

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	LINbus, SCI, SPI
Peripherals	POR, PWM
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc908ey8vfae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter 20 Electrical Specifications

Introduction	241
Absolute Maximum Ratings	241
Functional Operating Range	242
Thermal Characteristics	242
DC Electrical Characteristics	242
Control Timing	244
Internal Oscillator Characteristics	244
External Oscillator Characteristics	245
Trimmed Accuracy of the Internal Clock Generator.	246
Trimmed Internal Clock Generator Characteristics	246
Analog-to-Digital Converter (ADC) Characteristics	247
SPI Characteristics	248
Memory Characteristics	251
	Introduction

Chapter 21

Ordering Information and Mechanical Specifications

21.1	Introduction	253
21.2	MC Order Numbers	253
21.3	32-Pin QFP (Case Number 873)	254

Appendix A MC68HC908EY8

A.1	Introduction	255
A.2	Block Diagram	255
A.3	Memory	255
A.4	MC Order Numbers	258

Glossary

Glossary																														25	59
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	----

Revision History

Revision History		269
-------------------------	--	-----

Input/Output (I/O) Section

Addr.	Register Name	_	Bit 7	6	5	4	3	2	1	Bit 0
\$002F	Timer B Counter Modulo Register Low (TBMODL)	Read: Write:	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
	See page 219.	Reset:	1	1	1	1	1	1	1	1
	Timer B Channel 0 Status	Read:	CH0F	CHOIE	MSOR	MSOA			τονο	CHOMAX
\$0030	and Control Register (TBSC0)	Write:	0	CINE	WI30D	MOUA	ELSUB	ELSUA	1000	CHOWAX
	See page 220.	Reset:	0	0	0	0	0	0	0	0
	Timer B Channel 0	Read:	BIT 15	BIT 14	BIT 13	BIT 12	BIT 11	BIT 10	BIT 9	BIT 8
\$0031	Register High (TBCH0H)	Write:	2.1.10		2			2	2 0	2 0
	See page 223.	Reset:		1	1	Indetermina	ate after reset	r	[1
	Timer B Channel 0	Read:	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
\$0032	Register Low (TBCH0L) See page 223	Write:								
	T DOL 14 01 1	Reset:	0145			Indetermina	ate atter reset			
\$0033	and Control Register	Read: Write:	0 0	CH1IE	0 R	MS1A	ELS1B	ELS1A	TOV1	CH1MAX
	See page 220.	Reset:	0	0	0	0	0	0	0	0
	Timer B Channel 1	Read:								
\$0034	Register High (TBCH1H)	Write:	BIT 15	BII 14	BIT 13	BIT 12	BIL11	BIT 10	BIL 9	BIL 8
	See page 223.	Reset:				Indetermina	ate after reset			
	Timer B Channel 1	Read:	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
\$0035	Register Low (TBCH1L)	Write:	BITT	BITO	DITO	DITT	BITO	Bit 2	Birri	Biro
	See page 223.	Reset:		1	1	Indetermina	ate after reset			1
	ICG Control Register	Read:	CMIE	CMF	CMON	CS	ICGON	ICGS	ECGON	ECGS
\$0036	(ICGCR) See page 97.	Write:		0				_		
		Reset:	0	0	0	0	1	0	0	0
¢0007	ICG Multiplier Register	Read:		N6	N5	N4	N3	N2	N1	NO
\$0037	See page 98.	write:	0	0	0	4	0	4	0	1
		Read	0	0	0	1	0	I	0	1
\$0038	ICG Trim Register (ICGTR) See page 99.	Write:	TRIM7	TRIM6	TRIM5	TRIM4	TRIM3	TRIM2	TRIM1	TRIM0
		Reset:	1	0	0	0	0	0	0	0
	ICG Divider Control	Read:					DDIV3	DDIV2	DDIV1	DDIV0
\$0039	Register (ICGDVR)	Write:								
	See page 99.	Reset:	0	0	0	0	U	U	U	U
	ICG DCO Stage Control	Read:	DSTG7	DSTG6	DSTG5	DSTG4	DDSTG3	DSTG2	DSTG1	DSTG0
\$003A	Register (ICGDSR)	Write:	R	R	R	R	R	R	R	R
	000 page 100.	Reset:	U	U 1	U	U	U	U	U	U
				= Unimplem	ented	R = Reserve	d	U = Una	affected	

Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 7)

MC68HC908EY16 • MC68HC908EY8 Data Sheet, Rev. 10

Right justification will place only the two MSBs in the corresponding ADC data register high, ADRH, and the eight LSBs in ADC data register low, ADRL. This mode of operation typically is used when a 10-bit unsigned result is desired.

Left justified sign data mode is similar to left justified mode with one exception. The MSB of the 10-bit result, AD9 located in ADRH, is complemented. This mode of operation is useful when a result, represented as a signed magnitude from mid-scale, is needed. Finally, 8-bit truncation mode will place the eight MSBs in ADC data register low, ADRL. The two LSBs are dropped. This mode of operation is used when compatibility with 8-bit ADC designs are required. No interlocking between ADRH and ADRL is present.

NOTE

Quantization error is affected when only the most significant eight bits are used as a result. See Figure 3-3.

Figure 3-3. 8-Bit Truncation Mode Error

3.3.6 Monotonicity

The conversion process is monotonic and has no missing codes.

3.4 Interrupts

When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC conversion. A CPU interrupt is generated if the COCO bit is at 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled.

MC68HC908EY16 • MC68HC908EY8 Data Sheet, Rev. 10

EXTSLOW — Slow External Crystal Enable Bit

The EXTSLOW bit has two functions. It configures the ICG module for a fast (1 MHz to 8 MHz) or slow (30 kHz to 100 kHz) speed crystal. The option also configures the clock monitor operation in the ICG module to expect an external frequency higher (307.2 kHz to 32 MHz) or lower (60 Hz to 307.2 kHz) than the base frequency of the internal oscillator. See Chapter 8 Internal Clock Generator (ICG) Module.

1 = ICG set for slow external crystal operation

0 = ICG set for fast external crystal operation

EXTCLKEN — External Clock Enable Bit

EXTCLKEN enables an external clock source or crystal/ceramic resonator to be used as a clock input. Setting this bit enables PTC4/OSC1 pin to be a clock input pin. Clearing this bit (default setting) allows the PTC4/OSC1 and PTC3/OSC2 pins to function as general-purpose input/output (I/O) pins. Refer to Table 5-1 for configuration options for the external source. See Chapter 8 Internal Clock Generator (ICG) Module for a more detailed description of the external clock operation.

1 = Allows PTC4/OSC1 to be an external clock connection

0 = PTC4/OSC1 and PTC3/OSC2 function as I/O port pins (default).

TMBCLKSEL — Timebase Clock Select Bit

TMBCLKSEL enables an enable the extra divide by 128 prescaler in the timebase module. Setting this bit enables the extra prescaler and clearing this bit disables it. Refer to Table 16-1 for timebase divider selection details.

1 = Enables extra divide by 128 prescaler in timebase module.

0 = Disables extra divide by 128 prescaler in timebase module.

OSCENINSTOP — Oscillator Enable In Stop Mode Bit

OSCENINSTOP, when set, will enable the internal clock generator module to continue to generate clocks (either internal, ICLK, or external, ECLK) in stop mode. See Chapter 8 Internal Clock Generator (ICG) Module. This function is used to keep the timebase running while the rest of the microcontroller stops. When clear, all clock generation will cease and both ICLK and ECLK will be forced low during stop mode. The default state for this option is clear, disabling the ICG in stop mode.

1 = Oscillator enabled to operate during stop mode

0 = Oscillator disabled during stop mode (default)

NOTE

This bit has the same functionality as the OSCSTOPENB CONFIG bit in MC68HC908GP20 and MC68HC908GR8 parts.

SSBPUENB — SS Pullup Enable Bit

Clearing SSBPUENB enables the \overline{SS} pullup resistor.

 $1 = Disables \overline{SS}$ pullup resistor.

 $0 = \text{Enables } \overline{\text{SS}}$ pullup resistor.

COPRS — COP Rate Select Bit

COPRS selects the COP timeout period. Reset clears COPRS. See Chapter 6 Computer Operating Properly (COP) Module.

1 = COP timeout period = 8176 CGMXCLK cycles

0 = COP timeout period = 262,128 CGMXCLK cycles

LVISTOP — LVI Enable in Stop Mode Bit

When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode. Reset clears LVISTOP.

1 = LVI enabled during stop mode

0 = LVI disabled during stop mode

Chapter 6 Computer Operating Properly (COP) Module

6.1 Introduction

The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by periodically clearing the COP counter.

6.2 Functional Description

1. See Chapter 14 System Integration Module (SIM) for more details.

Figure 6-1. COP Block Diagram

The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 8176 or 262,128 CGMXCLK cycles, depending on the state of the COP rate select bit, COPRS, in the CONFIG-1. When COPRS = 0, a 4.9152-MHz crystal gives a COP timeout period of 53.3 ms. Writing any value to location \$FFFF before

MC68HC908EY16 • MC68HC908EY8 Data Sheet, Rev. 10

Central Processor Unit (CPU)

Course					Eff	ect	t		SS	de	pu	s
Form	Operation	Description	v	ы			n 7	2	ddre ode	bco	pera	/cle
			v	п	•	IN	2	C	Ă	Ō	ō	<u></u> 5
PULA	Pull A from Stack	$SP \leftarrow (SP + 1); Pull (A)$	-	-	-	-	-	-		86		2
	Pull A from Stack	$SP \leftarrow (SP + 1); Pull (H)$	-	-	-	-	-	-		8A 00		2
FULA BOL opr		$SF \leftarrow (SF + I), Full(X)$	-	-	_	_	_	_		30	dd	2
ROLA ROLX ROL <i>opr</i> ,X ROL ,X ROL <i>opr</i> ,SP	Rotate Left through Carry	C ← \to _	ţ	-	-	1	ţ	ţ	INH INH IX1 IX SP1	49 59 69 79 9E69	ff ff	1 1 4 3 5
ROR <i>opr</i> RORA RORX ROR <i>opr</i> ,X ROR ,X ROR <i>opr</i> ,SP	Rotate Right through Carry	b7 b0	ţ	_	_	1	ţ	ţ	DIR INH INH IX1 IX SP1	36 46 56 66 76 9E66	dd ff ff	4 1 4 3 5
RSP	Reset Stack Pointer	$SP \leftarrow \$FF$	-	-	-	-	-	-	INH	9C		1
RTI	Return from Interrupt	$\begin{array}{l} SP \leftarrow (SP) + 1; \ Pull \ (CCR) \\ SP \leftarrow (SP) + 1; \ Pull \ (A) \\ SP \leftarrow (SP) + 1; \ Pull \ (X) \\ SP \leftarrow (SP) + 1; \ Pull \ (PCH) \\ SP \leftarrow (SP) + 1; \ Pull \ (PCL) \end{array}$	ţ	ţ	ţ	1	ţ	ţ	INH	80		7
RTS	Return from Subroutine	$\begin{array}{l} SP \leftarrow SP + 1; Pull \ (PCH) \\ SP \leftarrow SP + 1; Pull \ (PCL) \end{array}$	-	-	-	I	_	-	INH	81		4
SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP	Subtract with Carry	$A \gets (A) - (M) - (C)$	ţ	_	-	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A2 B2 C2 D2 E2 F2 9EE2 9ED2	ii dd hh II ee ff ff ff ee ff	2 3 4 4 3 2 4 5
SEC	Set Carry Bit	C ← 1	-	-	-	-	-	1	INH	99		1
SEI	Set Interrupt Mask	l ← 1	-	-	1	-	-	-	INH	9B		2
STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP	Store A in M	M ← (A)	0	_	_	ţ	ţ	_	DIR EXT IX2 IX1 IX SP1 SP2	B7 C7 D7 E7 F7 9EE7 9ED7	dd hh II ee ff ff ee ff	3443245
STHX opr	Store H:X in M	$(M{:}M+1) \leftarrow (H{:}X)$	0	-	-	\$	\$	-	DIR	35	dd	4
STOP	Enable Interrupts, Stop Processing, Refer to MCU Documentation	$I \leftarrow 0$; Stop Processing	-	-	0	1	-	-	INH	8E		1
STX opr STX opr STX opr,X STX opr,X STX,X STX opr,SP STX opr,SP	Store X in M	M ← (X)	0	_	_	ţ	ţ	_	DIR EXT IX2 IX1 IX SP1 SP2	BF CF DF EF FF 9EEF 9EDF	dd hh II ee ff ff ee ff	3443245
SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB x SUB opr,SP SUB opr,SP	Subtract	A ← (A) – (M)	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A0 B0 C0 D0 E0 F0 9EE0 9ED0	ii dd hh II ee ff ff ee ff	23443245

Table 7-1.	Instruction	Set	Summarv	(Sheet 5	of 6)
			• • • • • • • • • • • • • • • • • • •	(0.000.0	••••

Table 7-1 Instruction Set Summa	~	(Shoot 6 of 6)	
	y		

Source	Operation	Description				0	Effe n C	eci C	t R		ress e	ode	rand	es
Form	Operation	Description	1	Ī	۷	н	I	Ν	z	С	boM	Opc	Ope	Cycl
swi	Software Interrupt	$\begin{array}{c} PC \leftarrow (PC) + 1; Pusl\\ SP \leftarrow (SP) - 1; LSP\\ SP \leftarrow (SP) - 1; LSP\\ CH \leftarrow Interrupt Vector\\ PCL \leftarrow Interrupt Vector\\ \end{array}$	n (PCL sh (PCH sh (X) sh (A) n (CCR ← 1 High E Low B)) 3yte yte	_	_	1	_	_	_	INH	83		9
TAP	Transfer A to CCR	$CCR \gets (A)$			\$	\$	1	\$	\$	\$	INH	84		2
TAX	Transfer A to X	$X \gets (A)$			—	I	Ι	Ι	Ι	-	INH	97		1
TPA	Transfer CCR to A	$A \gets (CCR)$			-	-	-	I	Ι	-	INH	85		1
TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP	Test for Negative or Zero	(A) – \$00 or (X) – \$00 o	r (M) –	\$00	0	_	_	ţ	ţ	_	DIR INH INH IX1 IX SP1	3D 4D 5D 6D 7D 9E6D	dd ff ff	3 1 3 2 4
TSX	Transfer SP to H:X	$H:X \gets (SP) +$	1		_	I	-	Ι	Ι	-	INH	95		2
ТХА	Transfer X to A	$A \gets (X)$			_	-	-	Ι	-	-	INH	9F		1
TXS	Transfer H:X to SP	$(SP) \gets (H{:}X) -$	1		-	-	-	Ι	-	-	INH	94		2
WAIT	Enable Interrupts; Wait for Interrupt	I bit ← 0; Inhibit CPU until interrupte	clockin d	g	-	I	0	Ι	1	-	INH	8F		1
A Accumu C Carry/bc CCR Conditio dd Direct a DD Direct ta DD Direct ta DIR Direct a DIX+ Direct ta DIX+ Direct ta e eff High an EXT Extende ff Offset b H Half-car H Index re hh II High an I Interrup ii Immedia IMD Immedia IMD Immedia IMM Immedia IMH Inherent IX Indexed IX+ Indexed IX+ Indexed IX+ Indexed IX+ Indexed IX1 Indexed IX1 Indexed IX2 Indexed IX2 Indexed M Memory N Negative	Ilator prove bit prove bit prove bit ddress of operand ddress of operand and relative offset o direct addressing mode ddressing mode o indexed with post increment address d low bytes of offset in indexed, 16-bit ad addressing mode yte in indexed, 8-bit offset addressing ry bit ugister high byte d low bytes of operand address in ext t mask ate operand byte ate addressing mode t addressing mode t, no offset addressing mode , no offset, post increment addressing with post increment to direct addressing with post increment addressing with post increment addressing t, 8-bit offset addressing mode , 8-bit offset addressing mode , 16-bit offset addressing mode e bit	of branch instruction sing mode t offset addressing ended addressing ssing mode g mode sing mode ng mode	n opr PCH PCL REL rr SPP U ∨ X Z & \oplus () –(# « \leftarrow ? : ‡ —	Any bit Operar Progra Progra Relativ Relativ Relativ Stack p Stack p Undefii Overflc Index r Zero bi Logica Logica Conter Negatii Immed Sign e: Loadec If Concai Set or Not aff	ind m a contraction m a contra	(on could co	e oi inte inte gran r, 8- r 16 r LUS er lo so's alue	r tw r hi r lo bit -bi w k SIV cou	vot igh yw I g m our off t of TE (DR DR DR	es) te e r offset by offset by addressir t addressi	te ng mode ng mod	e le	

7.8 Opcode Map

See Table 7-2.

Internal Clock Generator (ICG) Module

Figure 8-1. Block Diagram Highlighting ICG Block and Pins

Figure 8-3. Internal Clock Generator Block Diagram

8.3.2.1 Digitally Controlled Oscillator

The digitally controlled oscillator (DCO) is an inaccurate oscillator which generates the internal clock (ICLK). The clock period of ICLK is dependent on the digital loop filter outputs (DSTG[7:0] and DDIV[3:0]). Because of only a limited number of bits in DDIV and DSTG, the precision of the output (ICLK) is restricted to a precision of approximately ± 0.202 percent to ± 0.368 percent when measured over several cycles (of the desired frequency). Additionally, since the propagation delays of the devices used in the DCO ring oscillator are a measurable fraction of the bus clock period, reaching the long-term precision may require alternately running faster and slower than desired, making the worst case cycle-to-cycle frequency variation ± 6.45 percent to ± 11.8 percent (of the desired frequency). The valid values of DDIV:DSTG range from \$000 to \$9FF. For more information on the quantization error in the DCO, see 8.4.4 Quantization Error in DCO Output.

8.3.2.2 Modulo N Divider

The modulo N divider creates the low-frequency base clock (IBASE) by dividing the internal clock (ICLK) by the ICG multiplier factor (N), contained in the ICG multiplier register (ICGMR). When N is programmed to a \$01 or \$00, the divider is disabled and ICLK is passed through to IBASE undivided. When the internal clock generator is stable, the frequency of IBASE will be equal to the nominal frequency (f_{NOM}) of 307.2 kHz ± 25 percent.

8.3.2.3 Frequency Comparator

The frequency comparator effectively compares the low-frequency base clock (IBASE) to a nominal frequency, f_{NOM}. First, the frequency comparator converts IBASE to a voltage by charging a known capacitor with a current reference for a period dependent on IBASE. This voltage is compared to a voltage

Internal Clock Generator (ICG) Module

8.4.3 Using Clock Monitor Interrupts

The clock monitor circuit can be used to recover from perilous situations such as crystal loss. To use the clock monitor effectively, these points should be observed:

- Enable the clock monitor and clock monitor interrupts.
- The first statement in the clock monitor interrupt service routine (CMISR) should be a read to the ICG control register (ICGCR) to verify that the clock monitor flag (CMF) is set. This is also the first step in clearing the CMF bit.
- The second statement in the CMISR should be a write to the ICGCR to clear the CMF bit (write the bit low). Writing the bit high will not affect it. This statement does not need to immediately follow the first, but must be contained in the CMISR.
- The third statement in the CMISR should be to clear the CMON bit. This is required to ensure proper reconfiguration of the reference dividers. This statement also must be contained in the CMISR.
- Although the clock monitor can be enabled only when both clocks are stable (ICGS is set or ECGS is set), it will remain set if one of the clocks goes unstable.
- The clock monitor only works if the external slow (EXTSLOW) bit in the CONFIG is set to the correct value.
- The internal and external clocks must both be enabled and running to use the clock monitor.
- When the clock monitor detects inactivity, the inactive clock is automatically deselected and the active clock selected as the source for CGMXCLK and TBMCLK. The CMISR can use the state of the CS bit to check which clock is inactive.
- When the clock monitor detects inactivity, the application may have been subjected to extreme conditions which may have affected other circuits. The CMISR should take any appropriate precautions.

8.4.4 Quantization Error in DCO Output

The digitally controlled oscillator (DCO) is comprised of three major sub-blocks:

- 1. Binary weighted divider
- 2. Variable-delay ring oscillator
- 3. Ring oscillator fine-adjust circuit

Each of these blocks affects the clock period of the internal clock (ICLK). Since these blocks are controlled by the digital loop filter (DLF) outputs DDIV and DSTG, the output of the DCO can change only in quantized steps as the DLF increments or decrements its output. The following sections describe how each block will affect the output frequency.

8.4.4.1 Digitally Controlled Oscillator

The digitally controlled oscillator (DCO) is an inaccurate oscillator which generates the internal clock (ICLK), whose clock period is dependent on the digital loop filter outputs (DSTG[7:0] and DDIV[3:0]). Because of the digital nature of the DCO, the clock period of ICLK will change in quantized steps. This will create a clock period difference or quantization error (Q-ERR) from one cycle to the next. Over several cycles or for longer periods, this error is divided out until it reaches a minimum error of 0.202 percent to 0.368 percent. The dependence of this error on the DDIV[3:0] value and the number of cycles the error is measured over is shown in Table 8-2.

NP

External Interrupt (IRQ)

Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of these actions occurs:

- Vector fetch A vector fetch automatically generates an interrupt acknowledge signal that clears the latch that caused the vector fetch.
- Software clear Software can clear an interrupt latch by writing to the appropriate acknowledge bit in the interrupt status and control register (ISCR). Writing a 1 to the ACK bit clears the IRQ latch.
- Reset A reset automatically clears both interrupt latches.

The external interrupt pin is falling-edge triggered and is software-configurable to be both falling-edge and low-level triggered. The MODE bit in the ISCR controls the triggering sensitivity of the IRQ pin.

When an interrupt pin is edge-triggered only, the interrupt latch remains set until a vector fetch, software clear, or reset occurs.

When an interrupt pin is both falling-edge and low-level-triggered, the interrupt latch remains set until both of these occur:

- Vector fetch or software clear
- Return of the interrupt pin to logic 1

The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low.

When set, the IMASK bit in the ISCR masks all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the corresponding IMASK bit is clear.

NOTE

The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. See Figure 9-2.

9.4 IRQ Pin

A logic 0 on the \overline{IRQ} pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch.

If the MODE bit is set, the IRQ pin is both falling-edge sensitive and low-level sensitive. With MODE set, both of these actions must occur to clear the IRQ latch:

- Vector fetch or software clear A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a 1 to the ACK bit in the interrupt status and control register (ISCR). The ACK bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling edge on IRQ that occurs after writing to the ACK bit latches another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address at locations \$FFFA and \$FFFB.
- Return of the IRQ pin to logic 1 As long as the IRQ pin is at logic 0, the IRQ latch remains set.

The vector fetch or software clear and the return of the IRQ pin to logic 1 can occur in any order. The interrupt request remains pending as long as the IRQ pin is at logic 0. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low.

13.4.3 Receiver

Figure 13-5 shows the structure of the ESCI receiver.

Figure 13-5. ESCI Receiver Block Diagram

Enhanced Serial Communications Interface (ESCI) Module

13.8.2 ESCI Control Register 2

ESCI control register 2 (SCC2):

- Enables these CPU interrupt requests:
 - SCTE bit to generate transmitter CPU interrupt requests
 - TC bit to generate transmitter CPU interrupt requests
 - SCRF bit to generate receiver CPU interrupt requests
 - IDLE bit to generate receiver CPU interrupt requests
- Enables the transmitter
- Enables the receiver
- Enables ESCI wakeup
- Transmits ESCI break characters

Figure 13-10. ESCI Control Register 2 (SCC2)

SCTIE — ESCI Transmit Interrupt Enable Bit

This read/write bit enables the SCTE bit to generate ESCI transmitter CPU interrupt requests. Setting the SCTIE bit in SCC2 enables the SCTE bit to generate CPU interrupt requests. Reset clears the SCTIE bit.

1 = SCTE enabled to generate CPU interrupt

0 = SCTE not enabled to generate CPU interrupt

TCIE — Transmission Complete Interrupt Enable Bit

This read/write bit enables the TC bit to generate ESCI transmitter CPU interrupt requests. Reset clears the TCIE bit.

- 1 = TC enabled to generate CPU interrupt requests
- 0 = TC not enabled to generate CPU interrupt requests

SCRIE — ESCI Receive Interrupt Enable Bit

This read/write bit enables the SCRF bit to generate ESCI receiver CPU interrupt requests. Setting the SCRIE bit in SCC2 enables the SCRF bit to generate CPU interrupt requests. Reset clears the SCRIE bit.

1 = SCRF enabled to generate CPU interrupt

0 = SCRF not enabled to generate CPU interrupt

ILIE — Idle Line Interrupt Enable Bit

This read/write bit enables the IDLE bit to generate ESCI receiver CPU interrupt requests. Reset clears the ILIE bit.

1 = IDLE enabled to generate CPU interrupt requests

0 = IDLE not enabled to generate CPU interrupt requests

Enhanced Serial Communications Interface (ESCI) Module

PDS[2:1:0]	PSSB[4:3:2:1:0]	SCP[1:0]	Prescaler Divisor (BPD)	SCR[2:1:0]	Baud Rate Divisor (BD)	Baud Rate (ESCI Clock = 4.9152 MHz)
000	x	0 0	1	000	1	76,800
111	00000	0 0	1	000	1	9600
1 1 1	00001	0 0	1	000	1	9562.65
1 1 1	00010	0 0	1	000	1	9525.58
1 1 1	11111	0 0	1	000	1	8563.07
0 0 0	X X X X X	0 0	1	001	2	38,400
0 0 0	X X X X X	0 0	1	010	4	19,200
0 0 0	X X X X X	0 0	1	011	8	9600
0 0 0	X X X X X	0 0	1	100	16	4800
000	x x x x x x	0 0	1	101	32	2400
0 0 0	X X X X X	0 0	1	110	64	1200
0 0 0	X X X X X	0 0	1	111	128	600
000	x x x x x x	0 1	3	000	1	25,600
0 0 0	X X X X X	0 1	3	001	2	12,800
0 0 0	X X X X X	0 1	3	010	4	6400
0 0 0	X X X X X	0 1	3	011	8	3200
0 0 0	X X X X X	0 1	3	100	16	1600
0 0 0	X X X X X	0 1	3	101	32	800
0 0 0	X X X X X	0 1	3	110	64	400
0 0 0	X X X X X	0 1	3	111	128	200
0 0 0	X X X X X	10	4	000	1	19,200
000	X X X X X	10	4	001	2	9600
0 0 0	X X X X X	10	4	010	4	4800
0 0 0	X X X X X	10	4	011	8	2400
0 0 0	X X X X X	10	4	100	16	1200
0 0 0	X X X X X	10	4	101	32	600
0 0 0	X X X X X	10	4	110	64	300
0 0 0	X X X X X	10	4	111	128	150
0 0 0	X X X X X	11	13	000	1	5908
0 0 0	X X X X X	11	13	001	2	2954
000	X X X X X	11	13	010	4	1477
000	X X X X X	1 1	13	011	8	739
000	ххххх	1 1	13	100	16	369
000	X X X X X	1 1	13	101	32	185
000	X X X X X	1 1	13	110	64	92
0 0 0	x x x x x x	11	13	1 1 1	128	46

Table 13-11	. ESCI Ba	aud Rate	Selection	Examples
-------------	-----------	----------	-----------	-----------------

Serial Peripheral Interface (SPI) Module

SPR1 and SPR0 — SPI Baud Rate Select Bits

In master mode, these read/write bits select one of four baud rates as shown in Table 15-5. SPR1 and SPR0 have no effect in slave mode. Reset clears SPR1 and SPR0.

SPR1:SPR0	Baud Rate Divisor (BD)
00	2
01	8
10	32
11	128

Table 15-5. SPI Master Baud Rate Selection

Use this formula to calculate the SPI baud rate:

Baud rate =
$$\frac{CGMOUT}{2 \times BD}$$

where:

CGMOUT = base clock output of the internal clock generator module (ICG),

see Chapter 8 Internal Clock Generator (ICG) Module.

BD = baud rate divisor

15.13.3 SPI Data Register

The SPI data register is the read/write buffer for the receive data register and the transmit data register. Writing to the SPI data register writes data into the transmit data register. Reading the SPI data register reads data from the receive data register. The transmit data and receive data registers are separate buffers that can contain different values. See Figure 15-2

Address:	\$000F							
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	R7	R6	R5	R4	R3	R2	R1	R0
Write:	T7	T6	T5	T4	Т3	T2	T1	T0
Reset:		Indeterminate after Reset						

Reset:

Figure 15-14. SPI Data Register (SPDR)

R7–R0/T7–T0 — Receive/Transmit Data Bits

NOTE

Do not use read-modify-write instructions on the SPI data register since the buffer read is not the same as the buffer written.

DC Electrical Characteristics

Characteristic ⁽¹⁾	Symbol	Min	Тур ⁽²⁾	Max	Unit
$\begin{split} & V_{DD} + V_{DDA} \text{ supply current} \\ & Run^{(4),(5)} \\ & Wait^{(5),\ (6)} \\ & Stop \ (LVI \ off) \ @ \ 25^\circ C^{(7)} \\ & Stop \ (LVI \ on) \ @ \ 25^\circ C \\ & Stop \ (LVI \ on), \ -40^\circ C \ to \ 135^\circ C \\ & Stop \ (LVI \ on), \ -40^\circ C \ to \ 135^\circ C \end{split}$	I _{DD}	 	18 5.2 0.83 0.19 3.0 0.19	25 7.0 2.00 0.24 30 0.30	mA mA μA mA mA
I/O ports Hi-Z leakage current ⁽⁸⁾	Ι _{ΙL}	-1		+1	μA
Input current – RST, OSC1	l _{ln}	-1		+1	μA
Capacitance Ports (as input or output)	C _{Out} C _{In}	_	_	12 8	pF
POR rearm voltage ⁽⁹⁾	V _{POR}	0	_	100	mV
POR reset voltage ⁽¹⁰⁾	V _{POR}	0	700	800	mV
POR rise time ramp rate	R _{POR}	0.035	_	—	V/ms
Monitor mode entry voltage	V _{TST}	V _{DD} + 3.5		V _{DD} + 4.5	V
Low-voltage inhibit reset, trip falling voltage ⁽¹¹⁾	V _{TRIPF}	3.90	4.30	4.50	V
Low-voltage inhibit reset, trip rising voltage ⁽¹²⁾	V _{TRIPR}	4.00	4.40	4.60	V
Low-voltage inhibit reset/recover hysteresis ⁽¹³⁾	V _{HYS}	_	0.09	_	V
Pullup resistor — PTA0–PTA6/SS ⁽¹⁴⁾ , IRQ, RST	R _{PU}	24		48	kΩ

1. V_{DD} = 5.5 Vdc to 4.5 Vdc, V_{SS} = 0 Vdc, T_A = -40°C to +135°C, unless otherwise noted

2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.

- 3. Some disturbance of the ADC accuracy is possible during any injection event and is dependent on board layout and power supply decoupling.
- 4. Run (operating) I_{DD} measured using internal oscillator at its 32-MHz rate. V_{DD} = 5.5 Vdc. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled.
- 5. All measurements taken with LVI enabled.
- Wait I_{DD} measured using internal oscillator at its 1-MHz rate. All inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. All ports configured as inputs.
- 7. Stop I_{DD} is measured with no port pin sourcing current; all modules are disabled. OSCSTOPEN option is not selected.
- 8. Pullups and pulldowns are disabled.
- 9. Maximum is highest voltage that power-on reset (POR) is guaranteed.
- 10. Maximum is highest voltage that POR is possible.
- 11. These values assume the LVI is operating in 5-V mode (i.e. LVI5OR3 bit is set to 1). For 3-V mode (LVI5OR3 = 0), values become Min: 2.45, Typ: 2.60, Max: 2.80
- 12. These values assume the LVI is operating in 5-V mode (i.e. LVI5OR3 bit is set to 1). For 3-V mode (LVI5OR3 = 0), values become Min: 2.55, Typ: 2.66, Max: 2.80
- 13. These values assume the LVI is operating in 5-V mode (i.e. LVI5OR3 bit is set to 1).
- For 3-V mode (LVI5OR3 = 0), values become Typ: 60
- 14. PTA0-PTA4 pullup resistors are for interrupts only and are only enabled when the keyboard is in use.

20.8 External Oscillator Characteristics

Characteristic ⁽¹⁾	Symbol	Min	Тур	Max	Unit
External clock option ⁽²⁾⁽³⁾ With ICG clock disabled With ICG clock enabled EXTSLOW = $1^{(4)}$ EXTSLOW = $0^{(4)}$	f _{EXTOSC}	dc ⁽⁵⁾ 60 307.2 k		32 M ⁽⁶⁾ 307.2 k 32 M ⁽⁶⁾	Hz
External crystal options ⁽⁷⁾⁽⁸⁾ EXTSLOW = $1^{(4)}$ EXTSLOW = $0^{(4)}$	f _{EXTOSC}	30 k 1 M		100 k 8 M	Hz
Crystal load capacitance ⁽⁹⁾	CL	—	12.5	—	pF
Crystal fixed capacitance ⁽⁹⁾	C ₁	—	15	—	pF
Crystal tuning capacitance ⁽⁹⁾	C ₂	—	15	—	pF
EXTSLOW = 1 Feedback bias resistor ⁽⁹⁾ Series resistor ⁽⁹⁾	R _B R _s	 100	10 330	 470	MΩ kΩ
EXTSLOW = 0 Feedback bias resistor ⁽⁹⁾ Series resistor ⁽⁹⁾⁽¹⁰⁾	R _B	_	1	_	MΩ
$f_{EXTOSC} = 1 MHz$ $f_{EXTOSC} = 4 MHz$ $f_{EXTOSC} = 8 MHz$	R _s R _s R _s		20 10 0	 	kΩ kΩ kΩ

1. V_{DD} = 4.5 to 5.5 Vdc, V_{SS} = 0 Vdc, T_A = -40°C to +135°C, unless otherwise noted 2. Setting EXTCLKEN configuration option enables OSC1 pin for external clock square-wave input.

3. No more than 10% duty cycle deviation from 50%

4. EXTSLOW configuration option configures external oscillator for a slow speed crystal and sets the clock monitor circuits of the ICG module to expect an external clock frequency that is higher/lower than the internal oscillator base frequency, f_{INTOSC.} 5. Some modules may require a minimum frequency greater than dc for proper operation. See appropriate table for this

information.

6. MCU speed derates from 32 MHz at V_{DD} = 4.5 Vdc 7. Setting EXTCLKEN and EXTXTALEN configuration options enables OSC1 and OSC2 pins for external crystal option.

8. $f_{Bus} = (f_{EXTOSC} / 4)$ when external clock source is selected. 9. Crystal manufacturer's value, see Figure 8-3. Internal Clock Generator Block Diagram.

10. Not required for high-frequency crystals

Electrical Specifications

20.9 Trimmed Accuracy of the Internal Clock Generator

The unadjusted frequency of the low-frequency base clock (IBASE), when the comparators in the frequency comparator indicate zero error, can vary as much as $\pm 25\%$ due to process, temperature, and voltage. The trimming capability exists to compensate for process affects. The remaining variation in frequency is due to temperature, voltage, and change in target frequency (multiply register setting). These affects are designed to be minimal, however variation does occur. Better performance is seen with lower settings of N.

20.9.1 Trimmed Internal Clock Generator Characteristics

Characteristic ⁽¹⁾	Symbol	Min	Тур	Max	Unit
Absolute trimmed internal oscillator tolerance ^{(2),(3)} –40°C to 85°C –40°C to 135°C	F _{abs_tol}		±2.0 ±2.5	±3.5 ±5.0	%
Variation over temperature ^{(3), (4)}	V _{ar_temp}	—	0.05	0.08	%/°C
Variation over voltage ^{(3), (5)} 25°C –40°C to 85°C –40°C to 135°C	V _{ar_volt}		1.0 1.0 1.0	2.0 2.0 2.0	%/V

1. These specifications concern long-term frequency variation. Each measurement is taken over a 1-ms period.

2. Absolute value of variation in ICG output frequency, trimmed at nominal V_{DD} and temperature, as temperature and V_{DD} are allowed to vary for a single given setting of N.

3. Specification is characterized but not tested.

4. Variation in ICG output frequency for a fixed N and voltage

5. Variation in ICG output frequency for a fixed N

Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.

Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.

b) SPI Master Timing (CPHA = 1)

Figure 20-1. SPI Master Timing

MC68HC908EY16 • MC68HC908EY8 Data Sheet, Rev. 10

A.4 MC Order Numbers

MC Order Number ⁽¹⁾	Operating Temperature Range		
MC68HC908EY8KFA	–40°C to +135°C		
MC68HC908EY8MFA	-40°C to +125°C		
MC68HC908EY8VFA	–40°C to +105°C		
MC68HC908EY8CFA	–40°C to +85°C		

Table A-1. MC Order Numbers

1. FA = Quad flat pack

Figure A-3. Device Numbering System