

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	4160
Number of Logic Elements/Cells	37440
Total RAM Bits	1548288
Number of I/O	309
Number of Gates	1800000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-FBGA, CSPBGA
Supplier Device Package	484-CSPBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3sd1800a-4csg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Architectural Overview

The Spartan-3A DSP family architecture consists of five fundamental programmable functional elements:

- XtremeDSP™ DSP48A Slice provides an 18-bit x 18-bit multiplier, 18-bit pre-adder, 48-bit post-adder/accumulator, and cascade capabilities for various DSP applications.
- **Block RAM** provides data storage in the form of 18-Kbit dual-port blocks.
- **Configurable Logic Blocks (CLBs)** contain flexible Look-Up Tables (LUTs) that implement logic plus storage elements used as flip-flops or latches. CLBs perform a wide variety of logical functions as well as store data.
- Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. IOBs support bidirectional data flow plus 3-state operation. Supports a variety of signal standards, including several high-performance differential standards. Double Data-Rate (DDR) registers are included.

• **Digital Clock Manager (DCM) Blocks** provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase-shifting clock signals.

These elements are organized as shown in Figure 1. A dual ring of staggered IOBs surrounds a regular array of CLBs. The XC3SD1800A has four columns of DSP48As, and the XC3SD3400A has five columns of DSP48As. Each DSP48A has an associated block RAM. The DCMs are positioned in the center with two at the top and two at the bottom of the device and in the two outer columns of the 4 or 5 columns of block RAM and DSP48As.

The Spartan-3A DSP family features a rich network of routing that interconnect all five functional elements, transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections to the routing.

Notes:

- 1. The XC3SD1800A and XC3SD3400A have two DCMs on both the left and right sides, as well as the two DCMs at the top and bottom of the devices. The two DCMs on the left and right of the chips are in the middle of the outer Block RAM/DSP48A columns of the 4 or 5 columns in the selected device, as shown in the diagram above.
- 2. A detailed diagram of the DSP48A can be found in UG431: XtremeDSP DSP48A for Spartan-3A DSP FPGAs User Guide.

Figure 1: Spartan-3A DSP Family Architecture

Configuration

Spartan-3A DSP FPGAs are programmed by loading configuration data into robust, reprogrammable, static CMOS configuration latches (CCLs) that collectively control all functional elements and routing resources. The FPGA's configuration data is stored externally in a PROM or some other non-volatile medium, either on or off the board. After applying power, the configuration data is written to the FPGA using any of seven different modes:

- Master Serial from a Xilinx Platform Flash PROM
- Serial Peripheral Interface (SPI) from an industry-standard SPI serial Flash
- Byte Peripheral Interface (BPI) Up from an industry-standard x8 or x8/x16 parallel NOR Flash
- Slave Serial, typically downloaded from a processor
- Slave Parallel, typically downloaded from a processor
- Boundary Scan (JTAG), typically downloaded from a processor or system tester

Furthermore, Spartan-3A DSP FPGAs support MultiBoot configuration, allowing two or more FPGA configuration bitstreams to be stored in a single SPI serial Flash or a BPI parallel NOR Flash. The FPGA application controls which configuration to load next and when to load it.

Additionally, each Spartan-3A DSP FPGA contains a unique, factory-programmed Device DNA identifier useful for tracking purposes, anti-cloning designs, or IP protection.

I/O Capabilities

The Spartan-3A DSP FPGA SelectIO interface supports many popular single-ended and differential standards. Table 2 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package combination. Some of the user I/Os are unidirectional input-only pins as indicated in Table 2.

Spartan-3A DSP FPGAs support the following single-ended standards:

- 3.3V low-voltage TTL (LVTTL)
- Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V, 1.5V, or 1.2V
- 3.3V PCI at 33 MHz or 66 MHz
- HSTL I, II, and III at 1.5V and 1.8V, commonly used in memory applications
- SSTL I and II at 1.8V, 2.5V, and 3.3V, commonly used for memory applications
- Spartan-3A DSP FPGAs support the following differential standards:
- LVDS, mini-LVDS, RSDS, and PPDS I/O at 2.5V or 3.3V
- Bus LVDS I/O at 2.5V
- TMDS I/O at 3.3V
- Differential HSTL and SSTL I/O
- LVPECL inputs at 2.5V or 3.3V

Table 2: Available User I/Os and Differential (Diff) I/O Pairs

Device	CS4	84	FG676	
	CSG	484	FGG676	
	User	Diff	User	Diff
XC3SD1800A	309 ⁽¹⁾	140	519	227
	(60)	(78)	(110)	(131)
XC3SD3400A	309	140	469	213
	(60)	(78)	(60)	(117)

Notes:

 The number shown in **bold** indicates the maximum number of I/O and input-only pins. The number shown in (*italics*) indicates the number of input-only pins. The differential (Diff) input-only pin count includes both differential pairs on input-only pins and differential pairs on I/O pins within I/O banks that are restricted to differential inputs.

Single-Ended I/O Standards

Table 10: Recommended Operating Conditions for User I/Os Using Single-Ended Standards

IOSTANDARD	vc	_{CO} for Driver	's ⁽²⁾	V _{REF}			V _{IL}	V _{IH} ⁽³⁾
Attribute	Min (V)	Nom (V)	Max (V)	Min (V)	Nom (V)	Max (V)	Max (V)	Min (V)
LVTTL	3.0	3.3	3.6				0.8	2.0
LVCMOS33 ⁽⁴⁾	3.0	3.3	3.6		-			2.0
LVCMOS25 ^(4,5)	2.3	2.5	2.7	V _{REF} is not used for these I/O standards			0.7	1.7
LVCMOS18	1.65	1.8	1.95				0.4	0.8
LVCMOS15	1.4	1.5	1.6				0.4	0.8
LVCMOS12	1.1	1.2	1.3				0.4	0.7
PCI33_3 ⁽⁶⁾	3.0	3.3	3.6	-			0.3 • V _{CCO}	0.5 • V _{CCO}
PCI66_3 ⁽⁶⁾	3.0	3.3	3.6				0.3 • V _{CCO}	0.5 • V _{CCO}
HSTL_I	1.4	1.5	1.6	0.68	0.75	0.9	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_III	1.4	1.5	1.6	-	0.9	-	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_I_18	1.7	1.8	1.9	0.8	0.9	1.1	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_II_18	1.7	1.8	1.9	-	0.9	-	V _{REF} – 0.1	V _{REF} + 0.1
HSTL_III_18	1.7	1.8	1.9	-	1.1	-	V _{REF} – 0.1	V _{REF} + 0.1
SSTL18_I	1.7	1.8	1.9	0.833	0.900	0.969	V _{REF} – 0.125	V _{REF} + 0.125
SSTL18_II	1.7	1.8	1.9	0.833	0.900	0.969	V _{REF} – 0.125	V _{REF} + 0.125
SSTL2_I	2.3	2.5	2.7	1.13	1.25	1.38	V _{REF} – 0.150	V _{REF} + 0.150
SSTL2_II	2.3	2.5	2.7	1.13	1.25	1.38	V _{REF} – 0.150	V _{REF} + 0.150
SSTL3_I	3.0	3.3	3.6	1.3	1.5	1.7	V _{REF} – 0.2	V _{REF} + 0.2
SSTL3_II	3.0	3.3	3.6	1.3	1.5	1.7	V _{REF} – 0.2	V _{REF} + 0.2

Notes:

Descriptions of the symbols used in this table are as follows: 1.

 $V_{CCO} \label{eq:V_CCO} \label{eq:V_CCO} \label{eq:V_CCO} the supply voltage for output drivers \\ V_{REF} \label{eq:V_REF} \label{eq:V_REF} \label{eq:V_REF} the reference voltage for setting the input switching threshold \\ V_{IL} \label{eq:V_REF} \label{eq:V$

- In general, the V_{CCO} rails supply only output drivers, not input circuits. The exceptions are for LVCMOS25 inputs when V_{CCAUX} = 3.3V range 2. and for PCI I/O standards.
- For device operation, the maximum signal voltage (V_{IH} max) can be as high as V_{IN} max. See Table 7. З.
- 4. There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards.
- All Dedicated pins (PROG_B, DONE, SUSPEND, TCK, TDI, TDO, and TMS) draw power from the V_{CCAUX} rail and use the LVCMOS25 or 5. LVCMOS33 standard depending on V_{CCAUX} . The Dual-Purpose configuration pins use the LVCMOS standard before the User mode. When using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the V_{CCO} lines of Banks 0, 1, and 2 at power-on as well as throughout configuration.
- For information on PCI IP solutions, see www.xilinx.com/pci. The PCI IOSTANDARD is not supported on input-only pins. The PCIX 6. IOSTANDARD is available and has equivalent characteristics but no PCI-X IP is supported.

Table 11: DC Characteristics of User I/Os UsingSingle-Ended Standards

IOSTANDARD Attribute		Te Cond	est itions	Logic Level Characteristics		
		I _{OL} (mA)	I _{OH} (mA)	V _{OL} Max (V)	V _{OH} Min (V)	
LVTTL ⁽³⁾	2	2	-2	0.4	2.4	
	4	4	-4			
	6	6	-6			
	8	8	-8			
	12	12	-12			
	16	16	-16			
	24	24	-24			
LVCMOS33 ⁽³⁾	2	2	-2	0.4	V _{CCO} – 0.4	
	4	4	-4			
	6	6	-6			
	8	8	-8			
	12	12	-12			
	16	16	-16			
	24 <mark>(5)</mark>	24	-24			
LVCMOS25(3)	2	2	-2	0.4	V _{CCO} – 0.4	
	4	4	-4			
	6	6	-6			
	8	8	-8			
	12	12	-12			
	16 ⁽⁵⁾	16	-16			
	24 ⁽⁵⁾	24	-24			
LVCMOS18 ⁽³⁾	2	2	-2	0.4	$V_{CCO} - 0.4$	
	4	4	-4			
	6	6	-6			
	8	8	-8			
	12 <mark>(5)</mark>	12	-12			
	16 <mark>(5)</mark>	16	-16			
LVCMOS15 ⁽³⁾	2	2	-2	0.4	$V_{CCO} - 0.4$	
	4	4	-4			
	6	6	-6			
	8 ⁽⁵⁾	8	-8			
	12 <mark>(5)</mark>	12	-12			
LVCMOS12 ⁽³⁾	2	2	-2	0.4	V _{CCO} – 0.4	
	4 ⁽⁵⁾	4	-4			
	6 ⁽⁵⁾	6	-6			

Table 11: DC Characteristics of User I/Os Using Single-Ended Standards (Cont'd)

IOSTANDARD	Te Cond	est itions	Logic Level Characteristics		
Attribute	l _{OL} (mA)	I _{OH} (mA)	V _{OL} Max (V)	V _{OH} Min (V)	
PCI33_3 ⁽⁴⁾	1.5	-0.5	10% V _{CCO}	90% V _{CCO}	
PCI66_3 ⁽⁴⁾	1.5	-0.5	10% V _{CCO}	$90\% V_{\rm CCO}$	
HSTL_I ⁽⁵⁾	8	-8	0.4	$V_{CCO} - 0.4$	
HSTL_III ⁽⁵⁾	24	-8	0.4	$V_{CCO} - 0.4$	
HSTL_I_18	8	-8	0.4	$V_{CCO} - 0.4$	
HSTL_II_18 ⁽⁵⁾	16	-16	0.4	$V_{CCO} - 0.4$	
HSTL_III_18	24	-8	0.4	$V_{CCO} - 0.4$	
SSTL18_I	6.7	-6.7	V _{TT} – 0.475	V _{TT} + 0.475	
SSTL18_II ⁽⁵⁾	13.4	-13.4	V _{TT} – 0.603	V _{TT} + 0.603	
SSTL2_I	8.1	-8.1	V _{TT} – 0.61	V _{TT} + 0.61	
SSTL2_II ⁽⁵⁾	16.2	-16.2	V _{TT} – 0.81	V _{TT} + 0.81	
SSTL3_I	8	-8	V _{TT} – 0.6	V _{TT} + 0.6	
SSTL3_II ⁽⁵⁾	16	-16	V _{TT} – 0.8	V _{TT} + 0.8	

Notes:

1. The numbers in this table are based on the conditions set forth in Table 7 and Table 10.

- 2. Descriptions of the symbols used in this table are as follows: I_{OL} —the output current condition under which VOL is tested I_{OH} —the output current condition under which VOH is tested V_{OL} — the output voltage that indicates a Low logic level V_{OH} —the output voltage that indicates a High logic level V_{CCO} —the supply voltage for output drivers V_{TT} —the voltage applied to a resistor termination
- 3. For the LVCMOS and LVTTL standards: the same V_{OL} and V_{OH} limits apply for the Fast, Slow, and QUIETIO slew attributes.
- Tested according to the relevant PCI specifications. For information on PCI IP solutions, see <u>www.xilinx.com/products/</u> <u>design_resources/conn_central/protocols/pci_pcix.htm</u>. The PCIX IOSTANDARD is available and has equivalent characteristics but no PCI-X IP is supported.
- These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the Using I/O Resources chapter in UG331.

Switching Characteristics

All Spartan-3A DSP FPGAs ship in two speed grades: -4 and the higher performance -5. Switching characteristics in this document are designated as Advance, Preliminary, or Production, as shown in Table 15. Each category is defined as follows:

Advance: These specifications are based on simulations only and are typically available soon after establishing FPGA specifications. Although speed grades with this designation are considered relatively stable and conservative, some under-reporting might still occur.

Preliminary: These specifications are based on complete early silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting preliminary delays is greatly reduced compared to Advance data.

Production: These specifications are approved once enough production silicon of a particular device family member has been characterized to provide full correlation between speed files and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades.

Software Version Requirements

Production-quality systems must use FPGA designs compiled using a speed file designated as PRODUCTION status. FPGAs designs using a less mature speed file designation should only be used during system prototyping or pre-production qualification. FPGA designs with speed files designated as Preview, Advance, or Preliminary should not be used in a production-quality system.

Whenever a speed file designation changes, as a device matures toward Production status, rerun the latest Xilinx® ISE® software on the FPGA design to ensure that the FPGA design incorporates the latest timing information and software updates.

Production designs will require updating the Xilinx ISE development software with a future version and/or Service Pack.

All parameter limits are representative of worst-case supply voltage and junction temperature conditions. **Unless** otherwise noted, the published parameter values apply to all Spartan-3A DSP devices. AC and DC characteristics are specified using the same numbers for both commercial and industrial grades. Create a Xilinx user account and sign up to receive automatic e-mail notification whenever this data sheet or the associated user guides are updated.

Sign Up for Alerts on Xilinx.com

http://www.xilinx.com/support/answers/18683.htm

Timing parameters and their representative values are selected for inclusion below either because they are important as general design requirements or they indicate fundamental device performance characteristics. The Spartan-3A DSP FPGA speed files (v1.32), part of the Xilinx Development Software, are the original source for many but not all of the values. The speed grade designations for these files are shown in Table 15. For more complete, more precise, and worst-case data, use the values reported by the Xilinx static timing analyzer (TRACE in the Xilinx development software) and back-annotated to the simulation netlist.

Table 15: Spartan-3A DSP v1.32 Speed GradeDesignations

Device	Advance	Preliminary	Production
XC3SD1800A			-4, -5
XC3SD3400A			-4, -5

Table 16 provides the recent history of the Spartan-3A DSPFPGA speed files.

Table 16: Spartan-3A DSP Speed File Version History

Version	ISE Release	Description
1.32	ISE 10.1.02	Updated DSP timing model to reflect higher performance for some implementations
1.31	ISE 10.1	Added Automotive support
1.30	ISE 9.2.03i	Added absolute minimum values
1.29	ISE 9.2.01i	Production Speed Files for -4 and -5 speed grades
1.28	ISE 9.2i	Minor updates
1.27	ISE 9.1.03i	Advance Speed Files for -4 speed grade

Table 25: Output Timing Adjustments for IOB (Cont'd)

Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following Signal Standard (IOSTANDARD)			Add Adjus Bel	the tment low	Units
			Speed	•	
			-5	-4	
LVCMOS25	Slow	2 mA	5.33	5.33	ns
		4 mA	2.81	2.81	ns
		6 mA	2.82	2.82	ns
		8 mA	1.14	1.14	ns
		12 mA	1.10	1.10	ns
		16 mA	0.83	0.83	ns
		24 mA	2.26 ⁽³⁾	2.26 ⁽³⁾	ns
	Fast	2 mA	4.36	4.36	ns
		4 mA	1.76	1.76	ns
		6 mA	1.25	1.25	ns
		8 mA	0.38	0.38	ns
		12 mA	0.00	0.00	ns
		16 mA	0.01	0.01	ns
		24 mA	0.01	0.01	ns
	QuietIO	2 mA	25.92	25.92	ns
		4 mA	25.92	25.92	ns
		6 mA	25.92	25.92	ns
		8 mA	15.57	15.57	ns
		12 mA	15.59	15.59	ns
		16 mA	14.27	14.27	ns
		24 mA	11.37	11.37	ns

Table 25: Output Timing Adjustments for IOB (Cont'd)

Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the			Ado Adjus Be	Add the Adjustment Below		
Following	Signal Sta	indard	Speed	Grade	•	
(IOS1	ANDARD)	-5	-4		
LVCMOS18	Slow	2 mA	4.48	4.48	ns	
		4 mA	3.69	3.69	ns	
		6 mA	2.91	2.91	ns	
		8 mA	1.99	1.99	ns	
		12 mA	1.57	1.57	ns	
		16 mA	1.19	1.19	ns	
	Fast	2 mA	3.96	3.96	ns	
		4 mA	2.57	2.57	ns	
		6 mA	1.90	1.90	ns	
		8 mA	1.06	1.06	ns	
		12 mA	0.83	0.83	ns	
		16 mA	0.63	0.63	ns	
	QuietIO	2 mA	24.97	24.97	ns	
		4 mA	24.97	24.97	ns	
		6 mA	24.08	24.08	ns	
		8 mA	16.43	16.43	ns	
		12 mA	14.52	14.52	ns	
		16 mA	13.41	13.41	ns	
LVCMOS15	Slow	2 mA	5.82	5.82	ns	
		4 mA	3.97	3.97	ns	
		6 mA	3.21	3.21	ns	
		8 mA	2.53	2.53	ns	
		12 mA	2.06	2.06	ns	
	Fast	2 mA	5.23	5.23	ns	
		4 mA	3.05	3.05	ns	
		6 mA	1.95	1.95	ns	
		8 mA	1.60	1.60	ns	
		12 mA	1.30	1.30	ns	
	QuietIO	2 mA	34.11	34.11	ns	
		4 mA	25.66	25.66	ns	
		6 mA	24.64	24.64	ns	
		8 mA	22.06	22.06	ns	
		12 mA	20.64	20.64	ns	

Table 25: Output Timing Adjustments for IOB (Cont'd)

Convert Ou LVCMOS25 and Fast S	utput Time with 12m/	Add Adjus Be	the tment low	Units	
Following Signal Standard			Speed	onno	
(IOST	ANDARD		-5	-4	
LVCMOS12	Slow	2 mA	7.14	7.14	ns
		4 mA	4.87	4.87	ns
		6 mA	5.67	5.67	ns
	Fast	2 mA	6.77	6.77	ns
		4 mA	5.02	5.02	ns
		6 mA	4.09	4.09	ns
	QuietIO	2 mA	50.76	50.76	ns
		4 mA	43.17	43.17	ns
		6 mA	37.31	37.31	ns
PCI33_3	•		0.34	0.34	ns
PCI66_3			0.34	0.34	ns
HSTL_I			0.78	0.78	ns
HSTL_III			1.16	1.16	ns
HSTL_I_18			0.35	0.35	ns
HSTL_II_18			0.30	0.30	ns
HSTL_III_18			0.47	0.47	ns
SSTL18_I			0.40	0.40	ns
SSTL18_II	SSTL18_II			0.30	ns
SSTL2_I			0.00	0.00	ns
SSTL2_II			-0.05	-0.05	ns
SSTL3_I			0.00	0.00	ns
SSTL3_II			0.17	0.17	ns

Table 25: Output Timing Adjustments for IOB (Cont'd)

Convert Output Time from LVCMOS25 with 12mA Drive	Add Adjus Bel	Unite	
Following Signal Standard	Speed	Grade	onits
(IOSTANDARD)	-5	-4	
Differential Standards			
LVDS_25	1.16	1.16	ns
LVDS_33	0.46	0.46	ns
BLVDS_25	0.11	0.11	ns
MINI_LVDS_25	0.75	0.75	ns
MINI_LVDS_33	0.40	0.40	ns
LVPECL_25	Inputs Only		
LVPECL_33	-		
RSDS_25	1.42	1.42	ns
RSDS_33	0.58	0.58	ns
TMDS_33	0.46	0.46	ns
PPDS_25	1.07	1.07	ns
PPDS_33	0.63	0.63	ns
DIFF_HSTL_I_18	0.43	0.43	ns
DIFF_HSTL_II_18	0.41	0.41	ns
DIFF_HSTL_III_18	0.36	0.36	ns
DIFF_HSTL_I	1.01	1.01	ns
DIFF_HSTL_III	0.54	0.54	ns
DIFF_SSTL18_I	0.49	0.49	ns
DIFF_SSTL18_II	0.41	0.41	ns
DIFF_SSTL2_I	0.82	0.82	ns
DIFF_SSTL2_II	0.09	0.09	ns
DIFF_SSTL3_I	1.16	1.16	ns
DIFF_SSTL3_II	0.28	0.28	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 26 and are based on the operating conditions set forth in Table 7, Table 10, and Table 12.

 These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state.

3. Note that 16 mA drive is faster than 24 mA drive for the Slow slew rate.

Table 28: Recommended Simultaneously Switching Outputs per V_{CCO} /GND Pair ($V_{CCAUX} = 3.3V$)

Table 28: Recommended Simultaneously Switching Outputs per V_{CCO} /GND Pair ($V_{CCAUX} = 3.3V$) (Cont'd)

		Package Type			
Signal S	Standard		CS484,	FG676	
(IOSTA)	NDARD)	Top, Bottom (Banks 0, 2)	Left, Right (Banks 1, 3)		
Single-Ended S	tandards				
LVTTL	Slow	2	60	60	
		4	41	41	
		6	29	29	
		8	22	22	
		12	13	13	
		16	11	11	
		24	9	9	
	Fast	2	10	10	
		4	6	6	
		6	5	5	
		8	3	3	
		12	3	3	
		16	3	3	
		24	2	2	
	QuietIO	2	80	80	
		4	48	48	
		6	36	36	
		8	27	27	
		12	16	16	
		16	13	13	
		24	12	12	

		Packag	е Туре	
Signal S	Standard		CS484,	FG676
(IOSTAI	NDARD)		Top, Bottom (Banks 0, 2)	Left, Right (Banks 1, 3)
LVCMOS33	Slow	2	76	76
		4	46	46
		6	27	27
		8	20	20
		12	13	13
		16	10	10
		24	-	9
	Fast	2	10	10
		4	8	8
			6	5
		8	4	4
		12	4	4
		16	2	2
		24	-	2
	QuietIO	2	76	76
		4	46	46
		6	32	32
		8	26	26
		12	18	18
		16	14	14
		24	-	10

Clock Buffer/Multiplexer Switching Characteristics

Table 32: Clock Distribution Switching Characteristics

			Maxi		
Symbol Description			Speed	Units	
			-5	-4	
T _{GIO}	Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to O-output delay	-	0.22	0.23	ns
T _{GSI}	Global clock multiplexer (BUFGMUX) select S-input setup to I0 and I1 inputs. Same as BUFGCE enable CE-input	-	0.56	0.63	ns
F _{BUFG}	Frequency of signals distributed on global buffers (all sides)	0	350	334	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 7.

Table 39: Switching Characteristics for the DFS

				Speed Grade				
Symbol	Description		Device	-5		-4		Units
				Min	Max	Min	Max	
Output Frequency Range	es						·	
CLKOUT_FREQ_FX ⁽²⁾	Frequency for the CLKFX and CLKFX1	80 outputs	All	5	350	5	311	MHz
Output Clock Jitter (3)(4)								
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and	CLKIN	All	Тур	Max	Тур	Max	
	CLKFX180 outputs.	≤ 20 MHz		Use the	Spartan-3	A Jitter C	alculator:	ps
				www.xilin	x.com/sup	port/docur	mentation/	
			_	+[1% of	_0110010/00	+[1% of	+[1% of	ns
		> 20 MHz		CLKFX	CLKFX	CLKFX	CLKFX	P3
				period + 1001	period + 2001	period + 1001	period + 2001	
Duty Cycle ⁽⁵⁾⁽⁶⁾]]]]	
CLKOUT DUTY CYCLE	Duty cycle precision for the CLKEX and	CLKEX180	All	_	+[1% of	_	+[1% of	ps
FX	outputs, including the BUFGMUX and	clock tree			CLKFX		CLKFX	60
	duty-cycle distortion				period + 350]		period + 350]	
Phase Alignment ⁽⁶⁾					-		-	
CLKOUT_PHASE_FX	Phase offset between the DFS CLKFX DLL CLK0 output when both the DFS ar	output and the nd DLL are used	All	-	±200	-	±200	ps
CLKOUT_PHASE_FX180	Phase offset between the DFS CLKFX	180 output and	All	_	±[1% of	_	±[1% of	ps
	the DLL CLK0 output when both the DF	S and DLL are			CLKFX		CLKFX	
used					+ 200]		+ 200]	
Lock Time	-			L	1			
LOCK_FX ⁽²⁾⁽³⁾	The time from deassertion at the	5 MHz≤F _{CLKIN}	All	-	5	-	5	ms
	DCM's Reset input to the rising	<u><</u> 15 MHz	5 MHz					
	DFS asserts LOCKED when the	F _{CLKIN} > 15 MHz		-	450	-	450	μs
	valid. If using both the DLL and the							
	DFS, use the longer locking time.							

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 7 and Table 38.

2. DFS performance requires the additional logic automatically added by ISE 9.1i and later software revisions.

3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.

4. Maximum output jitter is characterized within a reasonable noise environment (150 ps input period jitter, 40 SSOs and 25% CLB switching) on an FPGA. Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application.

5. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.

6. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data sheet specifies a maximum CLKFX jitter of "±[1% of CLKFX period + 200]". Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 200 ps] = ±300 ps.

DNA Port Timing

Table 43: DNA_PORT Interface Timing

Symbol	Description	Min	Max	Units
T _{DNASSU}	Setup time on SHIFT before the rising edge of CLK	1.0	-	ns
T _{DNASH}	Hold time on SHIFT after the rising edge of CLK	0.5	_	ns
T _{DNADSU}	Setup time on DIN before the rising edge of CLK	1.0	-	ns
T _{DNADH}	Hold time on DIN after the rising edge of CLK	0.5	_	ns
T _{DNARSU}	Setup time on READ before the rising edge of CLK	5.0	10,000	ns
T _{DNARH}	Hold time on READ after the rising edge of CLK	0.0	-	ns
T _{DNADCKO}	Clock-to-output delay on DOUT after rising edge of CLK	0.5	1.5	ns
T _{DNACLKF}	CLK frequency	0.0	100	MHz
T _{DNACLKH}	CLK High time	1.0	∞	ns
T _{DNACLKL}	CLK Low time	1.0	∞	ns

Notes:

1. The minimum READ pulse width is 5 ns, and the maximum READ pulse width is 10 $\mu s.$

Configuration and JTAG Timing

General Configuration Power-On/Reconfigure Timing

Notes:

- 1. The $V_{CCINT}\!,\,V_{CCAUX}\!,$ and V_{CCO} supplies can be applied in any order.
- 2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle.
- 3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 M2).

Figure 10: Waveforms for Power-On and the Beginning of Configuration

Table 45: Power-On Timing and the Beginning of Configuration

Symbol	Description	Dovice	All Speed Grades		Unite
Symbol	Description	Device	Min	Max	Units
T _{POR} ⁽²⁾	The time from the application of V _{CCINT} , V _{CCAUX} , and V _{CCO} Bank 2 supply voltage ramps (whichever occurs last) to the rising transition of the INIT_B pin	All	-	18	ms
T _{PROG}	The width of the low-going pulse on the PROG_B pin	All	0.5	-	μs
T _{PL} ⁽²⁾	The time from the rising edge of the PROG_B pin to the rising transition on the INIT_B pin	All	-	2	ms
T _{INIT}	Minimum Low pulse width on INIT_B output	All	300	-	ns
T _{ICCK} ⁽³⁾	The time from the rising edge of the INIT_B pin to the generation of the configuration clock signal at the CCLK output pin	All	0.5	4	μs

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 7. This means power must be applied to all V_{CCINT} , V_{CCO} , and V_{CCAUX} lines.
- 2. Power-on reset and the clearing of configuration memory occurs during this period.
- 3. This specification applies only to the Master Serial, SPI, and BPI modes.
- 4. For details on configuration, see UG332 Spartan-3 Generation Configuration User Guide.

Spartan-3A DSP FPGA Family: Pinout Descriptions

DS610 (v3.0) October 4, 2010

Product Specification

Introduction

This section describes how the various pins on a Spartan®-3A DSP FPGA connect within the supported component packages and provides device-specific thermal characteristics. For general information on the pin functions and the package characteristics, see the *Packaging* section in UG331: *Spartan-3 Generation FPGA User Guide*.

Spartan-3A DSP FPGAs are available in both standard and Pb-free, RoHS versions of each package, with the Pb-free version adding a "G" to the middle of the package code. Except for the thermal characteristics, all information for the standard package applies equally to the Pb-free package.

Pin Types

Most pins on a Spartan-3A DSP FPGA are general-purpose, user-defined I/O pins. There are, however, up to 12 different functional types of pins on Spartan-3A DSP packages, as outlined in Table 57. In the package footprint drawings that follow, the individual pins are color-coded according to pin type as in the table.

Table	57.	Types of	Pins on	Spartan-3A	DSP	FPGAs
Table	57.	Types of	F 1113 UII	Spartan-SA	DOF	I F GAS

Type/Color Code	Description	Pin Name(s) in Type
I/O	Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to form differential I/Os.	IO_# IO_Lxxy_#
INPUT	Unrestricted, general-purpose input-only pin. This pin does not have an output structure, differential termination resistor, or PCI clamp diode.	IP_# IP_Lxxy_#
DUAL	Dual-purpose pin used in some configuration modes during the configuration process and then usually available as a user I/O after configuration. If the pin is not used during configuration, this pin behaves as an I/O-type pin. See <u>UG332</u> : <i>Spartan-3 Generation Configuration User Guide</i> for additional information on these signals.	M[2:0] PUDC_B CCLK MOSI/CSI_B D[7:1] D0/DIN CSO_B RDWR_B INIT_B A[25:0] VS[2:0] LDC[2:0] HDC
VREF	Dual-purpose pin that is either a user-I/O pin or Input-only pin, or, along with all other VREF pins in the same bank, provides a reference voltage input for certain I/O standards. If used for a reference voltage within a bank, all VREF pins within the bank must be connected.	IP/VREF_# IP_Lxxy_#/VREF_# IO/VREF_# IO_Lxxy_#/VREF_#
CLK	Either a user-I/O pin or an input to a specific clock buffer driver. Packages have 16 global clock inputs that optionally clock the entire device. The RHCLK inputs optionally clock the right half of the device. The LHCLK inputs optionally clock the left half of the device. See the Using Global Clock Resources chapter in <u>UG331</u> : <i>Spartan-3 Generation FPGA User Guide</i> for additional information on these signals.	IO_Lxxy_#/GCLK[15:0], IO_Lxxy_#/LHCLK[7:0], IO_Lxxy_#/RHCLK[7:0]
CONFIG	Dedicated configuration pin, two per device. Not available as a user-I/O pin. Every package has two dedicated configuration pins. These pins are powered by VCCAUX. See the UG332: <i>Spartan-3 Generation Configuration User Guide</i> for additional information on the DONE and PROG_B signals.	DONE, PROG_B

© Copyright 2007–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.

Package Thermal Characteristics

The power dissipated by an FPGA application has implications on package selection and system design. The power consumed by a Spartan-3A DSP FPGA is reported using either the <u>XPower Power Estimator</u> or the <u>XPower Analyzer</u> calculator integrated in the Xilinx ISE® development software. Table 62 provides the thermal characteristics for the various Spartan-3A DSP device package offerings. This information is also available using the <u>Thermal Query tool</u>.

The junction-to-case thermal resistance (θ_{JC}) indicates the difference between the temperature measured on the package body (case) and the die junction temperature per watt of power consumption. The junction-to-board (θ_{JB}) value similarly reports the difference between the board and junction temperature. The junction-to-ambient (θ_{JA}) value reports the temperature difference between the ambient environment and the junction temperature. The θ_{JA} value is reported at different air velocities, measured in linear feet per minute (LFM). The "Still Air (0 LFM)" column shows the θ_{JA} value in a system without a fan. The thermal resistance drops with increasing air flow.

Package	Device	Junction-to-Case Junction-to-			Unite			
Tackage	Device	(θ _{JC})	Board (θ _{JB})	Still Air (0 LFM)	250 LFM	500 LFM	750 LFM	onits
CS484	XC3SD1800A	4.1	6.8	18.0	13.3	12.3	11.5	°C/W
CSG484	XC3SD3400A	3.5	5.6	16.9	12.2	11.0	10.4	°C/W
FG676	XC3SD1800A	4.7	7.8	15.9	11.6	10.6	10.0	°C/W
FGG6/6	XC3SD3400A	3.8	6.4	14.7	10.5	9.4	8.9	°C/W

Table	62:	Spartan-3A	DSP	FPGA	Package	Thermal	Characteristics
-------	-----	------------	-----	------	---------	---------	-----------------

Table	63: Sprtn DSP CS Pinout	(Cont d)			
Bn	Pin Ne	CS B	Тре		
2	IP_2/VREF_2	Y14	VREF		
2	IO_L24N_2/D3	Y15	DUAL		
2	IO_L29N_2	Y16	I/O		
2	IO_L29P_2	Y17	I/O		
2	IO_L26P_2/D2	Y18	DUAL		
2	IO_L26N_2/D1	Y19	DUAL		
2	VCCO_2	AA5	VCCO		
2	VCCO_2	AA9	VCCO		
2	VCCO_2	AA13	VCCO		
2	VCCO_2	AA18	VCCO		
2	VCCO_2	V9	VCCO		
2	VCCO_2	V14	VCCO		
3	IP_L39N_3/VREF_3	AA1	VREF		
3	IO_L02N_3	C1	I/O		
3	IO_L02P_3	C2	I/O		
3	IP_L04P_3	D1	INPUT		
3	IP_L08P_3	D3	INPUT		
3	IP_L08N_3	D4	INPUT		
3	IP_L04N_3/VREF_3	E1	VREF		
3	IO_L09P_3	E3	I/O		
3	IO_L09N_3	E4	I/O		
3	IO_L06N_3	F1	I/O		
3	IO_L06P_3	F2	I/O		
3	IO_L01P_3	F3	I/O		
3	IO_L03P_3	F4	I/O		
3	IO_L03N_3	F5	I/O		
3	IO_L11P_3	G1	I/O		
3	IO_L01N_3	G3	I/O		
3	IO_L07P_3	G5	I/O		
3	IO_L07N_3	G6	I/O		
3	IO_L11N_3	H1	I/O		
3	IO_L14P_3	H2	I/O		
3	IO_L05P_3	H3	I/O		
3	IO_L05N_3	H4	I/O		
3	IO_L10P_3	H5	I/O	ſ	
3	IO_L10N_3	H6	I/O		
3	IO_L14N_3/VREF_3	J1	VREF		
3	IP_L16P_3	J3	INPUT	ſ	
3	IP_L16N_3	J4	INPUT		
3	IP_L12P_3	J6	INPUT		
3	IP_L12N_3/VREF_3	J7	VREF	ſ	
3	IO_L19P_3/LHCLK2	K1	LHCLK		

Sprtn DSP PG i: Pinout Desriptions

Table 63: Sprtn DSP CS Pinout

(Cont d)

		<u></u>	-
Bn	Pin Ne	B	Тре
3	IO_L17P_3	K2	I/O
3	IO_L17N_3	К3	I/O
3	IO_L13P_3	K4	I/O
3	IO_L13N_3	K5	I/O
3	IO_L15P_3	K6	I/O
3	IO_L19N_3/IRDY2/LHCLK3	L1	LHCLK
3	IO_L20P_3/LHCLK4	L3	LHCLK
3	IO_L15N_3	L5	I/O
3	IO_L18P_3/LHCLK0	L6	LHCLK
3	IO_L22P_3/VREF_3	M1	VREF
3	IO_L20N_3/LHCLK5	M2	LHCLK
3	IP_L23P_3	M3	INPUT
3	IO_L18N_3/LHCLK1	M5	LHCLK
3	IO_L21P_3/TRDY2/LHCLK6	M6	LHCLK
3	IO_L22N_3	N1	I/O
3	IP_L31P_3	N3	INPUT
3	IP_L23N_3	N4	INPUT
3	IO_L24N_3	N5	I/O
3	IO_L24P_3	N6	I/O
3	IO_L21N_3/LHCLK7	N7	LHCLK
3	IO_L25P_3	P1	I/O
3	IO_L25N_3	P2	I/O
3	IP_L31N_3	P3	INPUT
3	IO_L32P_3/VREF_3	P4	VREF
3	IO_L26P_3	P6	I/O
3	IO_L28N_3	R1	I/O
3	IO_L28P_3	R2	I/O
3	IO_L34P_3	R3	I/O
3	IO_L32N_3	R5	I/O
3	IO_L26N_3	R6	I/O
3	IO_L30P_3	T1	I/O
3	IP_L27P_3	Т3	INPUT
3	IO_L34N_3	T4	I/O
3	IO_L29N_3	T5	I/O
3	IO_L29P_3	T6	I/O
3	IO_L30N_3	U1	I/O
3	IO_L33P_3	U2	I/O
3	IP_L27N_3	U3	INPUT
3	IO_L38P_3	U4	I/O
3	IO_L38N_3	U5	I/O
3	IO_L33N_3	V1	I/O
3	IO_L36N_3	V3	I/O

User IOs Bn

Table 67 indicates how the available user-I/O pins are distributed between the four I/O banks on the FG676 package. The AWAKE pin is counted as a dual-purpose I/O.

Table 67: User IOs Per Bn or te CSD00 in te G Pge

Pge Edge	IO Bn	Mxiu IOs nd InputOn	Possie IO Pins Tpe						
			Ю	INPUT	DUL	VRE	CLK		
Тор	0	128	82	28	1	9	8		
Right	1	130	67	15	30	10	8		
Bottom	2	129	68	21	21	11	8		
Left	3	132	97	18	0	9	8		
TOTL				2	2		2		

Notes:

1. 28 VREF are on INPUT pins.