clocks							
CLKIN	R3	I	OV _{DD}	_				
CLKIN	P4	0	OV _{DD}	—				
PCI_SYNC_OUT	V1	0	OV _{DD}	3				
RTC_PIT_CLOCK	U23	I	OV _{DD}	—				
PCI_SYNC_IN/PCI_CLK	V2	I	OV _{DD}	—				
PCI_CLK0/clkpd_cerisc1_ipg_clkout/DPTC_OSC	ТЗ	0	OV _{DD}	—				
PCI_CLK1/clkpd_half_cemb4ucc1_ipg_clkout/ CLOCK_XLB_CLOCK_OUT	U2	0	OV _{DD}	—				
PCI_CLK2/clkpd_third_cesog_ipg_clkout/ cecl_ipg_ce_clock	R4	0	OV _{DD}					

Table 55. MPC8323E PBGA Pinout Listing (continued)

Package and Pin Listings

Table 55. MPC8323E PBGA Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
GPIO_PB17/BRGO1/CE_EXT_REQ1	D10	IO	OV _{DD}	
GPIO_PB18/Enet4_TXD[0]/SER4_TXD[0]/ TDMD_TXD[0]	C10	IO	OV _{DD}	—
GPIO_PB19/Enet4_TXD[1]/SER4_TXD[1]/ TDMD_TXD[1]	C9	IO	OV _{DD}	—
GPIO_PB20/Enet4_TXD[2]/SER4_TXD[2]/ TDMD_TXD[2]	D8	IO	OV _{DD}	—
GPIO_PB21/Enet4_TXD[3]/SER4_TXD[3]/ TDMD_TXD[3]	C8	IO	OV _{DD}	—
GPIO_PB22/Enet4_RXD[0]/SER4_RXD[0]/ TDMD_RXD[0]	C15	IO	OV _{DD}	—
GPIO_PB23/Enet4_RXD[1]/SER4_RXD[1]/ TDMD_RXD[1]	C14	IO	OV _{DD}	—
GPIO_PB24/Enet4_RXD[2]/SER4_RXD[2]/ TDMD_RXD[2]	D13	IO	OV _{DD}	—
GPIO_PB25/Enet4_RXD[3]/SER4_RXD[3]/ TDMD_RXD[3]	C13	IO	OV _{DD}	—
GPIO_PB26/Enet4_RX_ER/SER4_CD/TDMD_REQ	C12	IO	OV _{DD}	
GPIO_PB27/Enet4_TX_ER/TDMD_CLKO	D11	IO	OV _{DD}	
GPIO_PB28/Enet4_RX_DV/SER4_CTS/ TDMD_RSYNC	D12	IO	OV _{DD}	—
GPIO_PB29/Enet4_COL/RXD[4]/SER4_RXD[4]/ TDMD_STROBE	D7	IO	OV _{DD}	_
GPIO_PB30/Enet4_TX_EN/SER4_RTS/ TDMD_TSYNC	C11	IO	OV _{DD}	—
GPIO_PB31/Enet4_CRS/SDET	C7	IO	OV _{DD}	_
GPIO_PC0/UPC1_TxDATA[0]/SER5_TXD[0]	A18	Ю	OV_{DD}	_
GPIO_PC1/UPC1_TxDATA[1]/SER5_TXD[1]	A19	Ю	OV_{DD}	_
GPIO_PC2/UPC1_TxDATA[2]/SER5_TXD[2]	B18	Ю	OV _{DD}	—
GPIO_PC3/UPC1_TxDATA[3]/SER5_TXD[3]	B19	Ю	OV _{DD}	_
GPIO_PC4/UPC1_TxDATA[4]	A24	Ю	OV_{DD}	_
GPIO_PC5/UPC1_TxDATA[5]	B24	Ю	OV _{DD}	—
GPIO_PC6/UPC1_TxDATA[6]	A23	Ю	OV_{DD}	_
GPIO_PC7/UPC1_TxDATA[7]	B26	IO	OV _{DD}	
GPIO_PC8/UPC1_RxDATA[0]/SER5_RXD[0]	A21	IO	OV _{DD}	
GPIO_PC9/UPC1_RxDATA[1]/SER5_RXD[1]	B20	IO	OV _{DD}	

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
GPIO_PD10/GTM1_TIN2/GTM2_TIN1/CLK17	J24	IO	OV _{DD}	—		
GPIO_PD11/GTM1_TGATE2/GTM2_TGATE1	B25	Ю	OV _{DD}	—		
GPIO_PD12/GTM1_TOUT2/GTM2_TOUT1	C4	IO	OV _{DD}	—		
GPIO_PD13/GTM1_TIN3/GTM2_TIN4/BRGO8	D4	IO	OV _{DD}	—		
GPIO_PD14/GTM1_TGATE3/GTM2_TGATE4	D5	IO	OV _{DD}	—		
GPIO_PD15/GTM1_TOUT3	A5	IO	OV _{DD}	—		
GPIO_PD16/GTM1_TIN4/GTM2_TIN3	B5	IO	OV _{DD}	—		
GPIO_PD17/GTM1_TGATE4/GTM2_TGATE3	C5	IO	OV _{DD}	—		
GPIO_PD18/GTM1_TOUT4/GTM2_TOUT3	A6	IO	OV _{DD}	—		
GPIO_PD19/CE_RISC1_INT/CE_EXT_REQ4	B6	IO	OV _{DD}	—		
GPIO_PD20/CLK18/BRGO6	D21	Ю	OV _{DD}	—		
GPIO_PD21/CLK16/BRG05/UPC1_CLKO	C19	Ю	OV _{DD}	—		
GPIO_PD22/CLK4/BRGO9/UCC2_CLKO	A7	Ю	OV _{DD}	—		
GPIO_PD23/CLK3/BRGO10/UCC3_CLKO	B7	IO	OV _{DD}	—		
GPIO_PD24/CLK10/BRGO2/UCC4_CLKO	A12	Ю	OV _{DD}	—		
GPIO_PD25/CLK13/BRGO16/UCC5_CLKO	B10	IO	OV _{DD}	—		
GPIO_PD26/CLK2/BRGO4/UCC1_CLKO	E4	IO	OV _{DD}	—		
GPIO_PD27/CLK1/BRGO3	F4	IO	OV _{DD}	—		
GPIO_PD28/CLK19/BRGO11	D15	IO	OV _{DD}	—		
GPIO_PD29/CLK15/BRGO8	C6	IO	OV _{DD}	—		
GPIO_PD30/CLK14	D6	IO	OV _{DD}	—		
GPIO_PD31/CLK7/BRGO15	E24	IO	OV _{DD}	—		
Power and Ground Supplies						
GV _{DD}	AA8, AA10, AA11, AA13, AA14, AA16, AA17, AA19, AA21, AB9, AB10, AB11, AB12, AB14, AB18, AB20, AB21, AC6, AC8, AC14, AC18	GV _{DD}				
OV _{DD}	E5, E6, E8, E9, E10, E12, E14, E15, E16, E18, E19, E20, E22, F5, F6, F8, F10, F14, F16, F19, F22, G22, H5, H6, H21, J5, J22, K21, K22, L5, L6, L22, M5, M22, N5, N21, N22, P6, P22, P23, R5, R23, T5, T21, T22, U6, U22, V5, V22, W22, Y5, AB5, AB6, AC5	OV _{DD}	_	_		

Table 55. MPC8323E PBGA Pinout Listing (continued)

MPC8323E PowerQUICC II Pro Integrated Communications Processor Family Hardware Specifications, Rev. 4

22.5 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). Table 60 shows the encodings for RCWL[COREPLL]. COREPLL values not listed in Table 60 should be considered reserved.

RCWL[COREPLL]		aara alku aab alk Patia	VCO Dividor			
0-1	2-5	6	COTE_CIK : CSD_CIK HAIIO			
nn	0000	n	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)		
00	0001	0	1:1	÷2		
01	0001	0	1:1	÷4		
10	0001	0	1:1	÷8		
11	0001	0	1:1	÷8		
00	0001	1	1.5:1	÷2		
01	0001	1	1.5:1	÷4		
10	0001	1	1.5:1	÷8		
11	0001	1	1.5:1	÷8		
00	0010	0	2:1	÷2		
01	0010	0	2:1	÷4		
10	0010	0	2:1	÷8		
11	0010	0	2:1	÷8		
00	0010	1	2.5:1	÷2		
01	0010	1	2.5:1	÷4		
10	0010	1	2.5:1	÷8		
11	0010	1	2.5:1	÷8		
00	0011	0	3:1	÷2		
01	0011	0	3:1	÷4		
10	0011	0	3:1	÷8		
11	0011	0	3:1	÷8		

Table 60. e300 Core PLL Configuration

NOTE

Core VCO frequency = core frequency \times VCO divider

VCO divider (RCWL[COREPLL[0:1]]) must be set properly so that the core VCO frequency is in the range of 500–800 MHz.

Clocking

22.6 QUICC Engine PLL Configuration

The QUICC Engine PLL is controlled by the RCWL[CEPMF] and RCWL[CEPDF] parameters. Table 61 shows the multiplication factor encodings for the QUICC Engine PLL.

RCWL[CEPMF]	RCWL[CEPDF]	QUICC Engine PLL Multiplication Factor = RCWL[CEPMF]/ (1 + RCWL[CEPDF)
00000-00001	0	Reserved
00010	0	× 2
00011	0	× 3
00100	0	× 4
00101	0	× 5
00110	0	× 6
00111	0	× 7
01000	0	× 8
01001–11111	0	Reserved

Table 61. QUICC Engine PLL Multiplication Factors

The RCWL[CEVCOD] denotes the QUICC Engine PLL VCO internal frequency as shown in Table 62.

Table 62. QUICC Engine PLL VCO Divider

RCWL[CEVCOD]	VCO Divider		
00	4		
01	8		
10	2		
11	Reserved		

NOTE

The VCO divider (RCWL[CEVCOD]) must be set properly so that the QUICC Engine VCO frequency is in the range of 300–600 MHz. The QUICC Engine frequency is not restricted by the CSB and core frequencies. The CSB, core, and QUICC Engine frequencies should be selected according to the performance requirements.

The QUICC Engine VCO frequency is derived from the following equations:

 $ce_clk = (\text{primary clock input} \times \text{CEPMF}) \div (1 + \text{CEPDF})$

QUICC Engine VCO Frequency = $ce_clk \times VCO$ divider $\times (1 + CEPDF)$

(edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_B + (R_{\theta JB} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_B = board temperature at the package perimeter (°C)

 $R_{\theta IB}$ = junction-to-board thermal resistance (°C/W) per JESD51-8

 P_D = power dissipation in package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

23.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_T = thermocouple temperature on top of package (°C)

 Ψ_{JT} = thermal characterization parameter (°C/W)

 P_D = power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

23.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

In some application environments, a heat sink is required to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case to ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com	603-635-5102
Interface material vendors include the following:	
Chomerics, Inc. 77 Dragon Ct. Woburn, MA 01801 Internet: www.chomerics.com	781-935-4850
Dow-Corning Corporation Dow-Corning Electronic Materials P.O. Box 994 Midland, MI 48686-0997 Internet: www.dowcorning.com	800-248-2481
Shin-Etsu MicroSi, Inc. 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com	888-642-7674
The Bergquist Company 18930 West 78th St. Chanhassen, MN 55317 Internet: www.bergquistcompany.com	800-347-4572

23.3 Heat Sink Attachment

When attaching heat sinks to these devices, an interface material is required. The best method is to use thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint lifetime of the package. Recommended maximum force on the top of the package is 10 lb (4.5 kg) force. If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or plastic surfaces and its performance verified under the application requirements.

23.3.1 Experimental Determination of the Junction Temperature with a Heat Sink

When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back calculate the case temperature using a separate measurement of the thermal resistance of the

System Design Information

output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_P is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.

Figure 45. Driver Impedance Measurement

The value of this resistance and the strength of the driver's current source can be found by making two measurements. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = (1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

Table 65 summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	20 Target	Z ₀	W
R _P	42 Target	25 Target	20 Target	Z ₀	W
Differential	NA	NA	NA	Z _{DIFF}	W

Table 65. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_i = 105^{\circ}C$.

24.6 Configuration Pin Multiplexing

The MPC8323E provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.