
E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	43300
Number of Logic Elements/Cells	554240
Total RAM Bits	43499520
Number of I/O	350
Number of Gates	-
Voltage - Supply	0.97V ~ 1.03V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1156-BBGA, FCBGA
Supplier Device Package	1158-FCBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc7vx550t-2ffg1158i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Min	Тур	Max	Units
GTX and GTH Tra	ansceivers				
V (11)	Analog supply voltage for the GTX/GTH transceiver QPLL frequency range \leq 10.3125 GHz^{(12)(13)}	0.97	1.0	1.08	V
V _{MGTAVCC} ⁽¹¹⁾	Analog supply voltage for the GTX/GTH transceiver QPLL frequency range > 10.3125 GHz	1.02	1.05	1.08	V
V _{MGTAVTT} ⁽¹¹⁾	Analog supply voltage for the GTX/GTH transmitter and receiver termination circuits	1.17	1.2	1.23	V
V _{MGTVCCAUX} ⁽¹¹⁾	Auxiliary analog Quad PLL (QPLL) voltage supply for the transceivers	1.75	1.80	1.85	V
V _{MGTAVTTRCAL} (11)	Analog supply voltage for the resistor calibration circuit of the GTX/GTH transceiver column	1.17	1.2	1.23	V
XADC					
V _{CCADC}	XADC supply relative to GNDADC	1.71	1.80	1.89	V
V _{REFP}	Externally supplied reference voltage	1.20	1.25	1.30	V
Temperature					
	Junction temperature operating range for commercial (C) temperature devices	0	_	85	°C
т _ј	Junction temperature operating range for extended (E) temperature devices	0	-	100	°C
	Junction temperature operating range for industrial (I) temperature devices	-40	-	100	°C

Table 2: Recommended Operating Conditions⁽¹⁾⁽²⁾ (Cont'd)

Notes:

- 1. All voltages are relative to ground.
- 2. For the design of the power distribution system, consult the 7 Series FPGAs PCB Design and Pin Planning Guide (UG483).
- 3. V_{CCINT} and V_{CCBRAM} should be connected to the same supply.
- 4. For more information on the VID bit see the Lowering Power using the Voltage Identification Bit application note (XAPP555).
- 5. Configuration data is retained even if V_{CCO} drops to 0V.
- 6. Includes V_{CCO} of 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.
- 7. The lower absolute voltage specification always applies.
- 8. See Table 10 for TMDS_33 specifications.
- 9. A total of 200 mA per bank should not be exceeded.
- 10. V_{CCBATT} is required only when using bitstream encryption. If battery is not used, connect V_{CCBATT} to either ground or V_{CCAUX}.
- 11. Each voltage listed requires the filter circuit described in the 7 Series FPGAs GTX/GTH Transceiver User Guide (UG476).
- 12. For data rates \leq 10.3125 Gb/s, V_{MGTAVCC} should be 1.0V ±3% for lower power consumption.
- 13. For lower power consumption, $V_{MGTAVCC}$ should be 1.0V ±3% over the entire CPLL frequency range.

Table 3: DC Characteristics Over Recommended Operating Conditions

Symbol	Description	Min	Typ <mark>(1)</mark>	Max	Units
V _{DRINT}	Data retention V_{CCINT} voltage (below which configuration data might be lost)	0.75	-	—	V
V _{DRI}	Data retention V_{CCAUX} voltage (below which configuration data might be lost)	1.5	-	-	V
I _{REF}	V _{REF} leakage current per pin	-	-	15	μA
ΙL	Input or output leakage current per pin (sample-tested)	-	-	15	μA
C _{IN} ⁽²⁾	Die input capacitance at the pad	-	-	8	pF
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 3.3V$	90	-	330	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 2.5V$	68	_	250	μA
I _{RPU}	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 1.8V$	34	_	220	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 1.5V$	23	_	150	μA
	Pad pull-up (when selected) @ $V_{IN} = 0V$, $V_{CCO} = 1.2V$	12	-	120	μA

www.xilinx.com

AC Switching Characteristics

All values represented in this data sheet are based on the speed specifications in the ISE® Design Suite 14.5 and Vivado® Design Suite 2013.1 as outlined in Table 14.

Ver	sion In:	Typical V _{CCINT}	Device	
ISE 14.5	Vivado 2013.1	(Table 2)	Device	
1.09	1.09	1.0V	XC7V585T, XC7VX485T	
N/A	1.08	1.0V	XC7V2000T	
1.08	1.08	1.0V	XC7VX330T, XC7VX415T, XC7VX550T, XC7VX690T, XC7VX980T	
N/A	1.08	1.0V	XC7VX1140T	

Table 14: Virtex-7 T and XT FPGA Speed Specification Version By Device/Speed Grade

Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows:

Advance Product Specification

These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

Preliminary Product Specification

These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data.

Production Product Specification

These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

Testing of AC Switching Characteristics

Internal timing parameters are derived from measuring internal test patterns. All AC switching characteristics are representative of worst-case supply voltage and junction temperature conditions.

For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Virtex-7 T and XT FPGAs.

Table 20: 1.8V IOB High Performance (HP) Switching Characteristics (Cont'd)

		T _{IOPI}			T _{IOOP}			T _{IOTP}		
I/O Standard	Speed Grade		5	Speed Grade		Speed Grade			Units	
	-3	-2/-2L/-2G	-1	-3	-2/-2L/-2G	-1	-3	-2/-2L/-2G	-1	
SSTL15_F	0.68	0.72	0.82	0.89	1.01	1.09	1.53	1.77	1.91	ns
SSTL15_DCI_F	0.68	0.72	0.82	0.89	1.01	1.09	1.53	1.77	1.91	ns
SSTL15_T_DCI_F	0.68	0.72	0.82	0.89	1.01	1.09	1.53	1.77	1.91	ns
SSTL135_F	0.69	0.72	0.82	0.88	1.00	1.08	1.52	1.76	1.90	ns
SSTL135_DCI_F	0.69	0.72	0.82	0.89	1.00	1.08	1.52	1.76	1.90	ns
SSTL135_T_DCI_F	0.69	0.72	0.82	0.89	1.00	1.08	1.52	1.76	1.90	ns
SSTL12_F	0.69	0.72	0.82	0.88	1.00	1.08	1.52	1.76	1.90	ns
SSTL12_DCI_F	0.69	0.72	0.82	0.91	1.03	1.11	1.54	1.79	1.93	ns
SSTL12_T_DCI_F	0.69	0.72	0.82	0.91	1.03	1.11	1.54	1.79	1.93	ns
DIFF_SSTL18_I_F	0.75	0.79	0.92	0.94	1.06	1.15	1.58	1.82	1.97	ns
DIFF_SSTL18_II_F	0.75	0.79	0.92	0.97	1.09	1.16	1.61	1.84	1.99	ns
DIFF_SSTL18_I_DCI_F	0.75	0.79	0.92	0.89	1.02	1.10	1.53	1.77	1.92	ns
DIFF_SSTL18_II_DCI_F	0.75	0.79	0.92	0.89	1.02	1.10	1.53	1.77	1.92	ns
DIFF_SSTL18_II_T_DCI_F	0.75	0.79	0.92	0.89	1.02	1.10	1.53	1.77	1.92	ns
DIFF_SSTL15_F	0.68	0.72	0.82	0.89	1.01	1.09	1.53	1.77	1.91	ns
DIFF_SSTL15_DCI_F	0.68	0.72	0.82	0.89	1.01	1.09	1.53	1.77	1.91	ns
DIFF_SSTL15_T_DCI_F	0.68	0.72	0.82	0.89	1.01	1.09	1.53	1.77	1.91	ns
DIFF_SSTL135_F	0.69	0.72	0.82	0.88	1.00	1.08	1.52	1.76	1.90	ns
DIFF_SSTL135_DCI_F	0.69	0.72	0.82	0.89	1.00	1.08	1.52	1.76	1.90	ns
DIFF_SSTL135_T_DCI_F	0.69	0.72	0.82	0.89	1.00	1.08	1.52	1.76	1.90	ns
DIFF_SSTL12_F	0.69	0.72	0.82	0.88	1.00	1.08	1.52	1.76	1.90	ns
DIFF_SSTL12_DCI_F	0.69	0.72	0.82	0.91	1.03	1.11	1.54	1.79	1.93	ns
DIFF_SSTL12_T_DCI_F	0.69	0.72	0.82	0.91	1.03	1.11	1.54	1.79	1.93	ns

Notes:

1. This I/O standard is only available in the 1.8V high-performance (HP) banks.

Table 21 specifies the values of T_{IOTPHZ} and $T_{IOIBUFDISABLE}$. T_{IOTPHZ} is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is enabled (i.e., a high impedance state). $T_{IOIBUFDISABLE}$ is described as the IOB delay from IBUFDISABLE to O output. In HP I/O banks, the internal DCI termination turn-off time is always faster than T_{IOTPHZ} when the DCITERMDISABLE pin is used. In HR I/O banks, the internal IN_TERM termination turn-off time is always faster than T_{IOTPHZ} when the INTERMDISABLE pin is used.

Table 21: IOB 3-state Output Switching Characteristics

Symbol	Description		Speed Grade			
			-2/-2L/-2G	-1	Units	
T _{IOTPHZ}	T input to pad high-impedance	0.76	0.86	0.99	ns	
TIOIBUFDISABLE_HR	IBUF turn-on time from IBUFDISABLE to O output for HR I/O banks	1.72	1.89	2.14	ns	
TIOIBUFDISABLE_HP	IBUF turn-on time from IBUFDISABLE to O output for HP I/O banks	1.31	1.46	1.76	ns	

Table 23: OLOGIC Switching Characteristics

Cumhal	Description		Speed Grade				
Symbol	Description	-3	-2/-2L/-2G	-1	- Units		
Setup/Hold			·				
T _{ODCK} /T _{OCKD}	D1/D2 pins setup/hold with respect to CLK	0.45/-0.13	0.50/-0.13	0.58/-0.13	ns		
T _{OOCECK} /T _{OCKOCE}	OCE pin setup/hold with respect to CLK	0.28/0.03	0.29/0.03	0.45/0.03	ns		
T _{OSRCK} /T _{OCKSR}	SR pin setup/hold with respect to CLK	0.32/0.18	0.38/0.18	0.70/0.18	ns		
Т _{ОТСК} /Т _{ОСКТ}	T1/T2 pins setup/hold with respect to CLK	0.49/-0.16	0.56/-0.16	0.68/-0.16	ns		
T _{OTCECK} /T _{OCKTCE}	TCE pin setup/hold with respect to CLK	0.28/0.01	0.30/0.01	0.45/0.01	ns		
Combinatorial							
T _{ODQ}	D1 to OQ out or T1 to TQ out	0.73	0.81	0.97	ns		
Sequential Delays							
Тоска	CLK to OQ/TQ out	0.41	0.43	0.49	ns		
T _{RQ_OLOGICE2}	SR pin to OQ/TQ out (HP I/O banks only)	0.63	0.70	0.83	ns		
T _{GSRQ_OLOGICE2}	Global set/reset to Q outputs (HP I/O banks only)	7.60	7.60	10.51	ns		
T _{RQ_OLOGICE3}	SR pin to OQ/TQ out (HR I/O banks only)	0.63	0.70	0.83	ns		
T _{GSRQ_OLOGICE3}	Global set/reset to Q outputs (HR I/O banks only)	7.60	7.60	10.51	ns		
Set/Reset		I			-		
T _{RPW_OLOGICE2}	Minimum pulse width, SR inputs (HP I/O banks only)	0.54	0.54	0.63	ns, Min		
T _{RPW_OLOGICE3}	Minimum pulse width, SR inputs (HR I/O banks only)	0.54	0.54	0.63	ns, Min		

Input Serializer/Deserializer Switching Characteristics

Table 24: ISERDES Switching Characteristics

Cumhal	Description	Speed Grade				
Symbol	Description	-3	-2/-2L/-2G	-1	Units	
Setup/Hold for Control Lin	nes					
T _{ISCCK_BITSLIP} / T _{ISCKC_BITSLIP}	BITSLIP pin setup/hold with respect to CLKDIV	0.01/0.12	0.02/0.13	0.02/0.15	ns	
T _{ISCCK_CE} / T _{ISCKC_CE} ⁽²⁾	CE pin setup/hold with respect to CLK (for CE1)	0.39/0.02	0.44/0.02	0.63/-0.02	ns	
T _{ISCCK_CE2} / T _{ISCKC_CE2} ⁽²⁾	CE pin setup/hold with respect to CLKDIV (for CE2)	-0.12/0.29	-0.12/0.31	-0.12/0.35	ns	
Setup/Hold for Data Lines	5					
T _{ISDCK_D} /T _{ISCKD_D}	D pin setup/hold with respect to CLK	-0.02/0.11	-0.02/0.12	-0.02/0.15	ns	
TISDCK_DDLY /TISCKD_DDLY	DDLY pin setup/hold with respect to CLK (using IDELAY) ⁽¹⁾	-0.02/0.11	-0.02/0.12	-0.02/0.15	ns	
T _{ISDCK_D_DDR} / TISCKD_D_DDR	D pin setup/hold with respect to CLK at DDR mode	-0.02/0.11	-0.02/0.12	-0.02/0.15	ns	
TISDCK_DDLY_DDR/ TISCKD_DDLY_DDR	D pin setup/hold with respect to CLK at DDR mode (using IDELAY) ⁽¹⁾	0.11/0.11	0.12/0.12	0.15/0.15	ns	
Sequential Delays						
T _{ISCKO_Q}	CLKDIV to out at Q pin	0.46	0.47	0.58	ns	
Propagation Delays						
T _{ISDO_DO}	D input to DO output pin	0.09	0.10	0.12	ns	

Notes:

1. Recorded at 0 tap value.

2. T_{ISCCK_CE2} and T_{ISCKC_CE2} are reported as $T_{ISCCK_CE}/T_{ISCKC_CE}$ in the timing report.

Output Serializer/Deserializer Switching Characteristics

Table 25: OSERDES Switching Characteristics

Symbol	Description		Linite		
Symbol	Description	-3	-2/-2L/-2G	-1	Units
Setup/Hold					
T _{OSDCK_D} /T _{OSCKD_D}	D input setup/hold with respect to CLKDIV	0.37/0.02	0.40/0.02	0.55/0.02	ns
T _{OSDCK_T} /T _{OSCKD_T} ⁽¹⁾	T input setup/hold with respect to CLK	0.49/0.15	0.56/-0.15	0.68/-0.15	ns
T _{OSDCK_T2} /T _{OSCKD_T2} ⁽¹⁾	T input setup/hold with respect to CLKDIV	0.27/0.15	0.30/-0.15	0.34/0.15	ns
T _{OSCCK_OCE} /T _{OSCKC_OCE}	OCE input setup/hold with respect to CLK	0.28/0.03	0.29/0.03	0.45/0.03	ns
T _{OSCCK_S}	SR (Reset) input setup with respect to CLKDIV	0.41	0.46	0.75	ns
T _{OSCCK_TCE} /T _{OSCKC_TCE}	TCE input setup/hold with respect to CLK	0.28/0.01	0.30/0.01	0.45/0.01	ns
Sequential Delays					
T _{OSCKO_OQ}	Clock to out from CLK to OQ	0.35	0.37	0.42	ns
T _{OSCKO_TQ}	Clock to out from CLK to TQ	0.41	0.43	0.49	ns
Combinatorial					
T _{OSDO_TTQ}	T input to TQ Out	0.73	0.81	0.97	ns
					-

Notes:

1. $T_{OSDCK_{T2}}$ and $T_{OSCKD_{T2}}$ are reported as $T_{OSDCK_{T}}/T_{OSCKD_{T}}$ in the timing report.

Table 27: IO_FIFO Switching Characteristics

Symbol	Description	:	Speed Grade			
Symbol	Description	-3	-2/-2L/-2G	-1	Units	
IO_FIFO Clock to Out Delays						
T _{OFFCKO_DO}	RDCLK to Q outputs	0.51	0.56	0.63	ns	
T _{CKO_FLAGS}	Clock to IO_FIFO flags	0.59	0.62	0.81	ns	
Setup/Hold		i				
T _{CCK_D} /T _{CKC_D}	D inputs to WRCLK	0.43/-0.01	0.47/-0.01	0.53/-0.01	ns	
TIFFCCK_WREN /TIFFCKC_WREN	WREN to WRCLK	0.39/-0.01	0.43/-0.01	0.50/0.01	ns	
TOFFCCK_RDEN/TOFFCKC_RDEN	RDEN to RDCLK	0.49/0.01	0.53/0.02	0.61/0.02	ns	
Minimum Pulse Width		i				
T _{PWH_IO_FIFO}	RESET, RDCLK, WRCLK	0.81	0.92	1.08	ns	
T _{PWL_IO_FIFO}	RESET, RDCLK, WRCLK	0.81	0.92	1.08	ns	
Maximum Frequency		i				
F _{MAX}	RDCLK and WRCLK	533.05	470.37	400.00	MHz	

CLB Distributed RAM Switching Characteristics (SLICEM Only)

Table 29: CLB Distributed RAM Switching Characteristics

Cumhal	Description				
Symbol	Description	-3	-2/-2L/-2G	-1	Units
Sequential Delays					
T _{SHCKO} ⁽¹⁾	Clock to A – B outputs	0.68	0.70	0.85	ns, Max
Т _{SHCKO_1}	Clock to AMUX – BMUX outputs	0.91	0.95	1.15	ns, Max
Setup and Hold Times Bef	ore/After Clock CLK				
T _{DS_LRAM} /T _{DH_LRAM}	A – D inputs to CLK	0.45/0.23	0.45/0.24	0.54/0.27	ns, Min
T _{AS_LRAM} /T _{AH_LRAM}	Address An inputs to clock	0.13/0.50	0.14/0.50	0.17/0.58	ns, Min
	Address An inputs through MUXs and/or carry logic to clock	0.40/0.16	0.42/0.17	0.52/0.23	ns, Min
T _{WS_LRAM} /T _{WH_LRAM}	WE input to clock	0.29/0.09	0.30/0.09	0.36/0.09	ns, Min
T _{CECK_LRAM} /T _{CKCE_LRAM}	CE input to CLK	0.29/0.09	0.30/0.09	0.37/0.09	ns, Min
Clock CLK					
T _{MPW}	Minimum pulse width	0.68	0.77	0.91	ns, Min
T _{MCP}	Minimum clock period	1.35	1.54	1.82	ns, Min

Notes:

1. T_{SHCKO} also represents the CLK to XMUX output. Refer to the timing report for the CLK to XMUX path.

CLB Shift Register Switching Characteristics (SLICEM Only)

Table 30: CLB Shift Register Switching Characteristics

Symbol	Description		Speed Grade			
Symbol	Description	-3	-2/-2L/-2G	-1	Units	
Sequential Delays			·			
T _{REG}	Clock to A – D outputs	0.96	0.98	1.20	ns, Max	
T _{REG_MUX}	Clock to AMUX – DMUX output	1.19	1.23	1.50	ns, Max	
T _{REG_M31}	Clock to DMUX output via M31 output	0.89	0.91	1.10	ns, Max	
Setup and Hold Times Before	/After Clock CLK					
T _{WS_SHFREG} /T _{WH_SHFREG}	WE input	0.26/0.09	0.27/0.09	0.33/0.09	ns, Min	
T _{CECK_SHFREG} /T _{CKCE_SHFREG}	CE input to CLK	0.27/0.09	0.28/0.09	0.33/0.09	ns, Min	
T _{DS_SHFREG} /T _{DH_SHFREG}	A – D inputs to CLK	0.28/0.26	0.28/0.26	0.33/0.30	ns, Min	
Clock CLK						
T _{MPW_SHFREG}	Minimum pulse width	0.55	0.65	0.78	ns, Min	

Table 31: Block RAM and FIFO Switching Characteristics (Cont'd)

Cumbal	Description	:	Speed Grade)	Units
Symbol	Description	-3	-2/-2L/-2G	-1	Units
Maximum Frequency					
F _{MAX_BRAM_WF_NC}	Block RAM (Write first and No change modes) When not in SDP RF mode	601.32	543.77	458.09	MHz
F _{MAX_BRAM_RF_PERFORMANCE}	Block RAM (Read first, Performance mode) When in SDP RF mode but no address overlap between port A and port B	601.32	543.77	458.09	MHz
F _{MAX_BRAM_RF_DELAYED_WRITE}	Block RAM (Read first, Delayed_write mode) When in SDP RF mode and there is possibility of overlap between port A and port B addresses	528.26	477.33	400.80	MHz
F _{MAX_CAS_WF_NC}	Block RAM Cascade (Write first, No change mode) When cascade but not in RF mode	551.27	493.83	408.00	MHz
F _{MAX_CAS_RF_PERFORMANCE}	Block RAM Cascade (Read first, Performance mode) When in cascade with RF mode and no possibility of address overlap/one port is disabled	551.27	493.83	408.00	MHz
F _{MAX_CAS_RF_DELAYED_WRITE}	When in cascade RF mode and there is a possibility of address overlap between port A and port B	478.24	427.35	350.88	MHz
F _{MAX_FIFO}	FIFO in all modes without ECC	601.32	543.77	458.09	MHz
F _{MAX_ECC}	Block RAM and FIFO in ECC configuration	484.26	430.85	351.12	MHz

Notes:

- 1. The timing report shows all of these parameters as T_{RCKO DO}.
- 2. T_{RCKO_DOR} includes T_{RCKO_DOW}, T_{RCKO_DOPR}, and T_{RCKO_DOPW} as well as the B port equivalent timing parameters.
- 3. These parameters also apply to synchronous FIFO with DO_REG = 0.
- 4. T_{RCKO_DO} includes T_{RCKO_DOP} as well as the B port equivalent timing parameters.
- 5. These parameters also apply to multirate (asynchronous) and synchronous FIFO with DO_REG = 1.
- 6. T_{RCKO_FLAGS} includes the following parameters: T_{RCKO_AEMPTY}, T_{RCKO_AFULL}, T_{RCKO_EMPTY}, T_{RCKO_FULL}, T_{RCKO_FULL}, T_{RCKO_RDERR}, T_{RCKO_WRERR}.
- 7. T_{RCKO_POINTERS} includes both T_{RCKO_RDCOUNT} and T_{RCKO_WRCOUNT}.
- 8. The ADDR setup and hold must be met when EN is asserted (even when WE is deasserted). Otherwise, block RAM data corruption is possible.
- 9. These parameters include both A and B inputs as well as the parity inputs of A and B.
- 10. T_{RCO_FLAGS} includes the following flags: AEMPTY, AFULL, EMPTY, FULL, RDERR, WRERR, RDCOUNT, and WRCOUNT.
- 11. RDEN and WREN must be held Low prior to and during reset. The FIFO reset must be asserted for at least five positive clock edges of the slowest clock (WRCLK or RDCLK).

PLL Switching Characteristics

Table 39: PLL Specification

Symbol	Description	S	Speed Grad	e	Units
Symbol	Description	-3	-2/-2L/-2G	-1	Units
PLL_F _{INMAX}	Maximum input clock frequency	1066.00	933.00	800.00	MHz
PLL_F _{INMIN}	Minimum input clock frequency	19.00	19.00	19.00	MHz
PLL_F _{INJITTER}	Maximum input clock period jitter	< 20% c	of clock inpu	t period or	1 ns Max
PLL_F _{INDUTY}	Allowable input duty cycle: 19-49 MHz	25	25	25	%
	Allowable input duty cycle: 50—199 MHz	30	30	30	%
	Allowable input duty cycle: 200-399 MHz	35	35	35	%
	Allowable input duty cycle: 400-499 MHz	40	40	40	%
	Allowable input duty cycle: >500 MHz	45	45	45	%
PLL_F _{VCOMIN}	Minimum PLL VCO frequency	800.00	800.00	800.00	MHz
PLL_F _{VCOMAX}	Maximum PLL VCO frequency	2133.00	1866.00	1600.00	MHz
PLL_F _{BANDWIDTH}	Low PLL bandwidth at typical ⁽¹⁾	1.00	1.00	1.00	MHz
	High PLL bandwidth at typical ⁽¹⁾	4.00	4.00	4.00	MHz
PLL_T _{STATPHAOFFSET}	Static phase offset of the PLL outputs ⁽²⁾	0.12	0.12	0.12	ns
PLL_T _{OUTJITTER}	PLL output jitter		No	te 3	1
PLL_T _{OUTDUTY}	PLL output clock duty cycle precision ⁽⁴⁾	0.20	0.20	0.20	ns
PLL_T _{LOCKMAX}	PLL maximum lock time	100	100	100	μs
PLL_F _{OUTMAX}	PLL maximum output frequency	1066.00	933.00	800.00	MHz
PLL_F _{OUTMIN}	PLL minimum output frequency ⁽⁵⁾	6.25	6.25	6.25	MHz
PLL_T _{EXTFDVAR}	External clock feedback variation	< 20% c	of clock inpu	t period or	1 ns Max
PLL_RST _{MINPULSE}	Minimum reset pulse width	5.00	5.00	5.00	ns
PLL_F _{PFDMAX}	Maximum frequency at the phase frequency detector	550.00	500.00	450.00	MHz
PLL_F _{PFDMIN}	Minimum frequency at the phase frequency detector	19.00	19.00	19.00	MHz
PLL_T _{FBDELAY}	Maximum delay in the feedback path	3 r	ns Max or or	ne CLKIN cy	/cle
Dynamic Reconfiguration Port	(DRP) for PLL Before and After DCLK	1			
T _{PLLDCK_DADDR} /T _{PLLCKD_DADDR}	DADDR setup/hold	1.25/0.15	1.40/0.15	1.63/0.15	ns, Min
T _{PLLDCK_DI} /T _{PLLCKD_DI}	DI setup/hold	1.25/0.15	1.40/0.15	1.63/0.15	ns, Min
T _{PLLDCK_DEN} /T _{PLLCKD_DEN}	DEN setup/hold	1.76/0.00	1.97/0.00	2.29/0.00	ns, Min
T _{PLLDCK_DWE} /T _{PLLCKD_DWE}	DWE setup/hold	1.25/0.15	1.40/0.15	1.63/0.15	ns, Min
T _{PLLCKO_DRDY}	CLK to out of DRDY	0.65	0.72	0.99	ns, Max
F _{DCK}	DCLK frequency	200.00	200.00	200.00	MHz, Max

Notes:

1. The PLL does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies.

2. The static offset is measured between any PLL outputs with identical phase.

 Values for this parameter are available in the Clocking Wizard. See <u>http://www.xilinx.com/products/intellectual-property/clocking_wizard.htm</u>.

4. Includes global clock buffer.

5. Calculated as $F_{VCO}/128$ assuming output duty cycle is 50%.

Device Pin-to-Pin Output Parameter Guidelines

All devices are 100% functionally tested. Values are expressed in nanoseconds unless otherwise noted.

Table 40: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Near Clock Region)

Cumhal	Description	Device	:	Speed Grade)	Unite
Symbol	Description	Device	-3	-2/-2L/-2G	-1	- Units
SSTL15 Clock-Capa	ble Clock Input to Output Delay using Output Flip-Flo	p, Fast Slew Rate,	without MN	ICM/PLL.		
T _{ICKOF}	Clock-capable clock input and OUTFF <i>without</i> MMCM/PLL (near clock region)	XC7V585T	5.63	6.20	6.97	ns
		XC7V2000T	N/A	5.66	6.35	ns
		XC7VX330T	5.41	5.97	6.71	ns
		XC7VX415T	5.46	5.96	6.70	ns
		XC7VX485T	5.29	5.84	6.57	ns
		XC7VX550T	5.45	6.02	6.76	ns
		XC7VX690T	5.46	6.02	6.76	ns
		XC7VX980T	N/A	6.12	6.87	ns
		XC7VX1140T	N/A	5.59	6.28	ns

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net in a single SLR.

Table 41: Clock-Capable Clock Input to Output Delay Without MMCM/PLL (Far Clock Region)

Symbol	Description	Device		Speed Grade	e	Units
Symbol	Description	Device	-3	-2/-2L/-2G	-1	- Units
SSTL15 Clock-Capa	able Clock Input to Output Delay using Output Flip-F	lop, Fast Slew Rate,	without MN	ICM/PLL.		
T _{ICKOFFAR}	Clock-capable clock input and OUTFF without MMCM/PLL (far clock region)	XC7V585T	6.81	7.53	8.44	ns
		XC7V2000T	N/A	6.00	6.73	ns
		XC7VX330T	6.31	6.97	7.83	ns
		XC7VX415T	6.36	6.90	7.69	ns
		XC7VX485T	6.20	6.86	7.69	ns
		XC7VX550T	6.66	7.37	8.27	ns
		XC7VX690T	6.69	7.37	8.27	ns
		XC7VX980T	N/A	7.47	8.37	ns
		XC7VX1140T	N/A	5.93	6.65	ns

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net in a single SLR.

Device Pin-to-Pin Input Parameter Guidelines

All devices are 100% functionally tested. Values are expressed in nanoseconds unless otherwise noted.

Table 45: Global Clock Input Setup and Hold Without MMCM/PLL with ZHOLD_DELAY on HR I/O Banks (only)

Cumbal	Description	Device	ę	Speed Grad	e	Units
Symbol	Description	Device	-3	-2/-2L/-2G	-1	Units
Input Setup and H	lold Time Relative to Global Clock Input Signal for SS	TL15 Standard. ⁽¹⁾	l.			
T _{PSFD} / T _{PHFD} Full delay (legacy delay or default delay) Global clock Input and IFF ⁽²⁾ without MMCM/PLL	XC7V585T	3.12/-0.37	3.19/-0.37	3.42/-0.37	ns	
	Global clock Input and IFF ⁽²⁾ without MMCM/PLL with ZHOLD_DELAY on HR I/O banks	XC7V2000T	N/A	N/A	N/A	ns
		XC7VX330T	2.90/-0.31	2.96/-0.31	3.16/-0.31	ns
		XC7VX415T	N/A	N/A	N/A	ns
		XC7VX485T	N/A	N/A	N/A	ns
		XC7VX550T	N/A	N/A	N/A	ns
		XC7VX690T	N/A	N/A	N/A	ns
		XC7VX980T	N/A	N/A	N/A	ns
		XC7VX1140T	N/A	N/A	N/A	ns

Notes:

1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.

2. IFF = Input Flip-Flop or Latch

Table 46: Clock-Capable Clock Input Setup and Hold With MMCM

Symbol	Description	Device	9	Speed Grade	9	Units
Symbol	Description			-2/-2L/-2G	-1	Units
Input Setup and H	old Time Relative to Global Clock Input Signal for SST	L15 Standard. ⁽¹)(2)			
T _{PSMMCMCC} / No delay clock-capable clock input and IFF ⁽³⁾ T _{PHMMCMCC} MMCM	No delay clock-capable clock input and IFF ⁽³⁾ with	XC7V585T	2.71/-0.10	3.00/-0.10	3.33/-0.10	ns
I PHMMCMCC	РНММСМСС ММСМ	XC7V2000T	N/A	2.60/-0.24	2.87/-0.24	ns
		XC7VX330T	2.58/-0.15	2.87/-0.15	3.18/-0.15	ns
		XC7VX415T	2.73/0.01	3.03/0.01	3.36/0.01	ns
		XC7VX485T	2.58/-0.15	2.87/-0.15	3.18/-0.15	ns
		XC7VX550T	2.72/-0.09	3.01/-0.09	3.34/-0.09	ns
		XC7VX690T	2.72/0.01	3.01/0.01	3.34/0.01	ns
		XC7VX980T	N/A	3.01/-0.10	3.36/-0.10	ns
		XC7VX1140T	N/A	2.61/-0.24	2.88/-0.24	ns

Notes:

- 1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.
- 2. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net in a single SLR.
- 3. IFF = Input Flip-Flop or Latch
- 4. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 47: Clock-Capable Clock Input Setup and Hold With PLL

Symbol	ymbol Description Device	Dovice	9	Speed Grade	peed Grade	
Symbol	Description	Device	-3	-2/-2L/-2G	-1	Units
Input Setup and He	old Time Relative to Clock-Capable Clock Input Signa	al for SSTL15 Sta	ndard. ⁽¹⁾⁽²⁾			
T _{PSPLLCC} / No delay clock-capa T _{PHPLLCC} PLL		XC7V585T	3.07/-0.21	3.40/-0.21	3.72/-0.21	ns
I PHPLLCC		XC7V2000T	N/A	2.99/-0.35	3.27/-0.35	ns
		XC7VX330T	2.94/-0.26	3.26/-0.26	3.57/-0.26	ns
		XC7VX415T	3.09/-0.10	3.42/-0.10	3.75/-0.10	ns
		XC7VX485T	2.95/-0.26	3.26/-0.26	3.58/-0.26	ns
		XC7VX550T	3.08/-0.20	3.40/-0.20	3.74/-0.20	ns
		XC7VX690T	3.08/-0.10	3.40/-0.10	3.74/-0.10	ns
		XC7VX980T	N/A	3.39/0.21	3.72/-0.21	ns
		XC7VX1140T	N/A	3.00/-0.35	3.27/-0.35	ns

Notes:

- 1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the global clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the global clock input signal using the fastest process, lowest temperature, and highest voltage.
- 2. Listed below are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net in a single SLR.

3. IFF = Input Flip-Flop or Latch

4. Use IBIS to determine any duty-cycle distortion incurred using various standards.

Table 48: Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO

Symbol	Description	Speed Grade			Unito
	Description	-3	-2/-2L/-2G	-1	Units
Input Setup and Ho	old Time Relative to a Forwarded Clock Input Pin Using BUFIO for SS	TL15 Standa	rd.		
T _{PSCS} /T _{PHCS}	Setup/hold of I/O clock for HR I/O banks	-0.36/1.36	-0.36/1.50	-0.36/1.70	ns
	Setup/hold of I/O clock for HP I/O banks	-0.34/1.39	-0.34/1.53	-0.34/1.73	ns

Table 49: Sample Window

Symbol	Description	:	Units		
Symbol	Description	-3 -2/-2L/-2G -1	Units		
T _{SAMP}	Sampling error at receiver pins ⁽¹⁾	0.51	0.56	0.61	ns
T _{SAMP_BUFIO}	Sampling error at receiver pins using BUFIO ⁽²⁾	0.30	0.35	0.40	ns

Notes:

- 1. This parameter indicates the total sampling error of the Virtex-7 T and XT FPGAs DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the MMCM to capture the DDR input registers' edges of operation. These measurements include:
 - CLK0 MMCM jitter
 - MMCM accuracy (phase offset)
 - MMCM phase shift resolution
 - These measurements do not include package or clock tree skew.
- This parameter indicates the total sampling error of the Virtex-7 T and XT FPGAs DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the BUFIO clock network and IDELAY to capture the DDR input registers' edges of operation. These measurements do not include package or clock tree skew.

Additional Package Parameter Guidelines

The parameters in this section provide the necessary values for calculating timing budgets for Virtex-7 T and XT FPGA clock transmitter and receiver data-valid windows.

Table 50: Package Skew

Symbol	Description	Device	Package	Value	Units
T _{PKGSKEW}	Package Skew ⁽¹⁾	VO7VE9ET	FFG1157	232	ps
		XC7V585T	FFG1761	255	ps
		XC7V2000T	FHG1761	308	ps
		XC7V20001	FLG1925	266	ps
		VC7V/Y220T	FFG1157	170	ps
		XC7VX330T	FFG1761	270	ps
			FFG1157	232 255 308 266 170 270 203 237 183 191 209 274 209 304 217 254 239 217 284 238 254 238 254 238 254 217 284 238 254 217 284 238 254 29 199	ps
		XC7VX415T	FFG1158		ps
			FFG1927		ps
			FFG1157		ps
			FFG1157 1 FFG1158 2 7VX485T FFG1761 2 FFG1927 2 FFG1930 3	209	ps
		XC7VX485T	FFG1761	232 255 308 266 170 270 203 237 183 191 209 274 209 304 217 254 239 217 284 238 254 238 254 238 254 238 254 238 254 238 254 238 254 238 254 237 242 199 243 271 216	ps
			FFG1927	209	ps
			FFG1930	232 255 308 266 170 270 203 237 183 191 209 274 209 274 209 304 217 254 239 217 254 239 217 254 239 217 284 238 254 238 254 238 254 238 254 287 242 199 243 271 216	ps
		XC7VX550T	FFG1158		ps
		XC7 VX5501	FFG1927		ps
			FFG1157		ps
			FFG1158		ps
		XC7VX690T	FFG1761		ps
		707 070901	FFG1926	238	ps
			FFG1927	254	ps
			FFG1930	232 255 308 266 170 270 203 237 183 191 209 274 209 274 209 274 209 304 217 254 239 217 254 239 217 254 239 217 254 239 217 254 239 217 254 239 217 254 239 217 284 238 254 287 242 287 242 287 242 243 271 216	ps
			FFG1926		ps
		XC7VX980T	FFG1928		ps
			FFG1930		ps
			FLG1926		ps
		XC7VX1140T	FLG1928	216	ps
			FLG1930	279	ps

Notes:

1. These values represent the worst-case skew between any two SelectIO resources in the package: shortest delay to longest delay from die pad to ball.

2. Package delay information is available for these device/package combinations. This information can be used to deskew the package.

Table 55.	and manaceiver melerence clocks	Switching characteristics				
Symbol	Description	Conditions	All Min 60	II Speed Grades		
Symbol	Description	Conditions	Min	I Speed Gra Typ –	М	
-		-3 speed grade	60	_	7	

Table 55: GTX Transceiver Reference Clock Switching Characteristics

,	•		Min	Тур	Max	
		-3 speed grade	60	-	700	MHz
F _{GCLK} Reference clock frequency range	All other speed grades	60	-	670	MHz	
T _{RCLK}	Reference clock rise time	20% - 80%	_	200	-	ps
T _{FCLK}	Reference clock fall time	80% – 20%	_	200	-	ps
T _{DCREF}	Reference clock duty cycle	Transceiver PLL only	40	50	60	%

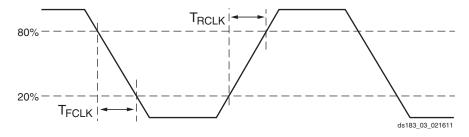


Figure 3: Reference Clock Timing Parameters

Table 56: GTX Transceiver PLL/Lock Time Adaptation

Symbol	Description	Conditions		All Speed Grades		
	Conditions	Min	Тур	Max	Units	
T _{LOCK}	Initial PLL lock		-	-	1	ms
Τ	Clock recovery phase acquisition and adaptation time for decision feedback equalizer (DFE).	After the PLL is locked to the reference clock, this is the time it takes to lock the clock data	_	50,000	37 x10 ⁶	UI
T _{DLOCK}	Clock recovery phase acquisition and adaptation time for low-power mode (LPM) when the DFE is disabled.	recovery (CDR) to the data present at the input.	_	50,000	2.3 x10 ⁶	UI

Units

GTX Transceiver Protocol Jitter Characteristics

For Table 60 through Table 65, the 7 Series FPGAs GTX/GTH Transceiver User Guide (UG476) contains recommended settings for optimal usage of protocol specific characteristics.

Table 60: Gigabit Ethernet Protocol Characteristics (GTX Transceivers)

Description	Line Rate (Mb/s)	Min	Max	Units		
Gigabit Ethernet Transmitter Jitter Generation						
Total transmitter jitter (T_TJ)	1250	-	0.24	UI		
Gigabit Ethernet Receiver High Frequency Jitter Tolerance						
Total receiver jitter tolerance	1250	0.749	_	UI		

Table 61: XAUI Protocol Characteristics (GTX Transceivers)

Description	Line Rate (Mb/s)	Min	Max	Units	
XAUI Transmitter Jitter Generation					
Total transmitter jitter (T_TJ)	3125	-	0.35	UI	
XAUI Receiver High Frequency Jitter Tolerance					
Total receiver jitter tolerance	3125	0.65	_	UI	

Table 62: PCI Express Protocol Characteristics (GTX Transceivers)⁽¹⁾

Standard	Description		Line Rate (Mb/s)	Min	Max	Units
PCI Express Transmitter Ji	tter Generation					
PCI Express Gen 1	Total transmitter jitter		2500	_	0.25	UI
PCI Express Gen 2	Total transmitter jitter		5000	-	0.25	UI
PCI Express Gen 3 ⁽²⁾	Total transmitter jitter unco	orrelated	8000 - 31.25		ps	
	Deterministic transmitter j	Deterministic transmitter jitter uncorrelated		-	12	ps
PCI Express Receiver High	PCI Express Receiver High Frequency Jitter Tolerance					
PCI Express Gen 1	Total receiver jitter toleran	ice	2500	0.65	_	UI
PCI Express Gen 2 ⁽³⁾	Receiver inherent timing e	error	5000	0.40	-	UI
POI Express Gen 214	Receiver inherent determine	inistic timing error	5000	0.30	_	UI
		0.03 MHz-1.0 MHz		1.00	-	UI
PCI Express Gen 3 ⁽²⁾	Receiver sinusoidal jitter tolerance	1.0 MHz–10 MHz	8000	Note 4	_	UI
		10 MHz–100 MHz		0.10	_	UI

Notes:

1. Tested per card electromechanical (CEM) methodology.

2. PCI-SIG 3.0 certification and compliance test boards are currently not available.

3. Using common REFCLK.

4. Between 1 MHz and 10 MHz the minimum sinusoidal jitter roll-off with a slope of 20dB/decade.

Table 63: CEI-6G and CEI-11G Protocol Characteristics (GTX Transceivers)

Description	Line Rate (Mb/s)	Interface	Min	Max	Units			
CEI-6G Transmitter Jitter Gene	CEI-6G Transmitter Jitter Generation							
Total transmitter jitter ⁽¹⁾	4976-6375	CEI-6G-SR	_	0.3	UI			
	4970-0375	CEI-6G-LR	_	0.3	UI			
CEI-6G Receiver High Frequen	cy Jitter Tolerance			•	•			
Total receiver jitter tolerance ⁽¹⁾	4076 6975	CEI-6G-SR	0.6	-	UI			
	4976–6375	CEI-6G-LR	0.95	-	UI			
CEI-11G Transmitter Jitter Gen	eration		i					
Total transmitter jitter ⁽²⁾	9950-11100	CEI-11G-SR	_	0.3	UI			
	9950-11100	CEI-11G-LR/MR	_	0.3	UI			
CEI-11G Receiver High Freque	CEI-11G Receiver High Frequency Jitter Tolerance							
		CEI-11G-SR	0.65	-	UI			
Total receiver jitter tolerance ⁽²⁾	9950–11100	CEI-11G-MR	0.65	-	UI			
		CEI-11G-LR	0.825	-	UI			

Notes:

1. Tested at most commonly used line rate of 6250 Mb/s using 390.625 MHz reference clock.

2. Tested at line rate of 9950 Mb/s using 155.46875 MHz reference clock and 11100 Mb/s using 173.4375 MHz reference clock.

Table 64: SFP+ Protocol Characteristics (GTX Transceivers)

Description	Line Rate (Mb/s)	Min	Max	Units
SFP+ Transmitter Jitter Generation				
	9830.40 ⁽¹⁾			
	9953.00			
Total transmitter jitter	10312.50	_	0.28	UI
	10518.75			
	11100.00			
SFP+ Receiver Frequency Jitter Tolerance	9	U	1	1
	9830.40 ⁽¹⁾			
	9953.00			
Total receiver jitter tolerance	10312.50	0.7	-	UI
	10518.75			
	11100.00			

Notes:

1. Line rated used for CPRI over SFP+ applications.

www.xilinx.com

Symbol	Description	Condition	Min	Тур	Max	Units
TJ _{8.0_CPLL}	Total jitter ⁽³⁾⁽⁴⁾	8.0 Gb/s	-	-	0.32	UI
DJ _{8.0_CPLL}	Deterministic jitter ⁽³⁾⁽⁴⁾	0.0 GD/S	-	-	0.17	UI
TJ _{6.6_QPLL}	Total jitter ⁽²⁾⁽⁴⁾	6.6 Gb/s	-	-	0.28	UI
DJ _{6.6_QPLL}	Deterministic jitter ⁽²⁾⁽⁴⁾	0.0 Gb/S	-	-	0.17	UI
TJ _{6.6_CPLL}	Total jitter ⁽³⁾⁽⁴⁾	6.6 Gb/s	-	-	0.30	UI
DJ _{6.6_CPLL}	Deterministic jitter ⁽³⁾⁽⁴⁾	0.0 Gb/S	-	-	0.15	UI
TJ _{5.0}	Total jitter ⁽³⁾⁽⁴⁾	5.0 Gb/s	-	-	0.30	UI
DJ _{5.0}	Deterministic jitter ⁽³⁾⁽⁴⁾	5.0 Gb/S	-	-	0.15	UI
TJ _{4.25}	Total jitter ⁽³⁾⁽⁴⁾	4.25 Gb/s	-	-	0.30	UI
DJ _{4.25}	Deterministic jitter ⁽³⁾⁽⁴⁾	4.25 Gb/S	-	-	0.15	UI
TJ _{3.75}	Total jitter ⁽³⁾⁽⁴⁾	3.75 Gb/s	-	-	0.30	UI
DJ _{3.75}	Deterministic jitter ⁽³⁾⁽⁴⁾	3.75 Gb/S	-	-	0.15	UI
TJ _{3.20}	Total jitter ⁽³⁾⁽⁴⁾	3.20 Gb/s ⁽⁵⁾	-	-	0.2	UI
DJ _{3.20}	Deterministic jitter ⁽³⁾⁽⁴⁾	3.20 GD/S(*)	-	-	0.1	UI
TJ _{3.20L}	Total jitter ⁽³⁾⁽⁴⁾	3.20 Gb/s ⁽⁶⁾	-	-	0.32	UI
DJ _{3.20L}	Deterministic jitter ⁽³⁾⁽⁴⁾	3.20 GD/S(*/	-	-	0.16	UI
TJ _{2.5}	Total jitter ⁽³⁾⁽⁴⁾	2.5 Gb/s ⁽⁷⁾	_	-	0.20	UI
DJ _{2.5}	Deterministic jitter ⁽³⁾⁽⁴⁾	2.5 GD/S(*)	-	-	0.08	UI
TJ _{1.25}	Total jitter ⁽³⁾⁽⁴⁾	1.25 Gb/s ⁽⁸⁾	-	-	0.15	UI
DJ _{1.25}	Deterministic jitter ⁽³⁾⁽⁴⁾	1.20 GD/S(0)	-	-	0.06	UI
TJ ₅₀₀	Total jitter ⁽³⁾⁽⁴⁾	500 Mb/s	-	-	0.1	UI
DJ ₅₀₀	Deterministic jitter ⁽³⁾⁽⁴⁾		-	-	0.03	UI

Table 73: GTH Transceiver Transmitter	Switching Characteristics (Cont'd)
---------------------------------------	------------------------------------

Notes:

1. Using same REFCLK input with TX phase alignment enabled for up to 12 consecutive transmitters (three fully populated GTH Quads).

2. Using QPLL_FBDIV = 40, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.

- 3. Using CPLL_FBDIV = 2, 20-bit internal data width. These values are NOT intended for protocol specific compliance determinations.
- 4. All jitter values are based on a bit-error ratio of 1e⁻¹².
- 5. CPLL frequency at 3.2 GHz and TXOUT_DIV = 2.
- 6. CPLL frequency at 1.6 GHz and TXOUT_DIV = 1.
- 7. CPLL frequency at 2.5 GHz and TXOUT_DIV = 2.
- 8. CPLL frequency at 2.5 GHz and TXOUT_DIV = 4.

Table 78: CEI-6G and CEI-11G Protocol Characteristics (GTH Transceivers)

Description	Line Rate (Mb/s)	Interface	Min	Max	Units			
CEI-6G Transmitter Jitter Gene	CEI-6G Transmitter Jitter Generation							
Total transmitter jitter ⁽¹⁾	4976-6375	CEI-6G-SR	_	0.3	UI			
	4970-0375	CEI-6G-LR	_	0.3	UI			
CEI-6G Receiver High Frequen	cy Jitter Tolerance			•	•			
Total receiver jitter tolerance ⁽¹⁾	4076 6975	CEI-6G-SR	0.6	-	UI			
	4976–6375	CEI-6G-LR	0.95	-	UI			
CEI-11G Transmitter Jitter Gen	eration		i					
Total transmitter jitter ⁽²⁾	9950-11100	CEI-11G-SR	_	0.3	UI			
	9950-11100	CEI-11G-LR/MR	_	0.3	UI			
CEI-11G Receiver High Freque	CEI-11G Receiver High Frequency Jitter Tolerance							
		CEI-11G-SR	0.65	-	UI			
Total receiver jitter tolerance ⁽²⁾	9950–11100	CEI-11G-MR	0.65	-	UI			
		CEI-11G-LR	0.825	-	UI			

Notes:

1. Tested at most commonly used line rate of 6250 Mb/s using 390.625 MHz reference clock.

2. Tested at line rate of 9950 Mb/s using 155.46875 MHz reference clock and 11100 Mb/s using 173.4375 MHz reference clock.

Table 79: SFP+ Protocol Characteristics (GTH Transceivers)

Description	Line Rate (Mb/s)	Min	Max	Units
SFP+ Transmitter Jitter Generation				
	9830.40 ⁽¹⁾			
	9953.00			
Total transmitter jitter	10312.50	_	0.28	UI
	10518.75			
	11100.00			
SFP+ Receiver Frequency Jitter Tolerance)	U		1
	9830.40 ⁽¹⁾			
	9953.00			
Total receiver jitter tolerance	10312.50	0.7	-	UI
	10518.75			
	11100.00			

Notes:

1. Line rated used for CPRI over SFP+ applications.

www.xilinx.com

Date	Version	Description
08/03/2012	1.5	Updated the descriptions, changed V_{IN} and Note 2 and added Note 4 in Table 1. In Table 2, changed descriptions and notes, removed Note 7, changed GTX transceiver parameters and values and added Note 12 and Note 13. Updated parameters in Table 3. Added Table 4 and Table 5. Updated the values for in Table 7. Updated LVCMOS12 and the SSTLs in Table 9. Updated many of the specifications in Table 10 and Table 11. Updated the AC Switching Characteristics section, based upon Table 14, for the ISE 14.2 speed specifications throughout the document with appropriate changes to Table 15 and Table 16 including production release of the XC7VX485T in the -2 and -1 speed designations. Added notes and specifications to Table 18. Updated the IOB Pad Input/Output/3-State discussion and changed Table 21 by adding T _{IOIBUFDISABLE} . Removed many of the combinatorial delay specifications and T _{CINCK} /T _{CKCIN} from Table 28. Rearranged Table 51 including moving some parameters to Table 1. Added Table 56. Updated Table 57. In Table 59, updated SJ Jitter Tolerance with Stressed Eye section, page 48 and Note 8. Added Note 1, Note 2, and Note 3 to Table 62. Added Note 1 and Note 2 to Table 63, and line rate
		ranges. Updated Table 64 including adding Note 1. Updated Table 65 including adding Note 1. In Table 82 updated Note 1 and added Note 4. In Table 83, updated T _{POR} and F _{EMCCK} .
09/20/2012	1.6	Removed the XC7V1500T device from data sheet. In Table 2, revised V_{CCINT} and V_{CCBRAM} and added Note 3. Updated some of the values in Table 7. Revised Table 15 and Table 16 to include production release of the XC7V585T in the -2 and -1 speed designations. Added values for the XC7V585T in Table 50. Updated Note 2 in Table 58.
09/26/2012	1.7	Revised Table 15 and Table 16 to include production release of the XC7VX485T in the -3 speed designation.
10/19/2012	1.8	Revised Table 15 and Table 16 to include production release of the XC7VX485T in the -2L (1.0V) speed designation. Removed -2L (0.9V) speed specifications from data sheet, this change includes edits to V_{CCINT} and V_{CCBRAM} in Table 2, editing Note 1 and removing Note 2 in Table 53. Also in Table 53, updated the F_{GTXMAX} , $F_{GTXQRANGE1}$, and $F_{GQPLLRANGE1}$ specification for -1 speed grade from 6.6 Gb/s to 8.0 Gb/s. Edited Note 4 in Table 57 and Note 3 in Table 72.
12/12/2012	1.9	Updated the AC Switching Characteristics section, based upon Table 14, for the ISE 14.3 speed specifications throughout the document. Revised Table 15 and Table 16 to include production release of the XC7V585T in the -3 and -2L(1.0V) speed designations. Updated the notes in Table 50. Updated GTH Transceiver Specifications including removal of GTH Transceiver DC Characteristics section (use the XPE (download at http://www.xilinx.com/power). Updated Table 68 and added Table 71, Table 73, and Table 74. Removed Note 4 from Table 82.
12/24/2012	1.10	Updated the AC Switching Characteristics section, based upon Table 14, for the ISE 14.4 and Vivado 2012.4 speed specifications throughout the document. Revised the XC7V2000T in the -1 and -2 speed designations Table 15 to preliminary. Added the GTH Transceiver Protocol Jitter Characteristics section. Updated T _{TCKTDO} and added Internal Configuration Access Port section to Table 83.
01/31/2013	1.11	Added Note 2 to Table 2. Revised Table 15 and Table 16 to include production release of the XC7V2000T in the -1 and -2 speed specifications. Updated Note 1 in Table 35. Updated the notes in Table 37, Table 40 through Table 43, Table 46, and Table 47. In Table 66, updated D_{VPPIN} . In Table 67, updated V_{IDIFF} Removed T_{LOCK} and T_{PHASE} from Table 70. Updated T_{DLOCK} in Table 71.
03/07/2013	1.12	Updated the AC Switching Characteristics section, based upon Table 14, for the ISE 14.5 and Vivado 2013.1 speed specifications throughout the document. Revised Table 15 and Table 16 to include production release of the XC7VX690T. Revised D _{VPPOUT} in Table 66. Updated values in Table 67 and Table 74. Removed Note 1 from Table 68. Updated MMCM_F _{PFDMAX} in Table 38 and PLL_F _{PFDMAX} in Table 39. Added skew values to Table 50.

www.xilinx.com