AMD Xilinx - XC7VX485T-1FFG1927I Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	37950
Number of Logic Elements/Cells	485760
Total RAM Bits	37969920
Number of I/O	600
Number of Gates	-
Voltage - Supply	0.97V ~ 1.03V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1924-BBGA, FCBGA
Supplier Device Package	1927-FCBGA (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc7vx485t-1ffg1927i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Min	Тур	Max	Units
GTX and GTH Tra	ansceivers				
)/ (11)	Analog supply voltage for the GTX/GTH transceiver QPLL frequency range \leq 10.3125 GHz^{(12)(13)}	0.97	1.0	1.08	V
VMGTAVCC ⁽¹¹⁾	Analog supply voltage for the GTX/GTH transceiver QPLL frequency range > 10.3125 GHz	1.02	1.05	1.08	V
V _{MGTAVTT} ⁽¹¹⁾	Analog supply voltage for the GTX/GTH transmitter and receiver termination circuits	1.17	1.2	1.23	V
V _{MGTVCCAUX} ⁽¹¹⁾	Auxiliary analog Quad PLL (QPLL) voltage supply for the transceivers	1.75	1.80	1.85	V
V _{MGTAVTTRCAL} ⁽¹¹⁾	nalog supply voltage for the resistor calibration circuit of the GTX/GTH ansceiver column		1.2	1.23	V
XADC					
V _{CCADC}	XADC supply relative to GNDADC	1.71	1.80	1.89	V
V _{REFP}	Externally supplied reference voltage	1.20	1.25	1.30	V
Temperature					
	Junction temperature operating range for commercial (C) temperature devices	0	_	85	°C
Тј	Junction temperature operating range for extended (E) temperature devices	0	-	100	°C
	Junction temperature operating range for industrial (I) temperature devices	-40	_	100	°C

Table 2: Recommended Operating Conditions⁽¹⁾⁽²⁾ (Cont'd)

Notes:

- 1. All voltages are relative to ground.
- 2. For the design of the power distribution system, consult the 7 Series FPGAs PCB Design and Pin Planning Guide (UG483).
- 3. V_{CCINT} and V_{CCBRAM} should be connected to the same supply.
- 4. For more information on the VID bit see the Lowering Power using the Voltage Identification Bit application note (XAPP555).
- 5. Configuration data is retained even if V_{CCO} drops to 0V.
- 6. Includes V_{CCO} of 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.
- 7. The lower absolute voltage specification always applies.
- 8. See Table 10 for TMDS_33 specifications.
- 9. A total of 200 mA per bank should not be exceeded.
- 10. V_{CCBATT} is required only when using bitstream encryption. If battery is not used, connect V_{CCBATT} to either ground or V_{CCAUX}.
- 11. Each voltage listed requires the filter circuit described in the 7 Series FPGAs GTX/GTH Transceiver User Guide (UG476).
- 12. For data rates \leq 10.3125 Gb/s, V_{MGTAVCC} should be 1.0V ±3% for lower power consumption.
- 13. For lower power consumption, $V_{MGTAVCC}$ should be 1.0V ±3% over the entire CPLL frequency range.

Table 3: DC Characteristics Over Recommended Operating Conditions

Symbol	Description	Min	Typ <mark>(1)</mark>	Max	Units
V _{DRINT}	Data retention V_{CCINT} voltage (below which configuration data might be lost)	0.75	-	—	V
V _{DRI}	Data retention V_{CCAUX} voltage (below which configuration data might be lost)	1.5	-	_	V
I _{REF}	V _{REF} leakage current per pin	-	-	15	μA
IL	Input or output leakage current per pin (sample-tested)	-	-	15	μA
C _{IN} ⁽²⁾	Die input capacitance at the pad	-	-	8	pF
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 3.3V$	90	-	330	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 2.5V$	68	-	250	μA
I _{RPU}	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 1.8V$	34	-	220	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 1.5V$	23	-	150	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 1.2V$	12	-	120	μA

Table 6: Typical Quiescent Supply Current (Cont'd)

Symbol	Description	Davias		Unite		
Symbol	Description	Device	-3	-2/-2L/-2G	-1	Units
I _{CCAUXQ}	Quiescent V _{CCAUX} supply current	XC7V585T	114	114	114	mA
		XC7V2000T	N/A	315	315	mA
		XC7VX330T	73	73	73	mA
		XC7VX415T	88	88	88	mA
		XC7VX485T	104	104	104	mA
		XC7VX550T	147	147	147	mA
		XC7VX690T	147	147	147	mA
		XC7VX980T	N/A	183	183	mA
		XC7VX1140T	N/A	250	250	mA
I _{CCAUX_IOQ} Q	Quiescent V _{CCAUX_IO} supply current	XC7V585T	2	2	2	mA
		XC7V2000T	N/A	2	2	mA
		XC7VX330T	2	2	2	mA
		XC7VX415T	2	2	2	mA
		XC7VX485T	2	2	2	mA
		XC7VX550T	2	2	2	mA
		XC7VX690T	2	2	2	mA
		XC7VX980T	N/A	2	2	mA
		XC7VX1140T	N/A	2	2	mA
I _{CCBRAMQ}	Quiescent V _{CCBRAM} supply current	XC7V585T	34	34	34	mA
		XC7V2000T	N/A	56	56	mA
		XC7VX330T	32	32	32	mA
		XC7VX415T	38	38	38	mA
		XC7VX485T	44	44	44	mA
		XC7VX550T	63	63	63	mA
		XC7VX690T	63	63	63	mA
		XC7VX980T	N/A	65	65	mA
		XC7VX1140T	N/A	81	81	mA

Notes:

1. Typical values are specified at nominal voltage, 85°C junction temperatures (T_i) with single-ended SelectIO resources.

2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.

3. Use the Xilinx Power Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate static power consumption for conditions other than those specified.

Power-On/Off Power Supply Sequencing

The recommended power-on sequence is V_{CCINT} , V_{CCBRAM} , V_{CCAUX} , $V_{CCAUX, IO}$, and V_{CCO} to achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended power-off sequence is the reverse of the power-on sequence. If V_{CCINT} and V_{CCBRAM} have the same recommended voltage levels then both can be powered by the same supply and ramped simultaneously. If V_{CCAUX} , V_{CCAUX} , V_{CCO} have the same recommended voltage levels then they can be powered by the same supply and ramped simultaneously.

For V_{CCO} voltages of 3.3V in HR I/O banks and configuration bank 0:

- The voltage difference between V_{CCO} and V_{CCAUX} must not exceed 2.625V for longer than T_{VCCO2VCCAUX} for each
 power-on/off cycle to maintain device reliability levels.
- The T_{VCCO2VCCAUX} time can be allocated in any percentage between the power-on and power-off ramps.

The recommended power-on sequence to achieve minimum current draw for the GTX/GTH transceivers is V_{CCINT} , $V_{MGTAVCC}$, $V_{MGTAVTT}$ OR $V_{MGTAVCC}$, V_{CCINT} , $V_{MGTAVTT}$. There is no recommended sequencing for $V_{MGTVCCAUX}$. Both $V_{MGTAVCC}$ and V_{CCINT} can be ramped simultaneously. The recommended power-off sequence is the reverse of the power-on sequence to achieve minimum current draw.

If these recommended sequences are not met, current drawn from V_{MGTAVTT} can be higher than specifications during power-up and power-down.

- When V_{MGTAVTT} is powered before V_{MGTAVCC} and V_{MGTAVTT} V_{MGTAVCC} > 150 mV and V_{MGTAVCC} < 0.7V, the V_{MGTAVTT} current draw can increase by 460 mA per transceiver during V_{MGTAVCC} ramp up. The duration of the current draw can be up to 0.3 x T_{MGTAVCC} (ramp time from GND to 90% of V_{MGTAVCC}). The reverse is true for power-down.
- When V_{MGTAVTT} is powered before V_{CCINT} and V_{MGTAVTT} V_{CCINT} > 150 mV and V_{CCINT} < 0.7V, the V_{MGTAVTT} current draw can increase by 50 mA per transceiver during V_{CCINT} ramp up. The duration of the current draw can be up to 0.3 x T_{VCCINT} (ramp time from GND to 90% of V_{CCINT}). The reverse is true for power-down.

DC Input and Output Levels

Values for V_{IL} and V_{IH} are recommended input voltages. Values for I_{OL} and I_{OH} are guaranteed over the recommended operating conditions at the V_{OL} and V_{OH} test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum V_{CCO} with the respective V_{OL} and V_{OH} voltage levels shown. Other standards are sample tested.

Table	<u>g</u> .	SelectIO	DC Inp	it and	Output	Levels ⁽	1)(2)
iubic	υ.	COLOUIO			output	LCVCIO.	

1/O Standard		V _{IL}	VII	V _{IH} V _{OL} V _{OH}		V _{OH}	I _{OL}	I _{ОН}
i/O Stanuaru	V, Min	V, Max	V, Min	V, Max	V, Max	V, Min	mA	mA
HSTL_I	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	8	-8
HSTL_I_12	-0.300	V _{REF} – 0.080	V _{REF} + 0.080	V _{CCO} + 0.300	25% V _{CCO}	75% V _{CCO}	6.3	-6.3
HSTL_I_18	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	8	-8
HSTL_II	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	16	-16
HSTL_II_18	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	16	-16
HSUL_12	-0.300	V _{REF} – 0.130	V _{REF} + 0.130	V _{CCO} + 0.300	20% V _{CCO}	80% V _{CCO}	0.1	-0.1
LVCMOS12	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.400	$V_{CCO} - 0.400$	Note 3	Note 3
LVCMOS15, LVDCI_15	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	25% V _{CCO}	75% V _{CCO}	Note 4	Note 4
LVCMOS18, LVDCI_18	-0.300	35% V _{CCO}	65% V _{CCO}	V _{CCO} + 0.300	0.450	V _{CCO} – 0.450	Note 5	Note 5
LVCMOS25	-0.300	0.700	1.700	V _{CCO} + 0.300	0.400	V _{CCO} - 0.400	Note 6	Note 6
LVCMOS33	-0.300	0.800	2.000	3.450	0.400	V _{CCO} - 0.400	Note 6	Note 6
LVTTL	-0.300	0.800	2.000	3.450	0.400	2.400	Note 7	Note 7
MOBILE_DDR	-0.300	20% V _{CCO}	80% V _{CCO}	V _{CCO} + 0.300	10% V _{CCO}	90% V _{CCO}	0.1	-0.1
PCI33_3	-0.400	30% V _{CCO}	50% V _{CCO}	$V_{CCO} + 0.500$	10% V _{CCO}	90% V _{CCO}	1.5	-0.5
SSTL12	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	14.25	-14.25
SSTL135	-0.300	V _{REF} - 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	13.0	-13.0
SSTL135_R	-0.300	V _{REF} - 0.090	V _{REF} + 0.090	V _{CCO} + 0.300	V _{CCO} /2 - 0.150	V _{CCO} /2 + 0.150	8.9	-8.9
SSTL15	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2-0.175	V _{CCO} /2 + 0.175	13.0	-13.0
SSTL15_R	-0.300	V _{REF} – 0.100	V _{REF} + 0.100	V _{CCO} + 0.300	V _{CCO} /2 - 0.175	V _{CCO} /2 + 0.175	8.9	-8.9
SSTL18_I	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	$V_{CCO} + 0.300$	$V_{CCO}/2 - 0.470$	$V_{CCO}/2 + 0.470$	8	-8
SSTL18_II	-0.300	V _{REF} – 0.125	V _{REF} + 0.125	V _{CCO} + 0.300	$V_{CCO}/2 - 0.600$	$V_{CCO}/2 + 0.600$	13.4	-13.4

Notes:

1. Tested according to relevant specifications.

2. 3.3V and 2.5V standards are only supported in 3.3V I/O banks.

3. Supported drive strengths of 2, 4, 6, or 8 mA in HP I/O banks and 4, 8, or 12 mA in HR I/O banks.

4. Supported drive strengths of 2, 4, 6, 8, 12, or 16 mA in HP I/O banks and 4, 8, 12, or 16 mA in HR I/O banks.

5. Supported drive strengths of 2, 4, 6, 8, 12, or 16 mA in HP I/O banks and 4, 8, 12, 16, or 24 mA in HR I/O banks.

6. Supported drive strengths of 4, 8, 12, or 16 mA

7. Supported drive strengths of 4, 8, 12, 16, or 24 mA

8. For detailed interface specific DC voltage levels, see the 7 Series FPGAs SelectIO Resources User Guide (UG471).

LVDS DC Specifications (LVDS_25)

The LVDS standard is available in the HR I/O banks.

Table 12: LVDS_25 DC Specifications(1)

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
V _{CCO}	Supply voltage		2.375	2.500	2.625	V
V _{OH}	Output High voltage for Q and \overline{Q}	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	-	-	1.675	V
V _{OL}	Output Low voltage for Q and \overline{Q}	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	0.700	-	-	V
V _{ODIFF}	Differential output voltage $(Q - \overline{Q})$, Q = High $(\overline{Q} - Q)$, \overline{Q} = High	$R_T = 100 \Omega$ across Q and \overline{Q} signals	247	350	600	mV
V _{OCM}	Output common-mode voltage	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	1.000	1.250	1.425	V
V _{IDIFF}	Differential input voltage $(Q - \overline{Q}), Q = High (\overline{Q} - Q), \overline{Q} = High$		100	350	600	mV
V _{ICM}	Input common-mode voltage		0.300	1.200	1.425	V

Notes:

1. Differential inputs for LVDS_25 can be placed in banks with V_{CCO} levels that are different from the required level for outputs. Consult the 7 Series FPGAs SelectIO Resources User Guide (UG471) for more information.

LVDS DC Specifications (LVDS)

The LVDS standard is available in the HP I/O banks.

Table 13: LVDS DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
V _{CCO}	Supply voltage		1.710	1.800	1.890	V
V _{OH}	Output High voltage for Q and \overline{Q}	R_T = 100 Ω across Q and \overline{Q} signals	_	-	1.675	V
V _{OL}	Output Low voltage for Q and \overline{Q}	R_T = 100 Ω across Q and \overline{Q} signals	0.825	-	-	V
V _{ODIFF}	Differential output voltage $(Q - \overline{Q})$, Q = High $(\overline{Q} - Q)$, \overline{Q} = High	$R_T = 100 \ \Omega$ across Q and \overline{Q} signals	247	350	600	mV
V _{OCM}	Output common-mode voltage	$R_T = 100 \Omega$ across Q and \overline{Q} signals	1.000	1.250	1.425	V
VIDIFF	Differential input voltage $(Q - \overline{Q})$, Q = High $(\overline{Q} - Q)$, \overline{Q} = High	Common-mode input voltage = 1.25V	100	350	600	mV
V _{ICM}	Input common-mode voltage	Differential input voltage = $\pm 350 \text{ mV}$	0.300	1.200	1.425	V

Notes:

1. Differential inputs for LVDS can be placed in banks with V_{CCO} levels that are different from the required level for outputs. Consult the 7 Series FPGAs SelectIO Resources User Guide (UG471) for more information.

Table 19: 3.3V IOB High Range (HR) Switching Characteristics (Cont'd)

	T _{IOPI}		T _{IOOP}			T _{IOTP}				
I/O Standard	:	Speed Grade Speed			Speed Grad	Grade S		Speed Grade		Units
	-3	-2/-2L/-2G	-1	-3	-2/-2L/-2G	-1	-3	-2/-2L/-2G	-1	
LVCMOS15_F4	0.66	0.69	0.81	1.63	1.76	1.86	2.39	2.62	2.85	ns
LVCMOS15_F8	0.66	0.69	0.81	1.79	1.99	2.18	2.55	2.85	3.17	ns
LVCMOS15_F12	0.66	0.69	0.81	1.40	1.54	1.65	2.16	2.40	2.64	ns
LVCMOS15_F16	0.66	0.69	0.81	1.37	1.51	1.61	2.13	2.37	2.60	ns
LVCMOS12_S4	0.88	0.91	1.00	2.53	2.67	2.76	3.29	3.53	3.75	ns
LVCMOS12_S8	0.88	0.91	1.00	2.05	2.18	2.28	2.81	3.04	3.27	ns
LVCMOS12_S12 ⁽¹⁾	0.88	0.91	1.00	1.75	1.89	1.98	2.51	2.75	2.97	ns
LVCMOS12_F4	0.88	0.91	1.00	1.94	2.07	2.17	2.70	2.93	3.16	ns
LVCMOS12_F8	0.88	0.91	1.00	1.50	1.64	1.73	2.26	2.50	2.72	ns
LVCMOS12_F12 ⁽¹⁾	0.88	0.91	1.00	1.54	1.71	1.87	2.30	2.57	2.86	ns
SSTL135_S	0.61	0.64	0.73	1.27	1.40	1.50	2.03	2.26	2.49	ns
SSTL15_S	0.61	0.64	0.73	1.24	1.37	1.47	2.00	2.23	2.46	ns
SSTL18_I_S	0.64	0.67	0.76	1.59	1.74	1.85	2.35	2.60	2.84	ns
SSTL18_II_S	0.64	0.67	0.76	1.27	1.40	1.50	2.03	2.26	2.49	ns
DIFF_SSTL135_S	0.59	0.61	0.73	1.27	1.40	1.50	2.03	2.26	2.49	ns
DIFF_SSTL15_S	0.63	0.67	0.77	1.24	1.37	1.47	2.00	2.23	2.46	ns
DIFF_SSTL18_I_S	0.65	0.69	0.78	1.50	1.63	1.72	2.26	2.49	2.71	ns
DIFF_SSTL18_II_S	0.65	0.69	0.78	1.13	1.22	1.25	1.89	2.08	2.24	ns
SSTL135_F	0.61	0.64	0.73	1.04	1.17	1.26	1.80	2.03	2.25	ns
SSTL15_F	0.61	0.64	0.73	1.04	1.17	1.26	1.80	2.03	2.25	ns
SSTL18_I_F	0.64	0.67	0.76	1.12	1.22	1.26	1.88	2.08	2.25	ns
SSTL18_II_F	0.64	0.67	0.76	1.05	1.18	1.28	1.81	2.04	2.27	ns
DIFF_SSTL135_F	0.59	0.61	0.73	1.04	1.17	1.26	1.80	2.03	2.25	ns
DIFF_SSTL15_F	0.63	0.67	0.77	1.04	1.17	1.26	1.80	2.03	2.25	ns
DIFF_SSTL18_I_F	0.65	0.69	0.78	1.10	1.19	1.23	1.86	2.05	2.22	ns
DIFF_SSTL18_II_F	0.65	0.69	0.78	1.02	1.10	1.14	1.78	1.96	2.13	ns

Notes:

1. This I/O standard is only available in the 3.3V high-range (HR) banks.

Table 23: OLOGIC Switching Characteristics

Symbol	Description	Spe	Speed Grade	Unite	
Symbol	Description	-3		-1	Units
Setup/Hold					
T _{ODCK} /T _{OCKD}	D1/D2 pins setup/hold with respect to CLK	0.45/-0.13	0.50/0.13	0.58/-0.13	ns
T _{OOCECK} /T _{OCKOCE}	OCE pin setup/hold with respect to CLK	0.28/0.03	0.29/0.03	0.45/0.03	ns
T _{OSRCK} /T _{OCKSR}	SR pin setup/hold with respect to CLK	0.32/0.18	0.38/0.18	0.70/0.18	ns
Т _{отск} /Т _{оскт}	T1/T2 pins setup/hold with respect to CLK	0.49/0.16	0.56/-0.16	0.68/-0.16	ns
T _{OTCECK} /T _{OCKTCE}	TCE pin setup/hold with respect to CLK	0.28/0.01	0.30/0.01	0.45/0.01	ns
Combinatorial					
T _{ODQ}	D1 to OQ out or T1 to TQ out	0.73	0.81	0.97	ns
Sequential Delays		L			
Т _{ОСКQ}	CLK to OQ/TQ out	0.41	0.43	0.49	ns
T _{RQ_OLOGICE2}	SR pin to OQ/TQ out (HP I/O banks only)	0.63	0.70	0.83	ns
T _{GSRQ_OLOGICE2}	Global set/reset to Q outputs (HP I/O banks only)	7.60	7.60	10.51	ns
T _{RQ_OLOGICE3}	SR pin to OQ/TQ out (HR I/O banks only)	0.63	0.70	0.83	ns
T _{GSRQ_OLOGICE3}	Global set/reset to Q outputs (HR I/O banks only)	7.60	7.60	10.51	ns
Set/Reset		L			
T _{RPW_OLOGICE2}	Minimum pulse width, SR inputs (HP I/O banks only)	0.54	0.54	0.63	ns, Min
T _{RPW_OLOGICE3}	Minimum pulse width, SR inputs (HR I/O banks only)	0.54	0.54	0.63	ns, Min

CLB Switching Characteristics

Table 28: CLB Switching Characteristics

Symbol	Description	5	Unite		
Symbol	Description	-3	-2/-2L/-2G	-1	Units
Combinatorial Delays			·		
T _{ILO}	An – Dn LUT address to A	0.05	0.05	0.06	ns, Max
T _{ILO_2}	An – Dn LUT address to AMUX/CMUX	0.15	0.16	0.19	ns, Max
T _{ILO_3}	An – Dn LUT address to BMUX_A	0.24	0.25	0.30	ns, Max
T _{ITO}	An – Dn inputs to A – D Q outputs	0.58	0.61	0.74	ns, Max
T _{AXA}	AX inputs to AMUX output	0.38	0.40	0.49	ns, Max
T _{AXB}	AX inputs to BMUX output	0.40	0.42	0.52	ns, Max
T _{AXC}	AX inputs to CMUX output	0.39	0.41	0.50	ns, Max
T _{AXD}	AX inputs to DMUX output	0.43	0.44	0.52	ns, Max
T _{BXB}	BX inputs to BMUX output	0.31	0.33	0.40	ns, Max
T _{BXD}	BX inputs to DMUX output	0.38	0.39	0.47	ns, Max
T _{CXC}	CX inputs to CMUX output	0.27	0.28	0.34	ns, Max
T _{CXD}	CX inputs to DMUX output	0.33	0.34	0.41	ns, Max
T _{DXD}	DX inputs to DMUX output	0.32	0.33	0.40	ns, Max
Sequential Delays					
Т _{СКО}	Clock to AQ – DQ outputs	0.26	0.27	0.32	ns, Max
Т _{SHCKO}	Clock to AMUX – DMUX outputs	0.32	0.32	0.39	ns, Max
Setup and Hold Times	of CLB Flip-Flops Before/After Clock CLK				
T _{AS} /T _{AH}	$A_N - D_N$ input to CLK on A – D flip-flops	0.01/0.12	0.02/0.13	0.03/0.18	ns, Min
T _{DICK} /T _{CKDI}	$A_X - D_X$ input to CLK on A – D flip-flops	0.04/0.14	0.04/0.14	0.05/0.20	ns, Min
	$A_X - D_X$ input through MUXs and/or carry logic to CLK on $A - D$ flip-flops	0.36/0.10	0.37/0.11	0.46/0.16	ns, Min
T _{CECK_CLB} /T _{CKCE_CLB}	CE input to CLK on A – D flip-flops	0.19/0.05	0.20/0.05	0.25/0.05	ns, Min
T _{SRCK} /T _{CKSR}	SR input to CLK on A – D flip-flops	0.30/0.05	0.31/0.07	0.37/0.09	ns, Min
Set/Reset					
T _{SRMIN}	SR input minimum pulse width	0.52	0.78	1.04	ns, Min
T _{RQ}	Delay from SR input to AQ – DQ flip-flops	0.38	0.38	0.46	ns, Max
T _{CEO}	Delay from CE input to AQ – DQ flip-flops	0.34	0.35	0.43	ns, Max
F _{TOG}	Toggle frequency (for export control)	1818	1818	1818	MHz

Table 32: DSP48E1 Switching Characteristics (Cont'd)

Symbol	Description		Unito		
Зуший	Description	-3	-2/-2L/-2G	-1	Units
Clock to Outs from Input Register Clock to C	ascading Output Pins				
T _{DSPCKO_{ACOUT; BCOUT}_{AREG; BREG}}	CLK (ACOUT, BCOUT) to {A,B} register output	0.55	0.62	0.74	ns
TDSPCKO_CARRYCASCOUT_{AREG, BREG}_MULT	CLK (AREG, BREG) to CARRYCASCOUT output using multiplier	3.55	4.06	4.84	ns
T _{DSPCKO_CARRYCASCOUT_BREG}	CLK (BREG) to CARRYCASCOUT output not using multiplier	1.60	1.82	2.16	ns
T _{DSPCKO_CARRYCASCOUT_DREG_MULT}	CLK (DREG) to CARRYCASCOUT output using multiplier	3.52	4.03	4.79	ns
T _{DSPCKO_CARRYCASCOUT_CREG}	CLK (CREG) to CARRYCASCOUT output	1.64	1.88	2.23	ns
Maximum Frequency					
F _{MAX}	With all registers used	741.84	650.20	547.95	MHz
F _{MAX_PATDET}	With pattern detector	627.35	549.75	463.61	MHz
F _{MAX_MULT_NOMREG}	Two register multiply without MREG	412.20	360.75	303.77	MHz
F _{MAX_MULT_NOMREG_PATDET}	Two register multiply without MREG with pattern detect	374.25	327.65	276.01	MHz
F _{MAX_PREADD_MULT_NOADREG}	Without ADREG	468.82	408.66	342.70	MHz
F _{MAX_PREADD_MULT_NOADREG_PATDET}	Without ADREG with pattern detect	468.82	408.66	342.58	MHz
F _{MAX_NOPIPELINEREG}	Without pipeline registers (MREG, ADREG)	306.84	267.81	225.02	MHz
F _{MAX_NOPIPELINEREG_PATDET}	Without pipeline registers (MREG, ADREG) with pattern detect	285.23	249.13	209.38	MHz

Symbol	Description	Device		Unite		
Symbol	Description	Device	-3	-2/-2L/-2G	-1	Units
T _{DCD_CLK}	Global clock tree duty cycle distortion ⁽¹⁾	All	0.20	0.20	0.20	ns
T _{CKSKEW}	Global clock tree skew ⁽²⁾	XC7V585T	0.75	0.91	0.98	ns
		XC7V2000T	N/A	0.39	0.39	ns
		XC7VX330T	0.60	0.74	0.79	ns
		XC7VX415T	0.76	0.84	0.91	ns
		XC7VX485T	0.60	0.74	0.79	ns
		XC7VX550T	0.73	0.88	0.96	ns
		XC7VX690T	0.73	0.88	0.96	ns
		XC7VX980T	N/A	0.91	0.98	ns
		XC7VX1140T	N/A	0.39	0.39	ns
T _{DCD_BUFIO}	I/O clock tree duty cycle distortion	All	0.12	0.12	0.12	ns
T _{BUFIOSKEW}	I/O clock tree skew across one clock region	All	0.02	0.02	0.02	ns
T _{DCD_BUFR}	Regional clock tree duty cycle distortion	All	0.15	0.15	0.15	ns

Table 37: Duty Cycle Distortion and Clock Tree Skew

Notes:

1. These parameters represent the worst-case duty cycle distortion observable at the I/O flip-flops. For all I/O standards, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times.

The T_{CKSKEW} value represents the worst-case clock-tree skew observable between sequential I/O elements in a single SLR. Significantly
less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx
Timing Analyzer tools to evaluate clock skew specific to your application.

MMCM Switching Characteristics

Table 38: MMCM Specification

Sumbol	Description	9	e	Units	
Symbol	Description	-3 -2/-2L/-2G -1		-1	Units
MMCM_F _{INMAX}	Maximum input clock frequency	1066.00	933.00	800.00	MHz
MMCM_F _{INMIN}	Minimum input clock frequency	10	10	10	MHz
MMCM_F _{INJITTER}	Maximum input clock period jitter	< 20% c	of clock input	period or 1	I ns Max
MMCM_F _{INDUTY}	Allowable input duty cycle: 10-49 MHz	25	25	25	%
Allowable input duty cycle: 50—199 MHz Allowable input duty cycle: 200—399 MHz		30	30	30	%
		35	35	35	%
	Allowable input duty cycle: 400-499 MHz	40	40	40	%
	Allowable input duty cycle: >500 MHz	45	45	45	%
MMCM_F _{MIN_PSCLK}	Minimum dynamic phase shift clock frequency	0.01	0.01	0.01	MHz
MMCM_F _{MAX_PSCLK}	Maximum dynamic phase shift clock frequency	550.00	500.00	450.00	MHz
MMCM_F _{VCOMIN}	Minimum MMCM VCO frequency	600.00	600.00	600.00	MHz
MMCM_F _{VCOMAX}	Maximum MMCM VCO frequency	1600.00	1440.00	1200.00	MHz
MMCM_F _{BANDWIDTH}	Low MMCM bandwidth at typical ⁽¹⁾	1.00	1.00	1.00	MHz
	High MMCM bandwidth at typical ⁽¹⁾	4.00	4.00	4.00	MHz
MMCM_T _{STATPHAOFFSET}	Static phase offset of the MMCM outputs ⁽²⁾	0.12	0.12	0.12	ns
MMCM_T _{OUTJITTER}	MMCM output jitter		Not	e 3	
MMCM_T _{OUTDUTY}	MMCM output clock duty cycle precision ⁽⁴⁾	0.20	0.20	0.20	ns

Device Pin-to-Pin Output Parameter Guidelines

All devices are 100% functionally tested. Values are expressed in nanoseconds unless otherwise noted.

Table 40: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Near Clock Region)

Symbol	Description	Device	S	Unite		
Symbol	mboi Description De		-3	-2/-2L/-2G	-1	Units
SSTL15 Clock-Capable Clock Input to Output Delay using Output Flip-Flop, Fast Slew Rate, without MMCM/Pl						
T _{ICKOF} C	Clock-capable clock input and OUTFF without	XC7V585T	5.63	6.20	6.97	ns
		XC7V2000T	N/A	5.66	6.35	ns
		XC7VX330T	5.41	5.97	6.71	ns
		XC7VX415T	5.46	5.96	6.70	ns
		XC7VX485T	5.29	5.84	6.57	ns
		XC7VX550T	5.45	6.02	6.76	ns
		XC7VX690T	5.46	6.02	6.76	ns
		XC7VX980T	N/A	6.12	6.87	ns
		XC7VX1140T	N/A	5.59	6.28	ns

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net in a single SLR.

Table 41: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Far Clock Region)

Symbol	Description Device	Speed Grade			Unite	
Symbol	Description	Device	-3	-2/-2L/-2G	-1	Units
SSTL15 Clock-Capa	ble Clock Input to Output Delay using Output Flip-Flo	p, Fast Slew Rate,	without MN	ICM/PLL.		
T _{ICKOFFAR}	Clock-capable clock input and OUTFF <i>without</i>	XC7V585T	6.81	7.53	8.44	ns
	MMCM/PLL (far clock region)	XC7V2000T	N/A	6.00	6.73	ns
		XC7VX330T	6.31	6.97	7.83	ns
		XC7VX415T	6.36	6.90	7.69	ns
		XC7VX485T	6.20	6.86	7.69	ns
		XC7VX550T	6.66	7.37	8.27	ns
		XC7VX690T	6.69	7.37	8.27	ns
		XC7VX980T	N/A	7.47	8.37	ns
		XC7VX1140T	N/A	5.93	6.65	ns

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net in a single SLR.

Table 42: Clock-Capable Clock Input to Output Delay With MMCM

Symbol	Description	Device	9	e	Unite	
Symbol			-3	-2/-2L/-2G	-1	Units
SSTL15 Clock-Capa	able Clock Input to Output Delay using Output Flip-Flo	p, Fast Slew Rate,	with MMCN	Л.		
TICKOFMMCMCC	Clock-capable clock input and OUTFF with MMCM	XC7V585T	1.07	1.07	1.07	ns
		XC7V2000T	N/A	0.82	0.82	ns
		XC7VX330T	1.01	1.01	1.01	ns
		XC7VX415T	1.07	1.07	1.07	ns
		XC7VX485T	0.91	0.91	0.91	ns
		XC7VX550T	0.97	0.97	0.97	ns
		XC7VX690T	1.07	1.07	1.07	ns
		XC7VX980T	N/A	0.96	0.96	ns
		XC7VX1140T	N/A	0.82	0.82	ns

Notes:

- 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net in a single SLR.
- 2. MMCM output jitter is already included in the timing calculation.

Table 43: Clock-Capable Clock Input to Output Delay With PLL

Symbol	Description	Device	:	Unite		
Symbol	Description	Device	-3	-2/-2L/-2G	-1	Units
SSTL15 Clock-Capa	able Clock Input to Output Delay using Output Flip-Flo	p, Fast Slew Rate,	with PLL.			
TICKOFPLLCC	Clock-capable clock input and OUTFF with PLL	XC7V585T	0.96	0.96	0.96	ns
		XC7V2000T	N/A	0.71	0.71	ns
		XC7VX330T	0.90	0.90	0.90	ns
		XC7VX415T	0.96	0.96	0.96	ns
		XC7VX485T	0.80	0.80	0.80	ns
		XC7VX550T	0.86	0.86	0.86	ns
		XC7VX690T	0.96	0.96	0.96	ns
		XC7VX980T	N/A	0.85	0.85	ns
		XC7VX1140T	N/A	0.71	0.71	ns

Notes:

- 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net in a single SLR.
- 2. PLL output jitter is already included in the timing calculation.

Table 44: Pin-to-Pin, Clock-to-Out using BUFIO

Symbol	mbol Description Speed Grade		Speed Grade			
Symbol			-1	Units		
SSTL15 Clock-Capable Clock Input to Output Delay using Output Flip-Flop, Fast Slew Rate, with BUFIO.						
T _{ICKOFCS}	Clock-to-out of I/O clock for HR I/O banks	4.93	5.52	6.20	ns	
	Clock-to-out of I/O clock for HP I/O banks	4.85	5.44	6.11	ns	

Symbol	Description	scription Condition Min Typ		Тур	Max	Units
TJ _{6.6_CPLL}	Total jitter ⁽³⁾⁽⁴⁾	6 6 Ch/o	_	—	0.30	UI
DJ _{6.6_CPLL}	Deterministic jitter ⁽³⁾⁽⁴⁾	0.0 GD/S	-	-	0.15	UI
TJ _{5.0}	Total jitter ⁽³⁾⁽⁴⁾	5 0 Ch/o	_	-	0.30	UI
DJ _{5.0}	Deterministic jitter ⁽³⁾⁽⁴⁾	5.0 GD/S	-	-	0.15	UI
TJ _{4.25}	Total jitter ⁽³⁾⁽⁴⁾	4.25 Ch/a	_	-	0.30	UI
DJ _{4.25}	Deterministic jitter ⁽³⁾⁽⁴⁾	4.25 GD/S	-	-	0.15	UI
TJ _{3.75}	Total jitter ⁽³⁾⁽⁴⁾	2 75 Ch/a	_	-	0.30	UI
DJ _{3.75}	Deterministic jitter ⁽³⁾⁽⁴⁾	3.75 GD/S	-	-	0.15	UI
TJ _{3.20}	Total jitter ⁽³⁾⁽⁴⁾	2.20 Cb/c(5)	_	-	0.20	UI
DJ _{3.20}	Deterministic jitter ⁽³⁾⁽⁴⁾	3.20 GD/S(8)	-	-	0.10	UI
TJ _{3.20L}	Total jitter ⁽³⁾⁽⁴⁾	2.20 Cb/c(6)	-	-	0.32	UI
DJ _{3.20L}	Deterministic jitter ⁽³⁾⁽⁴⁾	3.20 GD/S(*/	-	-	0.16	UI
TJ _{2.5}	Total jitter ⁽³⁾⁽⁴⁾	$2.5 \text{Cb/c}^{(7)}$	-	-	0.20	UI
DJ _{2.5}	Deterministic jitter ⁽³⁾⁽⁴⁾	2.5 GD/S	-	-	0.08	UI
TJ _{1.25}	Total jitter ⁽³⁾⁽⁴⁾	1.25 Cb/c ⁽⁸⁾	-	-	0.15	UI
DJ _{1.25}	Deterministic jitter ⁽³⁾⁽⁴⁾	1.25 GD/S(*)	-	-	0.06	UI
TJ ₅₀₀	Total jitter ⁽³⁾⁽⁴⁾	500 Mb/c	-	-	0.10	UI
DJ ₅₀₀	Deterministic jitter ⁽³⁾⁽⁴⁾	500 WD/S	-	-	0.03	UI

Table 58: GTX Transceiver Transmitter Switching Characteristics (Cont'd)

Notes:

1. Using same REFCLK input with TX phase alignment enabled for up to 12 consecutive transmitters (three fully populated GTX Quads).

2. Using QPLL_FBDIV = 40, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.

3. Using CPLL_FBDIV = 2, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.

4. All jitter values are based on a bit-error ratio of 1e⁻¹².

5. CPLL frequency at 3.2 GHz and TXOUT_DIV = 2.

6. CPLL frequency at 1.6 GHz and TXOUT_DIV = 1.

7. CPLL frequency at 2.5 GHz and TXOUT_DIV = 2.

8. CPLL frequency at 2.5 GHz and TXOUT_DIV = 4.

GTH Transceiver Specifications

GTH Transceiver DC Input and Output Levels

Table 66 summarizes the DC specifications of the GTH transceivers in Virtex-7 T and XT FPGAs. Consult the *7 Series FPGAs GTX/GTH Transceiver User Guide* (UG476) for further details.

Table 66: GTH Transceiver DC Specifications

Symbol	DC Parameter	Conditions	Min	Тур	Max	Units
	Differential peak-to-peak input	>10.3125 Gb/s	150	-	1250	mV
DV _{PPIN}	voltage (external AC coupled)	6.6 Gb/s to 10.3125 Gb/s	150	-	1250	mV
		≤ 6.6 Gb/s	150	-	2000	mV
V _{IN}	Absolute input voltage	DC coupled V _{MGTAVTT} = 1.2V	-400	_	V _{MGTAVTT}	mV
V _{CMIN}	Common mode input voltage	DC coupled V _{MGTAVTT} = 1.2V	_	2/3 V _{MGTAVTT}	-	mV
DV _{PPOUT}	Differential peak-to-peak output voltage ⁽¹⁾	Transmitter output swing is set to 1010	_	-	800	mV
V _{CMOUTDC}	Common mode output voltage: DC coupled	Equation based	V _{MGTAVTT} – DV _{PPOUT} /4			mV
V _{CMOUTAC}	Common mode output voltage: AC coupled	Equation based	V _{MGTAVTT} – DV _{PPOUT} /2			mV
R _{IN}	Differential input resistance		_	100	-	Ω
R _{OUT}	Differential output resistance		_	100	-	Ω
TOSKEW	Transmitter output pair (TXP and	TXN) intra-pair skew	-	_	10	ps
C _{EXT}	Recommended external AC cou	pling capacitor ⁽²⁾	-	100	-	nF

Notes:

1. The output swing and preemphasis levels are programmable using the attributes discussed in the *7 Series FPGAs GTX/GTH Transceiver User Guide* (UG476), and can result in values lower than reported in this table.

2. Other values can be used as appropriate to conform to specific protocols and standards.

Figure 5: Differential Peak-to-Peak Voltage

Table	70: GTH	Transceiver	Reference	Clock	Switching	Characteristics
-------	---------	-------------	-----------	-------	-----------	-----------------

Symbol	Description	Conditions	AI	Unite		
Symbol	Description Conditions		Min	Тур	Max	Units
F _{GCLK}	Reference clock frequency range		60	-	820	MHz
T _{RCLK}	Reference clock rise time	20% - 80%	_	200	-	ps
T _{FCLK}	Reference clock fall time	80% – 20%	-	200	-	ps
T _{DCREF}	Reference clock duty cycle	Transceiver PLL only	40	50	60	%

Figure 6: Reference Clock Timing Parameters

Table 7	71:	GTH	Transceive	er PLL	_/Lock	Time	Adaptation	n
---------	-----	-----	------------	--------	--------	------	------------	---

Symbol	Description	Conditions	AI	I Speed Gra	ades	Unite
Symbol	Description	Conditions	Min	Тур	Мах	Units
T _{LOCK}	Initial PLL lock		-	-	1	ms
Τ	Clock recovery phase acquisition and adaptation time for decision feedback equalizer (DFE).	After the PLL is locked to the reference clock, this is the time it takes to lock the clock data	_	50,000	37 x10 ⁶	UI
' DLOCK	Clock recovery phase acquisition and adaptation time for low-power mode (LPM) when the DFE is disabled.	recovery (CDR) to the data present at the input.	-	50,000	2.3 x10 ⁶	UI

GTH Transceiver Protocol Jitter Characteristics

For Table 75 through Table 80, the 7 Series FPGAs GTX/GTH Transceiver User Guide (UG476) contains recommended settings for optimal usage of protocol specific characteristics.

Table 75: Gigabit Ethernet Protocol Characteristics (GTH Transceivers)

Description Line Rate (Mb/s)		Min	Мах	Units	
Gigabit Ethernet Transmitter Jitter Generation					
Total transmitter jitter (T_TJ)	1250	_	0.24	UI	
Gigabit Ethernet Receiver High Frequency Jitter Tolerance					
Total receiver jitter tolerance	1250	0.749	-	UI	

Table 76: XAUI Protocol Characteristics (GTH Transceivers)

Description	Description Line Rate (Mb/s)		Max	Units	
XAUI Transmitter Jitter Generation					
Total transmitter jitter (T_TJ)	3125	-	0.35	UI	
XAUI Receiver High Frequency Jitter Tolerance					
Total receiver jitter tolerance	3125	0.65	-	UI	

Table 77: PCI Express Protocol Characteristics (GTH Transceivers)⁽¹⁾

Standard	Description		Line Rate (Mb/s)	Min	Max	Units
PCI Express Transmitter Jit	PCI Express Transmitter Jitter Generation					
PCI Express Gen 1	Total transmitter jitter		2500	_	0.25	UI
PCI Express Gen 2	Total transmitter jitter		5000	-	0.25	UI
PCI Everges Can 2 ⁽²⁾	Total transmitter jitter unce	orrelated	8000	-	31.25	ps
PCI Express Gen 3 ⁽²⁾	Deterministic transmitter j	itter uncorrelated			12	ps
PCI Express Receiver High	PCI Express Receiver High Frequency Jitter Tolerance					
PCI Express Gen 1	Total receiver jitter tolerance		2500	0.65	-	UI
	Receiver inherent timing e	error	5000	0.40	-	UI
POI Express Gen 2(4)	Receiver inherent determ	inistic timing error	5000	0.30		UI
		0.03 MHz-1.0 MHz	1.00 - 8000 Note 4 -	-	UI	
PCI Express Gen 3 ⁽²⁾	Receiver sinusoidal jitter	1.0 MHz–10 MHz		Note 4	-	UI
		10 MHz-100 MHz		0.10	0.25 0.25 31.25 12 - - - - - - - - - - -	UI

Notes:

1. Tested per card electromechanical (CEM) methodology.

2. PCI-SIG 3.0 certification and compliance test boards are currently not available.

3. Using common REFCLK.

4. Between 1 MHz and 10 MHz the minimum sinusoidal jitter roll-off with a slope of 20dB/decade.

XADC Specifications

Table 82: XADC Specifications

Parameter	Symbol	Comments/Conditions	Min	Тур	Max	Units
$V_{CCADC} = 1.8V \pm 5\%, V_{REFP} = 1$.25V, V _{REFN}	= 0V, ADCCLK = 26 MHz, $T_j = -40^{\circ}$ C to 100°C,	Typical va	alues at T	_j =+40°C	
ADC Accuracy ⁽¹⁾						
Resolution			12	-	-	Bits
Integral Nonlinearity ⁽²⁾	INL		-	-	±3	LSBs
Differential Nonlinearity	DNL	No missing codes, guaranteed monotonic	-	-	±1	LSBs
Offset Error		Offset calibration enabled	-	-	±6	LSBs
Gain Error		Gain calibration disabled	-	-	±0.5	%
Offset Matching		Offset calibration enabled	-	-	4	LSBs
Gain Matching		Gain calibration disabled	-	-	0.3	%
Sample Rate			0.1	-	1	MS/s
Signal to Noise Ratio ⁽²⁾	SNR	F _{SAMPLE} = 500KS/s, F _{IN} = 20KHz	60	-	-	dB
RMS Code Noise		External 1.25V reference	-	-	2	LSBs
		On-chip reference	-	3	-	LSBs
Total Harmonic Distortion ⁽²⁾	THD	F _{SAMPLE} = 500KS/s, F _{IN} = 20KHz	-	70	-	dB
ADC Accuracy at Extended To	emperatures	s (-55°C to 125°C)				
Resolution			10	-	_	Bits
Integral Nonlinearity ⁽²⁾	INL		-	-	±1	LSB
Differential Nonlinearity	DNL	No missing codes, guaranteed monotonic	-	-	±1	(at 10 bits)
Analog Inputs ⁽³⁾						
ADC Input Ranges		Unipolar operation	0	-	1	V
		Bipolar operation	-0.5	-	+0.5	V
		Unipolar common mode range (FS input)	0	-	+0.5	V
		Bipolar common mode range (FS input)	+0.5	-	+0.6	V
Maximum External Channel Inpu	ut Ranges	Adjacent channels set within these ranges should not corrupt measurements on adjacent channels	-0.1	-	V _{CCADC}	V
Auxiliary Channel Full Resolution Bandwidth	FRBW		250	-	-	KHz
On-Chip Sensors						
Temperature Sensor Error		$T_j = -40^{\circ}C$ to 100°C.	-	-	±4	°C
		$T_j = -55^{\circ}C$ to $+125^{\circ}C$	_	-	±6	°C
Supply Sensor Error		Measurement range of V _{CCAUX} 1.8V \pm 5% T _j = -40°C to +100°C	_	-	±1	%
		Measurement range of V _{CCAUX} 1.8V \pm 5% T _j = -55°C to +125°C	-	-	±2	%
Conversion Rate ⁽⁴⁾			•	·		
Conversion Time - Continuous	t _{CONV}	Number of ADCCLK cycles	26	-	32	cycle
Conversion Time - Event	t _{CONV}	Number of CLK cycles	-	-	21	cycle
DRP Clock Frequency	DCLK	DRP clock frequency	8	-	250	MHz
ADC Clock Frequency	ADCCLK	Derived from DCLK	1	-	26	MHz
DCLK Duty Cycle			40	-	60	%

Table 83: Configuration Switching Characteristics (Cont'd)

Symbol	Description	Virtex-7 T and XT	S	Speed Grad	e	Unito
Symbol	Description	Devices	-3	-2/-2L/-2G	-1	Units
Master/Slave Serial Mode Programming Switching						
Т _{DCCK} /Т _{CCKD}	DIN setup/hold		4.0/0.0	4.0/0.0	4.0/0.0	ns, Min
T _{CCO}	DOUT clock to out		8.0	8.0	8.0	ns, Max
SelectMAP Mode Pro	ogramming Switching					
T _{SMDCCK} /T _{SMCCKD}	D[31:00] setup/hold		4.0/0.0	4.0/0.0	4.0/0.0	ns, Min
T _{SMCSCCK} /T _{SMCCKCS}	CSI_B setup/hold		4.0/0.0	4.0/0.0	4.0/0.0	ns, Min
T _{SMWCCK} /T _{SMCCKW}	RDWR_B setup/hold		10.0/0.0	10.0/0.0	10.0/0.0	ns, Min
T _{SMCKCSO}	CSO_B clock to out (330 Ω pull-up resistor	required)	7.0	7.0	7.0	ns, Max
T _{SMCO}	D[31:00] clock to out in readback		8.0	8.0	8.0	ns, Max
F _{RBCCK}	Readback frequency	SLR-based	70	70	70	MHz, Max
		All other devices	100	100	100	MHz, Max
Boundary-Scan Port	Timing Specifications	•				
T _{TAPTCK} /T _{TCKTAP}	TMS and TDI setup/hold	SLR-based	9.0/2.0	9.0/2.0	9.0/2.0	ns, Min
		All other devices	3.0/2.0	3.0/2.0	3.0/2.0	ns, Min
T _{TCKTDO}	TCK falling edge to TDO output	SLR-based	17	17	17	ns, Max
		All other devices	7.0	7.0	7.0	ns, Max
F _{TCK}	TCK frequency	SLR-based	20	20	20	MHz, Max
		All other devices	66	66	66	MHz, Max
BPI Master Flash Mo	BPI Master Flash Mode Programming Switching					
T _{BPICCO} ⁽²⁾	A[28:00], RS[1:0], FCS_B, FOE_B, FWE_E	B, ADV_B clock to out	8.5	8.5	8.5	ns, Max
T _{BPIDCC} /T _{BPICCD}	D[15:00] setup/hold		4.0/0.0	4.0/0.0	4.0/0.0	ns, Min
SPI Master Flash Mode Programming Switching						
T _{SPIDCC} /T _{SPICCD}	D[03:00] setup/hold		3.0/0.0	3.0/0.0	3.0/0.0	ns, Min
T _{SPICCM}	MOSI clock to out		8.0	8.0	8.0	ns, Max
T _{SPICCFC}	FCS_B clock to out		8.0	8.0	8.0	ns, Max

Notes:

1. To support longer delays in configuration, use the design solutions described in the 7 Series FPGA Configuration User Guide (UG470).

2. Only during configuration, the last edge is determined by a weak pull-up/pull-down resistor in the I/O.

eFUSE Programming Conditions

Table 84 lists the programming conditions specifically for eFUSE. For more information, see the *7 Series FPGA Configuration User Guide* (UG470).

Table	84:	eFUSE	Programming	Conditions ⁽¹⁾
-------	-----	-------	-------------	---------------------------

Symbol	Description	Min	Тур	Max	Units
I _{FS}	V _{CCAUX} supply current	-	-	115	mA
tj	Temperature range	15	_	125	°C

Notes:

1. The FPGA must not be configured during eFUSE programming.

Date	Version	Description
08/03/2012	1.5	Updated the descriptions, changed V _{IN} and Note 2 and added Note 4 in Table 1. In Table 2, changed descriptions and notes, removed Note 7, changed GTX transceiver parameters and values and added Note 12 and Note 13. Updated parameters in Table 3. Added Table 4 and Table 5. Updated the values for in Table 7. Updated LVCMOS12 and the SSTLs in Table 9. Updated many of the specifications in Table 10 and Table 11.
		Updated the AC Switching Characteristics section, based upon Table 14, for the ISE 14.2 speed specifications throughout the document with appropriate changes to Table 15 and Table 16 including production release of the XC7VX485T in the -2 and -1 speed designations.
		Added notes and specifications to Table 18. Updated the IOB Pad Input/Output/3-State discussion and changed Table 21 by adding T _{IOIBUFDISABLE} .
		Rearranged Table 51 including moving some parameters to Table 1. Added Table 56. Updated Table 57. In Table 59, updated SJ Jitter Tolerance with Stressed Eye section, page 48 and Note 8. Added Note 1, Note 2, and Note 3 to Table 62. Added Note 1 and Note 2 to Table 63, and line rate ranges. Updated Table 64 including adding Note 1. Updated Table 65 including adding Note 1. In Table 82 updated Note 1 and added Note 4. In Table 83, updated T _{POR} and F _{EMCCK} .
09/20/2012	1.6	Removed the XC7V1500T device from data sheet. In Table 2, revised V_{CCINT} and V_{CCBRAM} and added Note 3. Updated some of the values in Table 7. Revised Table 15 and Table 16 to include production release of the XC7V585T in the -2 and -1 speed designations. Added values for the XC7V585T in Table 50. Updated Note 2 in Table 58.
09/26/2012	1.7	Revised Table 15 and Table 16 to include production release of the XC7VX485T in the -3 speed designation.
10/19/2012	1.8	Revised Table 15 and Table 16 to include production release of the XC7VX485T in the -2L (1.0V) speed designation. Removed -2L (0.9V) speed specifications from data sheet, this change includes edits to V _{CCINT} and V _{CCBRAM} in Table 2, editing Note 1 and removing Note 2 in Table 53. Also in Table 53, updated the F _{GTXMAX} , F _{GTXQRANGE1} , and F _{GQPLLRANGE1} specification for -1 speed grade from 6.6 Gb/s to 8.0 Gb/s. Edited Note 4 in Table 57 and Note 3 in Table 72.
12/12/2012	1.9	Updated the AC Switching Characteristics section, based upon Table 14, for the ISE 14.3 speed specifications throughout the document. Revised Table 15 and Table 16 to include production release of the XC7V585T in the -3 and -2L(1.0V) speed designations. Updated the notes in Table 50. Updated GTH Transceiver Specifications including removal of GTH Transceiver DC Characteristics section (use the XPE (download at http://www.xilinx.com/power). Updated Table 68 and added Table 71, Table 73, and Table 74. Removed Note 4 from Table 82.
12/24/2012	1.10	Updated the AC Switching Characteristics section, based upon Table 14, for the ISE 14.4 and Vivado 2012.4 speed specifications throughout the document. Revised the XC7V2000T in the -1 and -2 speed designations Table 15 to preliminary. Added the GTH Transceiver Protocol Jitter Characteristics section. Updated T _{TCKTDO} and added Internal Configuration Access Port section to Table 83.
01/31/2013	1.11	Added Note 2 to Table 2. Revised Table 15 and Table 16 to include production release of the XC7V2000T in the -1 and -2 speed specifications. Updated Note 1 in Table 35. Updated the notes in Table 37, Table 40 through Table 43, Table 46, and Table 47. In Table 66, updated D_{VPPIN} . In Table 67, updated V_{IDIFF} Removed T_{LOCK} and T_{PHASE} from Table 70. Updated T_{DLOCK} in Table 71.
03/07/2013	1.12	Updated the AC Switching Characteristics section, based upon Table 14, for the ISE 14.5 and Vivado 2013.1 speed specifications throughout the document. Revised Table 15 and Table 16 to include production release of the XC7VX690T. Revised D _{VPPOUT} in Table 66. Updated values in Table 67 and Table 74. Removed Note 1 from Table 68. Updated MMCM_F _{PFDMAX} in Table 38 and PLL_F _{PFDMAX} in Table 39. Added skew values to Table 50.

Date	Version	Description
03/27/2013	1.13	In Table 7, added values for the XC7VX330T and XC7VX415T devices. Revised Table 15 and Table 16 to include production release of the XC7VX330T and XC7VX415T. In Table 18, updated the table title, LPDDR2 values, and removed Note 3. Removed Note 2: <i>For QPLL line rate, the maximum line rate with the divider N set to 66 is 10.3125 Gb/s</i> from Table 68.
04/17/2013	1.14	Updated the AC Switching Characteristics section with production release changes to Table 15 and Table 16 for XC7VX550T for all speed specifications. In Table 1, revised V _{IN} (I/O input voltage) to match values in Table 4 and Table 5, and combined Note 4 with old Note 5 and then added new Note 5. Revised V _{IN} description and added Note 8 in Table 2. Updated first 3 rows in Table 4 and Table 5. Updated values and added new values to Table 7. Also revised PCI33_3 voltage minimum in Table 10 to match values in Table 1, Table 4, and Table 5. Added Note 1 to Table 12 and Table 13. Throughout the data sheet (Table 29, Table 30, and Table 45) removed the obvious note "A Zero "0" Hold Time listing indicates no hold time or a negative hold time." Updated and clarified USRCLK data in Table 57 and Table 72.

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials, or to advise you of any corrections or update. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.