
E·XFL

AMD Xilinx - XC7V585T-1FF1157I Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	45525
Number of Logic Elements/Cells	582720
Total RAM Bits	29306880
Number of I/O	600
Number of Gates	-
Voltage - Supply	0.97V ~ 1.03V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1156-BBGA, FCBGA
Supplier Device Package	1157-FCBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc7v585t-1ff1157i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Min	Тур	Max	Units
GTX and GTH Tra	ansceivers				
V (11)	Analog supply voltage for the GTX/GTH transceiver QPLL frequency range \leq 10.3125 GHz^{(12)(13)}	0.97	1.0	1.08	V
V _{MGTAVCC} ⁽¹¹⁾	Analog supply voltage for the GTX/GTH transceiver QPLL frequency range > 10.3125 GHz	1.02	1.05	1.08	V
V _{MGTAVTT} ⁽¹¹⁾	Analog supply voltage for the GTX/GTH transmitter and receiver termination circuits	1.17	1.2	1.23	V
V _{MGTVCCAUX} ⁽¹¹⁾	Auxiliary analog Quad PLL (QPLL) voltage supply for the transceivers	1.75	1.80	1.85	V
V _{MGTAVTTRCAL} (11)	Analog supply voltage for the resistor calibration circuit of the GTX/GTH transceiver column	1.17	1.2	1.23	V
XADC					
V _{CCADC}	XADC supply relative to GNDADC	1.71	1.80	1.89	V
V _{REFP}	Externally supplied reference voltage	1.20	1.25	1.30	V
Temperature					
	Junction temperature operating range for commercial (C) temperature devices	0	_	85	°C
т _ј	Junction temperature operating range for extended (E) temperature devices	0	_	100	°C
	Junction temperature operating range for industrial (I) temperature devices	-40	-	100	°C

Table 2: Recommended Operating Conditions⁽¹⁾⁽²⁾ (Cont'd)

Notes:

- 1. All voltages are relative to ground.
- 2. For the design of the power distribution system, consult the 7 Series FPGAs PCB Design and Pin Planning Guide (UG483).
- 3. V_{CCINT} and V_{CCBRAM} should be connected to the same supply.
- 4. For more information on the VID bit see the Lowering Power using the Voltage Identification Bit application note (XAPP555).
- 5. Configuration data is retained even if V_{CCO} drops to 0V.
- 6. Includes V_{CCO} of 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.
- 7. The lower absolute voltage specification always applies.
- 8. See Table 10 for TMDS_33 specifications.
- 9. A total of 200 mA per bank should not be exceeded.
- 10. V_{CCBATT} is required only when using bitstream encryption. If battery is not used, connect V_{CCBATT} to either ground or V_{CCAUX}.
- 11. Each voltage listed requires the filter circuit described in the 7 Series FPGAs GTX/GTH Transceiver User Guide (UG476).
- 12. For data rates \leq 10.3125 Gb/s, V_{MGTAVCC} should be 1.0V ±3% for lower power consumption.
- 13. For lower power consumption, $V_{MGTAVCC}$ should be 1.0V ±3% over the entire CPLL frequency range.

Table 3: DC Characteristics Over Recommended Operating Conditions

Symbol	Description	Min	Typ <mark>(1)</mark>	Max	Units
V _{DRINT}	Data retention V_{CCINT} voltage (below which configuration data might be lost)	0.75	-	—	V
V _{DRI}	Data retention V_{CCAUX} voltage (below which configuration data might be lost)	1.5	-	-	V
I _{REF}	V _{REF} leakage current per pin	-	-	15	μA
ΙL	Input or output leakage current per pin (sample-tested)	-	-	15	μA
C _{IN} ⁽²⁾	Die input capacitance at the pad	-	-	8	pF
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 3.3V$	90	-	330	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 2.5V$	68	_	250	μA
I _{RPU}	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 1.8V$	34	_	220	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 1.5V$	23	_	150	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 1.2V$	12	-	120	μA

Symbol	Description	Min	Typ <mark>(1)</mark>	Max	Units
1	Pad pull-down (when selected) @ $V_{IN} = 3.3V$	68	-	330	μA
IRPD	Pad pull-down (when selected) @ V _{IN} = 1.8V	45	-	180	μA
ICCADC	Analog supply current, analog circuits in powered up state	-	-	25	mA
I _{BATT} ⁽³⁾	Battery supply current	_	-	150	nA
	The venin equivalent resistance of programmable input termination to V _{CCO} /2 (UNTUNED_SPLIT_40) for commercial (C), industrial (I), and extended (E) temperature devices	28	40	55	Ω
R _{IN_TERM} ⁽⁴⁾	The venin equivalent resistance of programmable input termination to V _{CCO} /2 (UNTUNED_SPLIT_50) for commercial (C), industrial (I), and extended (E) temperature devices	35	50	65	Ω
	The venin equivalent resistance of programmable input termination to V _{CCO} /2 (UNTUNED_SPLIT_60) for commercial (C), industrial (I), and extended (E) temperature devices	44	60	83	Ω
n	Temperature diode ideality factor	_	1.010	-	-
r	Temperature diode series resistance	-	2	-	Ω

Notes:

- 1. Typical values are specified at nominal voltage, 25°C.
- 2. This measurement represents the die capacitance at the pad, not including the package.
- 3. Maximum value specified for worst case process at 25°C.
- 4. Termination resistance to a $V_{CCO}/2$ level.

Table 4: VIN Maximum Allowed AC Voltage Overshoot and Undershoot for 3.3V HR I/O Banks⁽¹⁾

AC Voltage Overshoot	% of UI @-40°C to 100°C	AC Voltage Undershoot	% of UI @-40°C to 100°C
		-0.40	100
V . 0.55	100	-0.45	61.7
V _{CCO} + 0.55	100	-0.50	25.8
		-0.55	11.0
V _{CCO} + 0.60	46.6	-0.60	4.77
V _{CCO} + 0.65	21.2	-0.65	2.10
V _{CCO} + 0.70	9.75	-0.70	0.94
V _{CCO} + 0.75	4.55	-0.75	0.43
V _{CCO} + 0.80	2.15	-0.80	0.20
V _{CCO} + 0.85	1.02	-0.85	0.09
V _{CCO} + 0.90	0.49	-0.90	0.04
V _{CCO} + 0.95	0.24	-0.95	0.02

Notes:

1. A total of 200 mA per bank should not be exceeded.

Power-On/Off Power Supply Sequencing

The recommended power-on sequence is V_{CCINT} , V_{CCBRAM} , V_{CCAUX} , $V_{CCAUX, IO}$, and V_{CCO} to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended power-off sequence is the reverse of the power-on sequence. If V_{CCINT} and V_{CCBRAM} have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously. If V_{CCAUX} , V_{CCAUX} , V_{CCO} have the same recommended voltage levels then they can be powered by the same supply and ramped simultaneously.

For V_{CCO} voltages of 3.3V in HR I/O banks and configuration bank 0:

- The voltage difference between V_{CCO} and V_{CCAUX} must not exceed 2.625V for longer than T_{VCCO2VCCAUX} for each
 power-on/off cycle to maintain device reliability levels.
- The T_{VCCO2VCCAUX} time can be allocated in any percentage between the power-on and power-off ramps.

The recommended power-on sequence to achieve minimum current draw for the GTX/GTH transceivers is V_{CCINT} , $V_{MGTAVCC}$, $V_{MGTAVTT}$ OR $V_{MGTAVCC}$, V_{CCINT} , $V_{MGTAVTT}$. There is no recommended sequencing for $V_{MGTVCCAUX}$. Both $V_{MGTAVCC}$ and V_{CCINT} can be ramped simultaneously. The recommended power-off sequence is the reverse of the power-on sequence to achieve minimum current draw.

If these recommended sequences are not met, current drawn from V_{MGTAVTT} can be higher than specifications during power-up and power-down.

- When V_{MGTAVTT} is powered before V_{MGTAVCC} and V_{MGTAVTT} V_{MGTAVCC} > 150 mV and V_{MGTAVCC} < 0.7V, the V_{MGTAVTT} current draw can increase by 460 mA per transceiver during V_{MGTAVCC} ramp up. The duration of the current draw can be up to 0.3 x T_{MGTAVCC} (ramp time from GND to 90% of V_{MGTAVCC}). The reverse is true for power-down.
- When V_{MGTAVTT} is powered before V_{CCINT} and V_{MGTAVTT} V_{CCINT} > 150 mV and V_{CCINT} < 0.7V, the V_{MGTAVTT} current draw can increase by 50 mA per transceiver during V_{CCINT} ramp up. The duration of the current draw can be up to 0.3 x T_{VCCINT} (ramp time from GND to 90% of V_{CCINT}). The reverse is true for power-down.

DC Input and Output Levels

Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum V_{CCO} with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested.

I/O Standard		V _{IL}	VII	H	V _{OL}	V _{OH}	I _{OL}	I _{ОН}
1/O Standard	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA	mA
HSTL_I	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	8	-8
HSTL_I_12	-0.300	V _{REF} – 0.080	V _{REF} + 0.080	V _{CCO} + 0.300	25% V _{CCO}	75% V _{CCO}	6.3	-6.3
HSTL_I_18	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	8	-8
HSTL_II	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	16	-16
HSTL_II_18	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	16	-16
HSUL_12	-0.300	V _{REF} – 0.130	V _{REF} + 0.130	V _{CCO} + 0.300	20% V _{CCO}	80% V _{CCO}	0.1	-0.1
LVCMOS12	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	Note 3	Note 3
LVCMOS15, LVDCI_15	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	25% V _{CCO}	75% V _{CCO}	Note 4	Note 4
LVCMOS18, LVDCI_18	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} – 0.450	Note 5	Note 5
LVCMOS25	-0.300	0.700	1.700	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	Note 6	Note 6
LVCMOS33	-0.300	0.800	2.000	3.450	0.400	V _{CCO} - 0.400	Note 6	Note 6
LVTTL	-0.300	0.800	2.000	3.450	0.400	2.400	Note 7	Note 7
MOBILE_DDR	-0.300	20% V _{CCO}	80% V _{CCO}	V _{CCO} + 0.300	10% V _{CCO}	90% V _{CCO}	0.1	-0.1
PCI33_3	-0.400	30% V _{CCO}	50% V _{CCO}	V _{CCO} + 0.500	10% V _{CCO}	90% V _{CCO}	1.5	-0.5
SSTL12	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2-0.150	V _{CCO} /2 + 0.150	14.25	-14.25
SSTL135	-0.300	V _{REF} - 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	13.0	-13.0
SSTL135_R	-0.300	V _{REF} - 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	8.9	-8.9
SSTL15	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.175	V _{CCO} /2 + 0.175	13.0	-13.0
SSTL15_R	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.175	V _{CCO} /2 + 0.175	8.9	-8.9
SSTL18_I	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCO} + 0.300	$V_{CCO}/2 - 0.470$	$V_{CCO}/2 + 0.470$	8	-8
SSTL18_II	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCO} + 0.300	$V_{CCO}/2 - 0.600$	$V_{CCO}/2 + 0.600$	13.4	-13.4

Notes:

1. Tested according to relevant specifications.

2. 3.3V and 2.5V standards are only supported in 3.3V I/O banks.

3. Supported drive strengths of 2, 4, 6, or 8 mA in HP I/O banks and 4, 8, or 12 mA in HR I/O banks.

4. Supported drive strengths of 2, 4, 6, 8, 12, or 16 mA in HP I/O banks and 4, 8, 12, or 16 mA in HR I/O banks.

5. Supported drive strengths of 2, 4, 6, 8, 12, or 16 mA in HP I/O banks and 4, 8, 12, 16, or 24 mA in HR I/O banks.

6. Supported drive strengths of 4, 8, 12, or 16 mA

7. Supported drive strengths of 4, 8, 12, 16, or 24 mA

8. For detailed interface specific DC voltage levels, see the 7 Series FPGAs SelectIO Resources User Guide (UG471).

I/O Standard	V _{ICM} ⁽¹⁾			V _{ID} ⁽²⁾			V _{OCM} ⁽³⁾			V _{OD} ⁽⁴⁾		
	V, Min	V, Тур	V, Max	V, Min	V, Тур	V, Max	V, Min	V, Тур	V, Max	V, Min	V, Тур	V, Max
BLVDS_25	0.300	1.200	1.425	0.100	-	-	-	1.250	-		Note 5	
MINI_LVDS_25	0.300	1.200	V _{CCAUX}	0.200	0.400	0.600	1.000	1.200	1.400	0.300	0.450	0.600
PPDS_25	0.200	0.900	V _{CCAUX}	0.100	0.250	0.400	0.500	0.950	1.400	0.100	0.250	0.400
RSDS_25	0.300	0.900	1.500	0.100	0.350	0.600	1.000	1.200	1.400	0.100	0.350	0.600
TMDS_33	2.700	2.965	3.230	0.150	0.675	1.200	V _{CCO} -0.405	V _{CCO} -0.300	V _{CCO} -0.190	0.400	0.600	0.800

Table 10: Differential SelectIO DC Input and Output Levels

Notes:

1. V_{ICM} is the input common mode voltage.

2. V_{ID} is the input differential voltage $(Q - \overline{Q})$.

3. V_{OCM} is the output common mode voltage.

4. V_{OD} is the output differential voltage $(Q - \overline{Q})$.

5. V_{OD} for BLVDS will vary significantly depending on topology and loading.

6. LVDS_25 is specified in Table 12.

7. LVDS is specified in Table 13.

Table 11: Complementary Differential SelectIO DC Input and Output Levels

I/O Standard	V _{ICM} ⁽¹⁾		VIC	(2)	V _{OL} (3)	V _{OH} ⁽⁴⁾	I _{OL}	I _{ОН}	
1/O Standard	V, Min	V, Тур	V, Max	V, Min	V, Max	V, Max	V, Min	mA, Max	mA, Min
DIFF_HSTL_I	0.300	0.750	1.125	0.100	-	0.400	V _{CCO} 0.400	8.00	-8.00
DIFF_HSTL_I_18	0.300	0.900	1.425	0.100	_	0.400	V _{CCO} -0.400	8.00	-8.00
DIFF_HSTL_II	0.300	0.750	1.125	0.100	-	0.400	V _{CCO} -0.400	16.00	-16.00
DIFF_HSTL_II_18	0.300	0.900	1.425	0.100	_	0.400	V _{CCO} -0.400	16.00	-16.00
DIFF_HSUL_12	0.300	0.600	0.850	0.100	_	20% V _{CCO}	80% V _{CCO}	0.100	-0.100
DIFF_MOBILE_DDR	0.300	0.900	1.425	0.100	_	10% V _{CCO}	90% V _{CCO}	0.100	-0.100
DIFF_SSTL12	0.300	0.600	0.850	0.100	_	(V _{CCO} /2) – 0.150	(V _{CCO} /2) + 0.150	14.25	-14.25
DIFF_SSTL135	0.300	0.675	1.000	0.100	_	(V _{CCO} /2) – 0.150	(V _{CCO} /2) + 0.150	13.0	-13.0
DIFF_SSTL135_R	0.300	0.675	1.000	0.100	-	(V _{CCO} /2) - 0.150	(V _{CCO} /2) + 0.150	8.9	-8.9
DIFF_SSTL15	0.300	0.750	1.125	0.100	_	(V _{CCO} /2) – 0.175	(V _{CCO} /2) + 0.175	13.0	-13.0
DIFF_SSTL15_R	0.300	0.750	1.125	0.100	_	(V _{CCO} /2) – 0.175	(V _{CCO} /2) + 0.175	8.9	-8.9
DIFF_SSTL18_I	0.300	0.900	1.425	0.100	_	(V _{CCO} /2) - 0.470	(V _{CCO} /2) + 0.470	8.00	-8.00
DIFF_SSTL18_II	0.300	0.900	1.425	0.100	_	(V _{CCO} /2) - 0.600	(V _{CCO} /2) + 0.600	13.4	-13.4

Notes:

1. V_{ICM} is the input common mode voltage.

2. V_{ID} is the input differential voltage $(Q - \overline{Q})$.

3. V_{OL} is the single-ended low-output voltage.

4. V_{OH} is the single-ended high-output voltage.

AC Switching Characteristics

All values represented in this data sheet are based on the speed specifications in the ISE® Design Suite 14.5 and Vivado® Design Suite 2013.1 as outlined in Table 14.

Version In: Typical V _{CCIN}		Typical V _{CCINT}	Device
ISE 14.5	Vivado 2013.1	(Table 2)	Device
1.09	1.09	1.0V	XC7V585T, XC7VX485T
N/A	1.08	1.0V	XC7V2000T
1.08	1.08	1.0V	XC7VX330T, XC7VX415T, XC7VX550T, XC7VX690T, XC7VX980T
N/A	1.08	1.0V	XC7VX1140T

Table 14: Virtex-7 T and XT FPGA Speed Specification Version By Device/Speed Grade

Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows:

Advance Product Specification

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

Preliminary Product Specification

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Production Product Specification

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

Testing of AC Switching Characteristics

Internal timing parameters are derived from measuring internal test patterns. All AC switching characteristics are representative of worst-case supply voltage and junction temperature conditions.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Virtex-7 T and XT FPGAs.

Input Serializer/Deserializer Switching Characteristics

Table 24: ISERDES Switching Characteristics

Cumhal	Description		Unite			
Symbol	Description	-3	-3 -2/-2L/-2G -1		Units	
Setup/Hold for Control Lin	nes					
T _{ISCCK_BITSLIP} / T _{ISCKC_BITSLIP}	BITSLIP pin setup/hold with respect to CLKDIV	0.01/0.12	0.02/0.13	0.02/0.15	ns	
T _{ISCCK_CE} / T _{ISCKC_CE} ⁽²⁾	CE pin setup/hold with respect to CLK (for CE1)	0.39/0.02	0.44/-0.02	0.63/-0.02	ns	
T _{ISCCK_CE2} / T _{ISCKC_CE2} ⁽²⁾	CE pin setup/hold with respect to CLKDIV (for CE2)	-0.12/0.29	-0.12/0.31	-0.12/0.35	ns	
Setup/Hold for Data Lines	5					
T _{ISDCK_D} /T _{ISCKD_D}	D pin setup/hold with respect to CLK	-0.02/0.11	-0.02/0.12	-0.02/0.15	ns	
TISDCK_DDLY /TISCKD_DDLY	DDLY pin setup/hold with respect to CLK (using IDELAY) ⁽¹⁾	-0.02/0.11	-0.02/0.12	-0.02/0.15	ns	
T _{ISDCK_D_DDR} / TISCKD_D_DDR	D pin setup/hold with respect to CLK at DDR mode	-0.02/0.11	-0.02/0.12	-0.02/0.15	ns	
TISDCK_DDLY_DDR/ TISCKD_DDLY_DDR	D pin setup/hold with respect to CLK at DDR mode (using IDELAY) ⁽¹⁾	0.11/0.11	0.12/0.12	0.15/0.15	ns	
Sequential Delays						
T _{ISCKO_Q}	CLKDIV to out at Q pin	0.46	0.47	0.58	ns	
Propagation Delays						
T _{ISDO_DO}	D input to DO output pin	0.09	0.10	0.12	ns	

Notes:

1. Recorded at 0 tap value.

2. T_{ISCCK_CE2} and T_{ISCKC_CE2} are reported as $T_{ISCCK_CE}/T_{ISCKC_CE}$ in the timing report.

Input/Output Delay Switching Characteristics

Table 26: Input/Output Delay Switching Characteristics

Symbol	Deservition	:	Speed Grade	e	Units
Symbol	Description	-3	-2/-2L/-2G	-1	Units
IDELAYCTRL	·				
T _{DLYCCO_RDY}	Reset to ready for IDELAYCTRL	3.22	3.22	3.22	μs
F _{IDELAYCTRL_REF}	Attribute REFCLK frequency = 200.0 ⁽¹⁾	200	200	200	MHz
	Attribute REFCLK frequency = 300.0 ⁽¹⁾	300	300	N/A	MHz
IDELAYCTRL_REF_PRECISION	REFCLK precision	±10	±10	±10	MHz
T _{IDELAYCTRL_RPW}	Minimum reset pulse width	52.00	52.00	52.00	ns
IDELAY/ODELAY					
TIDELAYRESOLUTION	IDELAY/ODELAY chain delay resolution	1/	(32 x 2 x F _{RE}	:F)	ps
	Pattern dependent period jitter in delay chain for clock pattern. ⁽²⁾	0	0	0	ps per tap
$T_{\text{IDELAYPAT}_{\text{JIT}}}$ and $T_{\text{ODELAYPAT}_{\text{JIT}}}$	Pattern dependent period jitter in delay chain for random data pattern (PRBS 23) ⁽³⁾	±5	±5	±5	ps per tap
	Pattern dependent period jitter in delay chain for random data pattern (PRBS 23) ⁽⁴⁾	±9	±9	±9	ps per tap
Tidelay_Clk_max/ Todelay_Clk_max	Maximum frequency of CLK input to IDELAY/ODELAY	800	800	710	MHz
TIDCCK_CE / TIDCKC_CE	CE pin setup/hold with respect to C for IDELAY	0.11/0.10	0.14/0.12	0.18/0.14	ns
T _{ODCCK_CE} / T _{ODCKC_CE}	CE pin setup/hold with respect to C for ODELAY	0.14/0.03	0.16/0.04	0.19/0.05	ns
TIDCCK_INC/ TIDCKC_INC	INC pin setup/hold with respect to C for IDELAY	0.10/0.14	0.12/0.16	0.14/0.20	ns
T _{ODCCK_INC} / T _{ODCKC_INC}	INC pin setup/hold with respect to C for ODELAY	0.10/0.07	0.12/0.08	0.13/0.09	ns
T _{IDCCK_RST} / T _{IDCKC_RST}	RST pin setup/hold with respect to C for IDELAY	0.13/0.08	0.14/0.10	0.16/0.12	ns
T _{ODCCK_RST} / T _{ODCKC_RST}	RST pin setup/hold with respect to C for ODELAY	0.16/0.04	0.19/0.06	0.24/0.08	ns
T _{IDDO_IDATAIN}	Propagation delay through IDELAY	Note 5	Note 5	Note 5	ps
T _{ODDO_ODATAIN}	Propagation delay through ODELAY	Note 5	Note 5	Note 5	ps

Notes:

- 1. Average tap delay at 200 MHz = 78 ps, at 300 MHz = 52 ps.
- 2. When HIGH_PERFORMANCE mode is set to TRUE or FALSE.
- 3. When HIGH_PERFORMANCE mode is set to TRUE.
- $\label{eq:head} \textbf{4.} \quad \textbf{When HIGH_PERFORMANCE mode is set to FALSE}.$
- 5. Delay depends on IDELAY/ODELAY tap setting. See the timing report for actual values.

DSP48E1 Switching Characteristics

Table 32: DSP48E1 Switching Characteristics

Quantal	Description	Speed Grade		е	11
Symbol	Description	-3	-2/-2L/-2G	-1	Units
Setup and Hold Times of Data/Control Pins to	the Input Register Clock				
T _{DSPDCK_A_AREG} / T _{DSPCKD_A_AREG}	A input to A register CLK	0.24/0.12	0.27/0.14	0.31/0.16	ns
T _{DSPDCK_B_BREG} /T _{DSPCKD_B_BREG}	B input to B register CLK	0.28/0.13	0.32/0.14	0.39/0.15	ns
TDSPDCK_C_CREG/TDSPCKD_C_CREG	C input to C register CLK	0.15/0.15	0.17/0.17	0.20/0.20	ns
T _{DSPDCK_D_DREG} /T _{DSPCKD_D_DREG}	D input to D register CLK	0.21/0.19	0.27/0.22	0.35/0.26	ns
TDSPDCK_ACIN_AREG/TDSPCKD_ACIN_AREG	ACIN input to A register CLK	0.21/0.12	0.24/0.14	0.27/0.16	ns
TDSPDCK_BCIN_BREG/TDSPCKD_BCIN_BREG	BCIN input to B register CLK	0.22/0.13	0.25/0.14	0.30/0.15	ns
Setup and Hold Times of Data Pins to the Pipe	line Register Clock	1	1	1	1
T _{DSPDCK_{A, B}_MREG_MULT} T _{DSPCKD_B_MREG_MULT}	{A, B,} input to M register CLK using multiplier	2.04/0.01	2.34/-0.01	2.79/-0.01	ns
T _{DSPDCK_{A, B}_ADREG} / T _{DSPCKD_D_ADREG}	{A, D} input to AD register CLK	1.09/-0.02	1.25/-0.02	1.49/-0.02	ns
Setup and Hold Times of Data/Control Pins to	the Output Register Clock				
T _{DSPDCK_{A, B}} PREG_MULT [/] T _{DSPCKD_{A, B}} PREG_MULT	{A, B,} input to P register CLK using multiplier	3.41/0.24	3.90/-0.24	4.64/-0.24	ns
T _{DSPDCK_D_PREG_MULT} / T _{DSPCKD_D_PREG_MULT}	D input to P register CLK using multiplier	3.33/-0.62	3.81/-0.62	4.53/-0.62	ns
T _{DSPDCK_{A, B}} _PREG [/] T _{DSPCKD_{A, B}} _PREG	A or B input to P register CLK not using multiplier	1.47/-0.24	1.68/-0.24	2.00/-0.24	ns
T _{DSPDCK_C_PREG} / T _{DSPCKD_C_PREG}	C input to P register CLK not using multiplier	1.30/0.22	1.49/-0.22	1.78/-0.22	ns
TDSPDCK_PCIN_PREG TDSPCKD_PCIN_PREG	PCIN input to P register CLK	1.12/-0.13	1.28/-0.13	1.52/-0.13	ns
Setup and Hold Times of the CE Pins		1	ľ		r
TDSPDCK_{CEA;CEB}_{AREG;BREG}/ TDSPCKD_{CEA;CEB}_{AREG;BREG}	{CEA; CEB} input to {A; B} register CLK	0.30/0.05	0.36/0.06	0.44/0.09	ns
TDSPDCK_CEC_CREG/TDSPCKD_CEC_CREG	CEC input to C register CLK	0.24/0.08	0.29/0.09	0.36/0.11	ns
T _{DSPDCK_CED_DREG} /T _{DSPCKD_CED_DREG}	CED input to D register CLK	0.31/-0.02	0.36/-0.02	0.44/-0.02	ns
T _{DSPDCK_CEM_MREG} /T _{DSPCKD_CEM_MREG}	CEM input to M register CLK	0.26/0.15	0.29/0.17	0.33/0.20	ns
TDSPDCK_CEP_PREG/ TDSPCKD_CEP_PREG	CEP input to P register CLK	0.31/0.01	0.36/0.01	0.45/0.01	ns
Setup and Hold Times of the RST Pins		I.		I	
TDSPDCK_{RSTA; RSTB}_{AREG; BREG} TDSPCKD_{RSTA; RSTB}_{AREG; BREG}	{RSTA, RSTB} input to {A, B} register CLK	0.34/0.10	0.39/0.11	0.47/0.13	ns
TDSPDCK_RSTC_CREG/TDSPCKD_RSTC_CREG	RSTC input to C register CLK	0.06/0.22	0.07/0.24	0.08/0.26	ns
TDSPDCK_RSTD_DREG ^{/T} DSPCKD_RSTD_DREG	RSTD input to D register CLK	0.37/0.06	0.42/0.06	0.50/0.07	ns
TDSPDCK_RSTM_MREG/TDSPCKD_RSTM_MREG	RSTM input to M register CLK	0.18/0.18	0.20/0.21	0.23/0.24	ns
TDSPDCK_RSTP_PREG/TDSPCKD_RSTP_PREG	RSTP input to P register CLK	0.24/0.01	0.26/0.01	0.30/0.01	ns
Combinatorial Delays from Input Pins to Output	ut Pins	ı	I		
T _{DSPDO_A_CARRYOUT_MULT}	A input to CARRYOUT output using multiplier	3.21	3.69	4.39	ns
T _{DSPDO_D_P_MULT}	D input to P output using multiplier	3.15	3.61	4.30	ns

Table 42: Clock-Capable Clock Input to Output Delay With MMCM

Symbol	Description	Device	:	Speed Grade	e	Units
Symbol	Description	Device	-3	-2/-2L/-2G	-1	Units
SSTL15 Clock-Capa	able Clock Input to Output Delay using Output Flip-Flo	p, Fast Slew Rate,	with MMC	И.		
T _{ICKOFMMCMCC}	Clock-capable clock input and OUTFF with MMCM	XC7V585T	1.07	1.07	1.07	ns
		XC7V2000T	N/A	0.82	0.82	ns
		XC7VX330T	1.01	1.01	1.01	ns
		XC7VX415T	1.07	1.07	1.07	ns
		XC7VX485T	0.91	0.91	0.91	ns
		XC7VX550T	0.97	0.97	0.97	ns
		XC7VX690T	1.07	1.07	1.07	ns
		XC7VX980T	N/A	0.96	0.96	ns
		XC7VX1140T	N/A	0.82	0.82	ns

Notes:

- 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net in a single SLR.
- 2. MMCM output jitter is already included in the timing calculation.

Table 43: Clock-Capable Clock Input to Output Delay With PLL

Symbol	Description	Device		Speed Grade	e	Units
Symbol	Description	Device	-3	-2/-2L/-2G	-1	Units
SSTL15 Clock-Capa	able Clock Input to Output Delay using Output Flip-Flo	op, Fast Slew Rate,	with PLL.			
TICKOFPLLCC	Clock-capable clock input and OUTFF with PLL	XC7V585T	0.96	0.96	0.96	ns
		XC7V2000T	N/A	0.71	0.71	ns
		XC7VX330T	0.90	0.90	0.90	ns
		XC7VX415T	0.96	0.96	0.96	ns
		XC7VX485T	0.80	0.80	0.80	ns
		XC7VX550T	0.86	0.86	0.86	ns
		XC7VX690T	0.96	0.96	0.96	ns
		XC7VX980T	N/A	0.85	0.85	ns
		XC7VX1140T	N/A	0.71	0.71	ns

Notes:

- 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net in a single SLR.
- 2. PLL output jitter is already included in the timing calculation.

Table 44: Pin-to-Pin, Clock-to-Out using BUFIO

Symbol	Description	9	Speed Grade		Units
Symbol	Symbol Description -3 -2/-2L/-2G		-1	Units	
SSTL15 Clock-Capa	ble Clock Input to Output Delay using Output Flip-Flop, Fast Slew R	ate, <i>with</i> BU	FIO.		
T _{ICKOFCS}	Clock-to-out of I/O clock for HR I/O banks	4.93	5.52	6.20	ns
	Clock-to-out of I/O clock for HP I/O banks	4.85	5.44	6.11	ns

Table 47: Clock-Capable Clock Input Setup and Hold With PLL

Symbol	Description	Device	9	Speed Grade	е	Units
Symbol	Description	Device	-3	-2/-2L/-2G	-1	Units
Input Setup and He	old Time Relative to Clock-Capable Clock Input Signa	al for SSTL15 Sta	ndard. ⁽¹⁾⁽²⁾			
T _{PSPLLCC} /	No delay clock-capable clock input and IFF ⁽³⁾ with	XC7V585T	3.07/-0.21	3.40/-0.21	3.72/-0.21	ns
I PHPLLCC	LL	XC7V2000T	N/A	2.99/-0.35	3.27/-0.35	ns
		XC7VX330T	2.94/-0.26	3.26/-0.26	3.57/-0.26	ns
		XC7VX415T	3.09/-0.10	3.42/-0.10	3.75/-0.10	ns
		XC7VX485T	2.95/-0.26	3.26/-0.26	3.58/-0.26	ns
		XC7VX550T	3.08/-0.20	3.40/-0.20	3.74/-0.20	ns
		XC7VX690T	3.08/-0.10	3.40/-0.10	3.74/-0.10	ns
		XC7VX980T	N/A	3.39/0.21	3.72/-0.21	ns
		XC7VX1140T	N/A	3.00/-0.35	3.27/-0.35	ns

Notes:

- 1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.
- 2. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net in a single SLR.

3. IFF = Input Flip-Flop or Latch

4. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 48: Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO

Symbol	Description	9	Speed Grade	e	Units
Symbol	Description	-3 -2/-2L/-2G -1		-1	Units
Input Setup and Ho	old Time Relative to a Forwarded Clock Input Pin Using BUFIO for SS	TL15 Standa	rd.		
T _{PSCS} /T _{PHCS}	Setup/hold of I/O clock for HR I/O banks	-0.36/1.36	-0.36/1.50	-0.36/1.70	ns
	Setup/hold of I/O clock for HP I/O banks	-0.34/1.39	-0.34/1.53	-0.34/1.73	ns

Table 49: Sample Window

Symbol	Description	:	Speed Grade	•	Units
Symbol	Description	-3	-2/-2L/-2G	-1	Units
T _{SAMP}	Sampling error at receiver pins ⁽¹⁾	0.51	0.56	0.61	ns
T _{SAMP_BUFIO}	Sampling error at receiver pins using BUFIO ⁽²⁾	0.30	0.35	0.40	ns

Notes:

- 1. This parameter indicates the total sampling error of the Virtex-7 T and XT FPGAs DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the MMCM to capture the DDR input registers' edges of operation. These measurements include:
 - CLK0 MMCM jitter
 - MMCM accuracy (phase offset)
 - MMCM phase shift resolution
 - These measurements do not include package or clock tree skew.
- This parameter indicates the total sampling error of the Virtex-7 T and XT FPGAs DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the BUFIO clock network and IDELAY to capture the DDR input registers' edges of operation. These measurements do not include package or clock tree skew.

GTX Transceiver Specifications

GTX Transceiver DC Input and Output Levels

Table 51 summarizes the DC specifications of the GTX transceivers in Virtex-7 T and XT FPGAs. Consult the *7 Series FPGAs GTX/GTH Transceiver User Guide* (UG476) for further details.

Table 51: GTX Transceiver DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
DV _{PPOUT}	Differential peak-to-peak output voltage ⁽¹⁾	Transmitter output swing is set to maximum setting	_	_	1000	mV
V _{CMOUTDC}	DC common mode output voltage.	Equation based	N	V _{MGTAVTT} – DV _{PPO}	UT/4	mV
R _{OUT}	Differential output resistance		_	100	-	Ω
T _{OSKEW}	Transmitter output pair (TXP and	d TXN) intra-pair skew	_	2	12	ps
	Differential peak-to-peak input	>10.3125 Gb/s	150	-	1250	mV
DV _{PPIN}	voltage (external AC coupled)	6.6 Gb/s to 10.3125 Gb/s	150	_	1250	mV
		≤ 6.6 Gb/s	150	_	2000	mV
V _{IN}	Absolute input voltage	DC coupled V _{MGTAVTT} = 1.2V	-200	-	V _{MGTAVTT}	mV
V _{CMIN}	Common mode input voltage	DC coupled V _{MGTAVTT} = 1.2V	_	2/3 V _{MGTAVTT}	_	mV
R _{IN}	Differential input resistance		_	100	-	Ω
C _{EXT}	Recommended external AC cou	pling capacitor ⁽²⁾	-	100	-	nF

Notes:

1. The output swing and preemphasis levels are programmable using the attributes discussed in the *7 Series FPGAs GTX/GTH Transceiver User Guide* (UG476), and can result in values lower than reported in this table.

2. Other values can be used as appropriate to conform to specific protocols and standards.

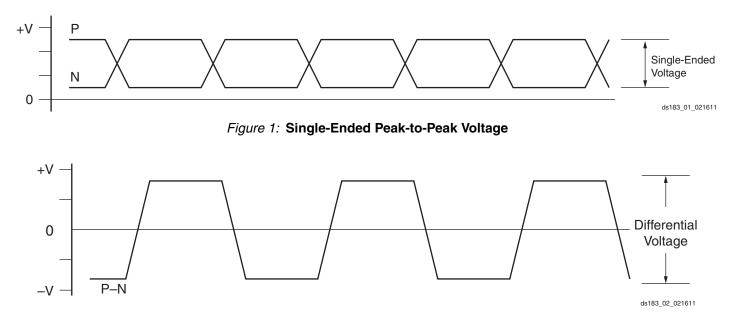


Figure 2: Differential Peak-to-Peak Voltage

Symbol	Desc	ription	Min	Тур	Max	Units
F _{GTXRX}	Serial data rate	RX oversampler not enabled	0.500	-	F _{GTXMAX}	Gb/s
T _{RXELECIDLE}	Time for RXELECIDLE to respon	nd to loss or restoration of data	-	10	-	ns
RX _{OOBVDPP}	OOB detect threshold peak-to-pe	eak	60	-	150	mV
RX _{SST}	Receiver spread-spectrum tracking ⁽¹⁾	Modulated @ 33 KHz	-5000	-	0	ppm
RX _{RL}	Run length (CID)		-	-	512	UI
	Data/REFCLK PPM offset	Bit rates ≤ 6.6 Gb/s	-1250	-	1250	ppm
RX _{PPMTOL}	tolerance	Bit rates > 6.6 Gb/s and ≤ 8.0 Gb/s	-700	-	700	ppm
		Bit rates > 8.0 Gb/s	-200	-	200	ppm
SJ Jitter Tolerance	(2)					
JT_SJ _{12.5}	Sinusoidal jitter (QPLL) ⁽³⁾	12.5 Gb/s	0.3	_	-	UI
JT_SJ _{11.18}	Sinusoidal jitter (QPLL) ⁽³⁾	11.18 Gb/s	0.3	-	-	UI
JT_SJ _{10.32}	Sinusoidal jitter (QPLL) ⁽³⁾	10.32 Gb/s	0.3	-	-	UI
JT_SJ _{9.95}	Sinusoidal jitter (QPLL) ⁽³⁾	9.95 Gb/s	0.3	-	-	UI
JT_SJ _{9.8}	Sinusoidal jitter (QPLL) ⁽³⁾	9.8 Gb/s	0.3	-	-	UI
JT_SJ _{8.0}	Sinusoidal jitter (QPLL) ⁽³⁾	8.0 Gb/s	0.44	-	-	UI
JT_SJ _{6.6_QPLL}	Sinusoidal jitter (QPLL) ⁽³⁾	6.6 Gb/s	0.48	-	-	UI
JT_SJ _{6.6_CPLL}	Sinusoidal jitter (CPLL) ⁽³⁾	6.6 Gb/s	0.44	-	-	UI
JT_SJ _{5.0}	Sinusoidal jitter (CPLL) ⁽³⁾	5.0 Gb/s	0.44	-	-	UI
JT_SJ _{4.25}	Sinusoidal jitter (CPLL) ⁽³⁾	4.25 Gb/s	0.44	-	-	UI
JT_SJ _{3.75}	Sinusoidal jitter (CPLL) ⁽³⁾	3.75 Gb/s	0.44	-	-	UI
JT_SJ _{3.2}	Sinusoidal jitter (CPLL) ⁽³⁾	3.2 Gb/s ⁽⁴⁾	0.45	-	-	UI
JT_SJ _{3.2L}	Sinusoidal jitter (CPLL) ⁽³⁾	3.2 Gb/s ⁽⁵⁾	0.45	-	-	UI
JT_SJ _{2.5}	Sinusoidal jitter (CPLL) ⁽³⁾	2.5 Gb/s ⁽⁶⁾	0.5	-	-	UI
JT_SJ _{1.25}	Sinusoidal jitter (CPLL) ⁽³⁾	1.25 Gb/s ⁽⁷⁾	0.5	-	-	UI
JT_SJ ₅₀₀	Sinusoidal jitter (CPLL) ⁽³⁾	500 Mb/s	0.4	-	-	UI
SJ Jitter Tolerance	with Stressed Eye ⁽²⁾		4			
JT_TJSE _{3.2}		3.2 Gb/s	0.70	_	-	UI
JT_TJSE _{6.6}	—— Total jitter with stressed eye ⁽⁸⁾	6.6 Gb/s	0.70	_	-	UI
JT_SJSE _{3.2}	Sinusoidal jitter with stressed	3.2 Gb/s	0.1	_	-	UI
JT_SJSE _{6.6}	eye ⁽⁸⁾	6.6 Gb/s	0.1	_	-	UI

Table 59: GTX Transceiver Receiver Switching Characteristics

Notes:

- 1. Using RXOUT_DIV = 1, 2, and 4.
- 2. All jitter values are based on a bit error ratio of $1e^{-12}$.
- 3. The frequency of the injected sinusoidal jitter is 80 MHz.
- 4. CPLL frequency at 3.2 GHz and RXOUT_DIV = 2.
- 5. CPLL frequency at 1.6 GHz and RXOUT_DIV = 1.
- 6. CPLL frequency at 2.5 GHz and RXOUT_DIV = 2.
- 7. CPLL frequency at 2.5 GHz and RXOUT_DIV = 4.
- 8. Composite jitter with RX equalizer enabled. DFE disabled.

Table 63: CEI-6G and CEI-11G Protocol Characteristics (GTX Transceivers)

Description	Line Rate (Mb/s)	Interface	Min	Max	Units				
CEI-6G Transmitter Jitter Gene	EI-6G Transmitter Jitter Generation								
Total transmitter jitter ⁽¹⁾	4976-6375	CEI-6G-SR	_	0.3	UI				
	4970-0375	CEI-6G-LR	_	0.3	UI				
CEI-6G Receiver High Frequen	cy Jitter Tolerance			•	•				
Total receiver jitter tolerance ⁽¹⁾	4976-6375	CEI-6G-SR	0.6	-	UI				
	4976-6375	CEI-6G-LR	0.95	-	UI				
CEI-11G Transmitter Jitter Gen	eration		i						
Total transmitter jitter ⁽²⁾	9950-11100	CEI-11G-SR	_	0.3	UI				
	9950-11100	CEI-11G-LR/MR	_	0.3	UI				
CEI-11G Receiver High Freque	ncy Jitter Tolerance		i						
		CEI-11G-SR	0.65	-	UI				
Total receiver jitter tolerance ⁽²⁾	9950-11100	CEI-11G-MR	0.65	-	UI				
		CEI-11G-LR	0.825	-	UI				

Notes:

1. Tested at most commonly used line rate of 6250 Mb/s using 390.625 MHz reference clock.

2. Tested at line rate of 9950 Mb/s using 155.46875 MHz reference clock and 11100 Mb/s using 173.4375 MHz reference clock.

Table 64: SFP+ Protocol Characteristics (GTX Transceivers)

Description	Line Rate (Mb/s)	Min	Max	Units
SFP+ Transmitter Jitter Generation				
	9830.40 ⁽¹⁾			
	9953.00			
Total transmitter jitter	10312.50	_	0.28	UI
	10518.75			
	11100.00			
SFP+ Receiver Frequency Jitter Tolerance	9	U	1	1
	9830.40 ⁽¹⁾			
	9953.00			
Total receiver jitter tolerance	10312.50	0.7	-	UI
	10518.75			
	11100.00			

Notes:

1. Line rated used for CPRI over SFP+ applications.

GTH Transceiver Specifications

GTH Transceiver DC Input and Output Levels

Table 66 summarizes the DC specifications of the GTH transceivers in Virtex-7 T and XT FPGAs. Consult the *7 Series FPGAs GTX/GTH Transceiver User Guide* (UG476) for further details.

Table 66: GTH Transceiver DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
	Differential peak-to-peak input	>10.3125 Gb/s	150	_	1250	mV
DV _{PPIN}	voltage (external AC coupled)	6.6 Gb/s to 10.3125 Gb/s	150	_	1250	mV
		≤ 6.6 Gb/s	150	_	2000	mV
V _{IN}	Absolute input voltage	DC coupled V _{MGTAVTT} = 1.2V	-400	_	V _{MGTAVTT}	mV
V _{CMIN}	Common mode input voltage	DC coupled V _{MGTAVTT} = 1.2V	_	2/3 V _{MGTAVTT}	_	mV
DV _{PPOUT}	Differential peak-to-peak output voltage ⁽¹⁾	Transmitter output swing is set to 1010	_	_	800	mV
V _{CMOUTDC}	Common mode output voltage: DC coupled	Equation based	V _{MGTAVTT} – DV _{PPOUT} /4			mV
V _{CMOUTAC}	Common mode output voltage: AC coupled	Equation based	V _{MGTAVTT} – DV _{PPOUT} /2			mV
R _{IN}	Differential input resistance		-	100	-	Ω
R _{OUT}	Differential output resistance		-	100	-	Ω
T _{OSKEW}	Transmitter output pair (TXP and TXN) intra-pair skew			-	10	ps
C _{EXT}	Recommended external AC cou	pling capacitor ⁽²⁾	-	100	-	nF

Notes:

1. The output swing and preemphasis levels are programmable using the attributes discussed in the *7 Series FPGAs GTX/GTH Transceiver User Guide* (UG476), and can result in values lower than reported in this table.

2. Other values can be used as appropriate to conform to specific protocols and standards.

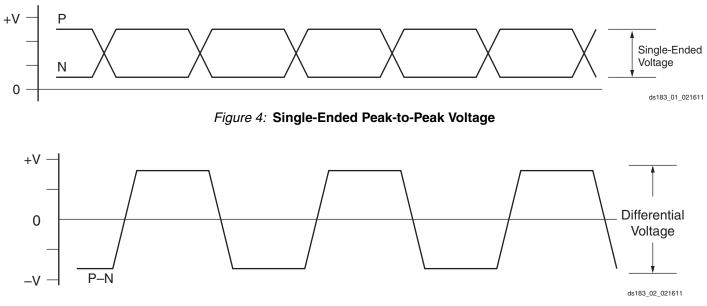


Table 67 summarizes the DC specifications of the clock input of the GTH transceiver. Consult the 7 Series FPGAs GTX/GTH Transceiver User Guide (UG476) for further details.

Symbol	DC Parameter	Min	Тур	Max	Units
V _{IDIFF}	Differential peak-to-peak input voltage	350	_	2000	mV
R _{IN}	Differential input resistance	-	100	_	Ω
C _{EXT}	Required external AC coupling capacitor	-	100	-	nF

GTH Transceiver Switching Characteristics

Consult the 7 Series FPGAs GTX/GTH Transceiver User Guide (UG476) for further information.

Table 68: GTH Transceiver Performance

Cumbal	Description	Outrout Divider	Speed Grade			
Symbol	Description	Output Divider	-3E/-2GE	-2(C&I)/-2LE	-1(C&I) ⁽¹⁾	- Units
F _{GTHMAX}	Maximum GTH transceiver	data rate	13.1	11.3	8.5	Gb/s
F _{GTHMIN}	Minimum GTH transceiver	data rate	0.500	0.500	0.500	Gb/s
		1	3.2-	10.3125	3.2-8.0	Gb/s
		2	1.6	6–5.16	1.6–4.0	Gb/s
F _{GTHCRANGE}	CPLL line rate range	4	0.8	3–2.58	0.8–2.0	Gb/s
		8	0.5	5–1.29	0.5–1.0	Gb/s
		16		N/A		Gb/s
		1	8.0–11.85	8.0–11.3	8.0-8.5	Gb/s
	QPLL line rate range 1	2	4.0-5.925	4.0–5.65	4.0-4.25	Gb/s
F _{GTHQRANGE1}		4	2.0-2.9625	2.0–2.825	2.0-2.125	Gb/s
		8	1.0-1.48125	1.0–1.4125	1.0-1.0625	Gb/s
		16	N/A			Gb/s
		1	11.85–13.1	N//	4	Gb/s
		2	5.925-6.55	N//	A	Gb/s
F _{GTHQRANGE2}	QPLL line rate range 2	4	2.96-3.275	N/A		Gb/s
		8	1.48–1.63	N//	A	Gb/s
		16	0.74–0.81	N//	4	Gb/s
F _{GCPLLRANGE}	GTH transceiver CPLL frequency range		1.6	5-5.16	1.6–4.0	GHz
F _{GQPLLRANGE1}	GTH transceiver QPLL free	uency range 1	8.0–11.85	8.0–11.3	8.0-8.5	GHz
F _{GQPLLRANGE2}	GTH transceiver QPLL free	uency range 2	11.85–13.1	N//	4	GHz

Notes:

 The -1 speed grade requires a 4-byte internal data width for operation above 5.0 Gb/s. A -1 speed grade with V_{CCINT} = 0.9V, as described in the *Lowering Power using the Voltage Identification Bit* application note (XAPP555), requires a 4-byte internal data width for operation above 3.8 Gb/s.

Table 69: GTH Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics

Symbol Description		Speed Grade				
Symbol	Description	-3/-2G	-2L	-2	-1	Units
F _{GTHDRPCLK}	GTHDRPCLK maximum frequency	175	175	175	156	MHz

Symbol	Description	Condition	Min	Тур	Max	Units
TJ _{8.0_CPLL}	Total jitter ⁽³⁾⁽⁴⁾	8.0 Gb/s	-	-	0.32	UI
DJ _{8.0_CPLL}	Deterministic jitter ⁽³⁾⁽⁴⁾	0.0 GD/S	-	-	0.17	UI
TJ _{6.6_QPLL}	Total jitter ⁽²⁾⁽⁴⁾	6.6 Gb/s	-	-	0.28	UI
DJ _{6.6_QPLL}	Deterministic jitter ⁽²⁾⁽⁴⁾	0.0 Gb/S	-	-	0.17	UI
TJ _{6.6_CPLL}	Total jitter ⁽³⁾⁽⁴⁾	6.6 Gb/s	-	-	0.30	UI
DJ _{6.6_CPLL}	Deterministic jitter ⁽³⁾⁽⁴⁾	0.0 Gb/S	-	-	0.15	UI
TJ _{5.0}	Total jitter ⁽³⁾⁽⁴⁾	5.0 Gb/s	-	-	0.30	UI
DJ _{5.0}	Deterministic jitter ⁽³⁾⁽⁴⁾	5.0 Gb/S	-	-	0.15	UI
TJ _{4.25}	Total jitter ⁽³⁾⁽⁴⁾	4.25 Gb/s	-	-	0.30	UI
DJ _{4.25}	Deterministic jitter ⁽³⁾⁽⁴⁾	4.25 Gb/S	-	-	0.15	UI
TJ _{3.75}	Total jitter ⁽³⁾⁽⁴⁾	3.75 Gb/s	-	-	0.30	UI
DJ _{3.75}	Deterministic jitter ⁽³⁾⁽⁴⁾	3.75 Gb/S	-	-	0.15	UI
TJ _{3.20}	Total jitter ⁽³⁾⁽⁴⁾	3.20 Gb/s ⁽⁵⁾	-	-	0.2	UI
DJ _{3.20}	Deterministic jitter ⁽³⁾⁽⁴⁾	3.20 GD/S(*)	-	-	0.1	UI
TJ _{3.20L}	Total jitter ⁽³⁾⁽⁴⁾	3.20 Gb/s ⁽⁶⁾	-	-	0.32	UI
DJ _{3.20L}	Deterministic jitter ⁽³⁾⁽⁴⁾	3.20 GD/S(*/	-	-	0.16	UI
TJ _{2.5}	Total jitter ⁽³⁾⁽⁴⁾	2.5 Gb/s ⁽⁷⁾	_	-	0.20	UI
DJ _{2.5}	Deterministic jitter ⁽³⁾⁽⁴⁾	2.5 GD/S(*)	-	-	0.08	UI
TJ _{1.25}	Total jitter ⁽³⁾⁽⁴⁾	1.25 Gb/s ⁽⁸⁾	-	-	0.15	UI
DJ _{1.25}	Deterministic jitter ⁽³⁾⁽⁴⁾	1.20 GD/S(0)	-	-	0.06	UI
TJ ₅₀₀	Total jitter ⁽³⁾⁽⁴⁾	500 Mb/s	-	-	0.1	UI
DJ ₅₀₀	Deterministic jitter ⁽³⁾⁽⁴⁾		-	-	0.03	UI

Table 73: GTH Transceiver Transmitter	Switching Characteristics (Cont'd)
---------------------------------------	------------------------------------

Notes:

1. Using same REFCLK input with TX phase alignment enabled for up to 12 consecutive transmitters (three fully populated GTH Quads).

2. Using QPLL_FBDIV = 40, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.

- 3. Using CPLL_FBDIV = 2, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.
- 4. All jitter values are based on a bit-error ratio of 1e⁻¹².
- 5. CPLL frequency at 3.2 GHz and TXOUT_DIV = 2.
- 6. CPLL frequency at 1.6 GHz and TXOUT_DIV = 1.
- 7. CPLL frequency at 2.5 GHz and TXOUT_DIV = 2.
- 8. CPLL frequency at 2.5 GHz and TXOUT_DIV = 4.

Table 80: CPRI Protocol Characteristics (GTH Transceivers)

Description	Line Rate (Mb/s)	Min	Max	Units
CPRI Transmitter Jitter Generation				
	614.4	-	0.35	UI
	1228.8	-	0.35	UI
	2457.6	-	0.35	UI
Total transmitter jitter	3072.0	-	0.35	UI
	4915.2	-	0.3	UI
	6144.0	-	0.3	UI
	9830.4	-	Note 1	UI
CPRI Receiver Frequency Jitter Tolerance	·			
	614.4	0.65	-	UI
	1228.8	0.65	-	UI
	2457.6	0.65	-	UI
Total receiver jitter tolerance	3072.0	0.65	-	UI
	4915.2	0.95	-	UI
	6144.0	0.95	-	UI
	9830.4	Note 1	-	UI

Notes:

1. Tested per SFP+ specification, see Table 79.

Integrated Interface Block for PCI Express Designs Switching Characteristics

More information and documentation on solutions for PCI Express designs can be found at: http://www.xilinx.com/technology/protocols/pciexpress.htm

Table 81: Maximum Performance for PCI Express Designs

Symbol	Description		Units		
	Description	-3	-2/-2L/-2G	-1	Units
F _{PIPECLK}	Pipe clock maximum frequency	250.00	250.00	250.00	MHz
F _{USERCLK}	User clock maximum frequency	500.00	500.00	250.00	MHz
F _{USERCLK2}	User clock 2 maximum frequency	250.00	250.00	250.00	MHz
F _{DRPCLK}	DRP clock maximum frequency	250.00	250.00	250.00	MHz

XADC Specifications

Table 82: XADC Specifications

Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units	
$V_{CCADC} = 1.8V \pm 5\%$, $V_{REFP} = 7$	I.25V, V _{REFN}	= 0V, ADCCLK = 26 MHz, $T_j = -40^{\circ}C$ to 100°C,	Typical va	lues at	Г _ј =+40°С		
ADC Accuracy ⁽¹⁾							
Resolution			12	Ι	-	Bits	
Integral Nonlinearity ⁽²⁾	INL		-	Ι	±3	LSBs	
Differential Nonlinearity	DNL	No missing codes, guaranteed monotonic	-	I	±1	LSBs	
Offset Error		Offset calibration enabled	-	I	±6	LSBs	
Gain Error		Gain calibration disabled	-	I	±0.5	%	
Offset Matching		Offset calibration enabled	_	-	4	LSBs	
Gain Matching		Gain calibration disabled	_	Ι	0.3	%	
Sample Rate			0.1	-	1	MS/s	
Signal to Noise Ratio ⁽²⁾	SNR	F _{SAMPLE} = 500KS/s, F _{IN} = 20KHz	60	-	-	dB	
RMS Code Noise		External 1.25V reference	_	-	2	LSBs	
		On-chip reference	_	3	-	LSBs	
Total Harmonic Distortion ⁽²⁾	THD	F _{SAMPLE} = 500KS/s, F _{IN} = 20KHz	_	70	_	dB	
ADC Accuracy at Extended T	emperatures	s (-55°C to 125°C)					
Resolution	-		10	_	_	Bits	
Integral Nonlinearity ⁽²⁾	INL		_	_	±1	LSB	
Differential Nonlinearity	DNL	No missing codes, guaranteed monotonic	_	-	±1	(at 10 bits)	
Analog Inputs ⁽³⁾							
ADC Input Ranges		Unipolar operation	0	_	1	V	
		Bipolar operation	-0.5	_	+0.5	V	
		Unipolar common mode range (FS input)	0	_	+0.5	V	
		Bipolar common mode range (FS input)	+0.5	_	+0.6	V	
Maximum External Channel Inp	ut Ranges	Adjacent channels set within these ranges should not corrupt measurements on adjacent channels	-0.1	_	V _{CCADC}	V	
Auxiliary Channel Full Resolution Bandwidth	FRBW		250	_	-	KHz	
On-Chip Sensors			1				
Temperature Sensor Error		$T_{j} = -40^{\circ}C$ to 100°C.	_	_	±4	°C	
		$T_{i} = -55^{\circ}C \text{ to } +125^{\circ}C$	_	-	±6	°C	
Supply Sensor Error		Measurement range of V _{CCAUX} 1.8V \pm 5% T _j = -40°C to +100°C	_	_	±1	%	
		Measurement range of V _{CCAUX} 1.8V \pm 5% T _i = -55°C to +125°C	-	_	±2	%	
Conversion Rate ⁽⁴⁾		, ·	I		1		
Conversion Time - Continuous	t _{CONV}	Number of ADCCLK cycles	26	_	32	cycle	
Conversion Time - Event	t _{CONV}	Number of CLK cycles	_	_	21	cycle	
DRP Clock Frequency	DCLK	DRP clock frequency	8	_	250	MHz	
ADC Clock Frequency	ADCCLK	Derived from DCLK	1	_	26	MHz	
DCLK Duty Cycle		1	40	_	60	%	

Revision History

The following table shows the revision history	v for this document
The following table shows the revision histor	

Date	Version	Description
03/01/2011	1.0	Initial Xilinx release.
10/05/2011	1.1	Removed the XC7V285T, XC7V450T, and XC7V855T devices from the entire data sheet. Added the XC7VX330T, XC7VX415T, XC7VX550T, XC7VX690T, XC7VX980T, and XC7VX1140T devices to the entire data sheet. Replaced -1L with -2L throughout this data sheet. Added the extended temperature range discussion to page 1. Updated Min/Max values and removed Note 5 from Table 2. Clarified Power-On/Off Power Supply Sequencing power sequencing discussion including adding T _{VCCO2VCCAUX} to Table 8. Added I _{CCAUX IO} and I _{CCBRAM} to Table 6 and Table 7. Updated V _{ICM} in Table 12 and Table 13. Added Note 1 to Table 12. Updated Table 84 including adding Note 1. Added Table 13. Revised the reference clock maximum frequency (F _{GCLK}) in Table 55. Added Table 57. Added GTH Transceiver Specifications section. Removed erroneous instances of HSTL_III from Table 20. Removed the <i>I/O Standard Adjustment Measurement Methodology</i> section. Use IBIS for more accurate information and measurements. Updated T _{IDELAYPAT_JIT} in Table 26. Added T _{AS} /T _{AH} to Table 28. Added T _{RDCK_DI} wF NC ^T RCKD_DI wF NC and T _{RDCK DI} RF ^T RCKD_DI_RF to Table 31. Completely updated the specifications in Table 83. Updated MMCM_F _{INDUTY} and added F _{INJITTER} , T _{OUTJITTER} , and T _{EXTEDVAR} and Note 3 to Table 38. Updated the AC Switching Characteristics section. Updated the
		Table 50 package list. Updated the Notice of Disclaimer.
11/07/2011	1.2	Added -2G speed grade, where appropriate, throughout document. Revised the V _{OCM} specification in Table 12. Updated the AC Switching Characteristics based upon the ISE 13.3 v1.02 speed specification throughout document including Table 19 and Table 20. Added MMCM to the symbol names of a few specifications in Table 38 and PLL to the symbol names in Table 39. In Table 40 through Table 47, updated the pin-to-pin description with the SSTL15 standard. Updated units in Table 49.
02/13/2012	1.3	Updated summary description on page 1. In Table 2, revised V_{CCO} for the 3.3V HR I/O banks and updated T _j . Added typical numbers to Table 3. Updated the notes in Table 6. Added MGTAVCC, MGTAVTT, and MGTVCCAUX power supply ramp times to Table 8. Rearranged Table 9, added Mobile_DDR, HSTL_I_18, HSTL_II_18, HSUL_12, SSTL135_R, SSTL15_R, and SSTL12 and removed DIFF_SSTL135, DIFF_SSTL18_I, DIFF_SSTL18_II, DIFF_HSTL_I, and DIFF_HSTL_II. Added Table 10 and Table 11. Revised the specifications in Table 12 and Table 13. Updated the eFUSE Programming Conditions section and removed the endurance table. Added the IO_FIFO Switching Characteristics table. Revised I _{CCADC} and updated Note 1 in Table 82. Revised DDR LVDS transmitter data width in Table 17. Updated the AC Switching Characteristics based upon the ISE 13.4 v1.03 speed specifications in Table 83. Updated Note 1 in Table 28 as they are no longer applicable. Updated specifications section: Revised V _{IN} , and added I _{DCIN} and I _{DCOUT} to Table 51. Updated and added notes to Table 53. In Table 55, revised F _{GCLK} , removed T _{PHASE} , and added T _{DLOCK} . Revised specifications and added Note 2 to Table 57. Added Table 58 and Table 59 along with GTX Transceiver Protocol Jitter Characteristics in Table 60 through Table 65.
05/23/2012	1.4	Reorganized entire data sheet including adding Table 44 and Table 48. Updated T_{SOL} in Table 1. Updated I_{BATT} and added R_{IN_TERM} to Table 3. Added values to Table 6 and Table 7. Updated Power-On/Off Power Supply Sequencing section with regards to GTX/GTH transceivers. Updated many parameters in Table 9, including SSTL135 and SSTL135_R. Removed V_{OX} column and added DIFF_HSUL_12 to Table 11. Updated V_{OL} in Table 12. Updated Table 17 and removed notes 2 and 3. Updated Table 18. Updated the AC Switching Characteristics section based upon the ISE 14.1 v1.04 for the -3, -2, -2L (1.0V), -1, and v1.05 for the -2L (0.9V) speed specifications throughout the document. In Table 31, updated Reset Delays section including Note 10 and Note 11. Added data for T_{LOCK} and T_{DLOCK} in Table 55. Updated many of the XADC specifications in Table 82 and added Note 2. Updated and moved <i>Dynamic Reconfiguration Port (DRP) for MMCM Before and After DCLK</i> section from Table 83 to Table 39.