

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f248-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

3.7 Time-out Sequence

On power-up, the time-out sequence is as follows: First, PWRT time-out is invoked after the POR time delay has expired, then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and Figure 3-7 depict time-out sequences on power-up. Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Bringing MCLR high will begin execution immediately (Figure 3-5). This is useful for testing purposes or to synchronize more than one PIC18FXX8 device operating in parallel.

Table 3-2 shows the Reset conditions for some Special Function Registers, while Table 3-3 shows the Reset conditions for all registers.

TABLE 3-1: TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-up	(2)	5 (2)	Wake-up from	
Configuration	PWRTEN = 0	PWRTEN = 1	Brown-out ⁽²⁾	Sleep or Oscillator Switch	
HS with PLL enabled ⁽¹⁾	72 ms + 1024 Tosc + 2 ms	1024 Tosc + 2 ms	72 ms + 1024 Tosc + 2 ms	1024 Tosc + 2 ms	
HS, XT, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
EC	72 ms	—	72 ms	—	
External RC	72 ms		72 ms	_	

Note 1: 2 ms = Nominal time required for the 4x PLL to lock.

2: 72 ms is the nominal Power-up Timer delay.

REGISTER 3-1: RCON REGISTER BITS AND POSITIONS

R/W-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1
IPEN	—	—	RI	TO	PD	POR	BOR
bit 7							bit 0

TABLE 3-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	01 110q	1	1	1	0	0	u	u
MCLR Reset during normal operation	0000h	00 011q	u	u	u	u	u	u	u
Software Reset during normal operation	0000h	00 011q	0	u	u	u	u	u	u
Stack Full Reset during normal operation	0000h	00 011q	u	u	u	1	1	u	1
Stack Underflow Reset during normal operation	0000h	00 011q	u	u	u	1	1	1	u
MCLR Reset during Sleep	0000h	00 011q	u	1	0	u	u	u	u
WDT Reset	0000h	00 011q	u	0	1	u	u	u	u
WDT Wake-up	PC + 2	01 101q	u	0	0	u	u	u	u
Brown-out Reset	0000h	01 110q	1	1	1	u	0	u	u
Interrupt wake-up from Sleep	PC + 2 ⁽¹⁾	01 101q	u	1	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (000008h or 000018h).

TABLE 3-3:			IONS FOR ALL RE					
Register	Applicable	e Devices	Power-on Reset, Brown-out Reset	MCLR Reset WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt			
TRISE	PIC18F2X8	PIC18F4X8	0000 -111	0000 -111	uuuu -uuu			
TRISD	PIC18F2X8	PIC18F4X8	1111 1111	1111 1111	uuuu uuuu			
TRISC	PIC18F2X8	PIC18F4X8	1111 1111	1111 1111	uuuu uuuu			
TRISB	PIC18F2X8	PIC18F4X8	1111 1111	1111 1111	uuuu uuuu			
TRISA ⁽⁵⁾	PIC18F2X8	PIC18F4X8	-111 1111 (5)	-111 1111 ⁽⁵⁾	-uuu uuuu (5)			
LATE	PIC18F2X8	PIC18F4X8	xxx	uuu	uuu			
LATD	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu			
LATC	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu			
LATB	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu			
LATA ⁽⁵⁾	PIC18F2X8	PIC18F4X8	-xxx xxxx(5)	-uuu uuuu ⁽⁵⁾	-uuu uuuu (5)			
PORTE	PIC18F2X8	PIC18F4X8	xxx	000	uuu			
PORTD	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu			
PORTC	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu			
PORTB	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu			
PORTA ⁽⁵⁾	PIC18F2X8	PIC18F4X8	-x0x 0000 ⁽⁵⁾	-u0u 0000 (5)	-uuu uuuu (5)			
TXERRCNT	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu			
RXERRCNT	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu			
COMSTAT	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu			
CIOCON	PIC18F2X8	PIC18F4X8	00	00	uu			
BRGCON3	PIC18F2X8	PIC18F4X8	-0000	-0000	-uuuu			
BRGCON2	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu			
BRGCON1	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu			
CANCON	PIC18F2X8	PIC18F4X8	xxxx xxx-	uuuu uuu-	uuuu uuu-			
CANSTAT ⁽⁶⁾	PIC18F2X8	PIC18F4X8	xxx- xxx-	uuu- uuu-	uuu- uuu-			
RXB0D7	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu			
RXB0D6	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu			
RXB0D5	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu			
RXB0D4	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu			
RXB0D3	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu			
RXB0D2	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu			
RXB0D1	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu			
RXB0D0	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu			

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for Reset value for specific condition.

5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other oscillator modes, they are disabled and read '0'.

6: Values for CANSTAT also apply to its other instances (CANSTATRO1 through CANSTATRO4).

4.10 Access Bank

The Access Bank is an architectural enhancement that is very useful for C compiler code optimization. The techniques used by the C compiler are also useful for programs written in assembly.

This data memory region can be used for:

- · Intermediate computational values
- · Local variables of subroutines
- · Faster context saving/switching of variables
- · Common variables
- Faster evaluation/control of SFRs (no banking)

The Access Bank is comprised of the upper 160 bytes in Bank 15 (SFRs) and the lower 96 bytes in Bank 0. These two sections will be referred to as Access Bank High and Access Bank Low, respectively. Figure 4-6 indicates the Access Bank areas.

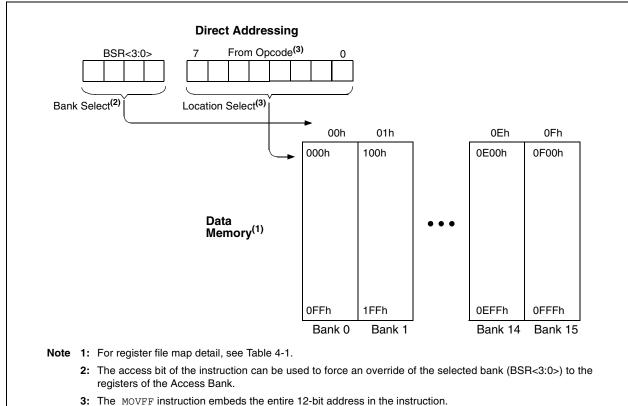
A bit in the instruction word specifies if the operation is to occur in the bank specified by the BSR register or in the Access Bank.

When forced in the Access Bank (a = 0), the last address in Access Bank Low is followed by the first address in Access Bank High. Access Bank High maps most of the Special Function Registers so that these registers can be accessed without any software overhead.

4.11 Bank Select Register (BSR)

The need for a large general purpose memory space dictates a RAM banking scheme. The data memory is partitioned into sixteen banks. When using direct addressing, the BSR should be configured for the desired bank.

BSR<3:0> holds the upper 4 bits of the 12-bit RAM address. The BSR<7:4> bits will always read '0's and writes will have no effect.


A MOVLB instruction has been provided in the instruction set to assist in selecting banks.

If the currently selected bank is not implemented, any read will return all '0's and all writes are ignored. The Status register bits will be set/cleared as appropriate for the instruction performed.

Each Bank extends up to FFh (256 bytes). All data memory is implemented as static RAM.

A MOVFF instruction ignores the BSR since the 12-bit addresses are embedded into the instruction word.

Section 4.12 "Indirect Addressing, INDF and FSR Registers" provides a description of indirect addressing, which allows linear addressing of the entire RAM space.

FIGURE 4-7: DIRECT ADDRESSING

6.5 Writing to Flash Program Memory

The minimum programming block is 4 words or 8 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are 8 holding registers used by the table writes for programming.

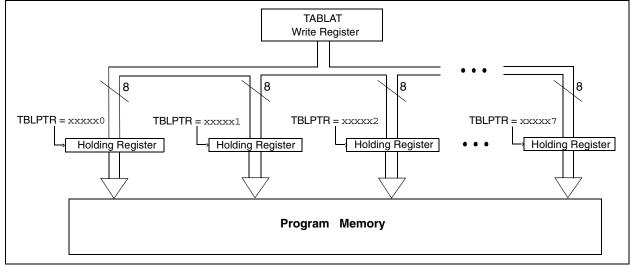
Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction has to be executed 8 times for each programming operation. All of the table write operations will essentially be short writes, because only the holding registers are written. At the end of updating 8 registers, the EECON1 register must be written to, to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

6.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:


- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer with address being erased.
- 4. Do the row erase procedure.
- 5. Load Table Pointer with address of first byte being written.
- 6. Write the first 8 bytes into the holding registers using the TBLWT instruction, auto-increment may be used.
- 7. Set the EECON1 register for the write operation:
 - set the EEPGD bit to point to program memory;
 - · clear the CFGS bit to access program memory;
 - set the WREN to enable byte writes.
- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write AAh to EECON2.
- 11. Set the \overline{WR} bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Repeat steps 6-14 seven times to write 64 bytes.
- 15. Verify the memory (table read).

This procedure will require about 18 ms to update one row of 64 bytes of memory. An example of the required code is given in Example 6-3.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the 8 bytes in the holding registers.

FIGURE 6-5:

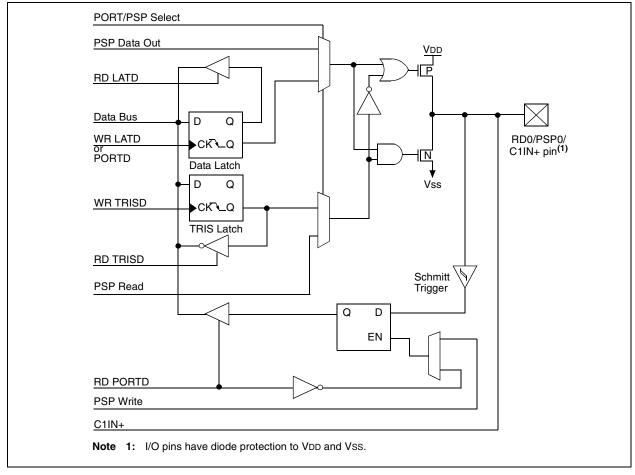
TABLE WRITES TO FLASH PROGRAM MEMORY

9.4 PORTD, TRISD and LATD Registers

Note:	This	port	is	only	available	on	the
	PIC1	8F448	and	PIC1	8F458.		

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register for the port is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATD register read and write the latched output value for PORTD.


PORTD uses Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide, microprocessor port (Parallel Slave Port or PSP) by setting the control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. See **Section 10.0 "Parallel Slave Port"** for additional information.

PORTD is also multiplexed with the analog comparator module and the ECCP module.

EXAMF	PLE 9-4:	INITIALIZING PORTD
CLRF	PORTD	; Initialize PORTD by
		; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	07h	; comparator off
MOVWF	CMCON	
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD3:RD0 as inputs
		; RD5:RD4 as outputs
		; RD7:RD6 as inputs

FIGURE 9-9: PORTD BLOCK DIAGRAM IN I/O PORT MODE

Bit# oit O	Buffer Type ST/TTL ⁽¹⁾	Function Input/output port pin, Parallel Slave Port bit 0 or C1IN+ comparator
oit O	ST/TTL ⁽¹⁾	Input/output port pin, Parallol Slave Port bit 0 or C1IN, comparator
		input.
oit 1	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 1 or C1IN- comparator input.
oit 2	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 2 or C2IN+ comparator input.
oit 3	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 3 or C2IN- comparator input.
oit 4	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 4 or ECCP1/P1A pin.
oit 5	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 5 or P1B pin.
oit 6	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 6 or P1C pin.
oit 7	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 7 or P1D pin.
	t 2 t 3 t 4 t 5 t 6 t 7	t 2 ST/TTL ⁽¹⁾ t 3 ST/TTL ⁽¹⁾ t 4 ST/TTL ⁽¹⁾ t 5 ST/TTL ⁽¹⁾ t 6 ST/TTL ⁽¹⁾

TABLE 9-7: PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 9-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

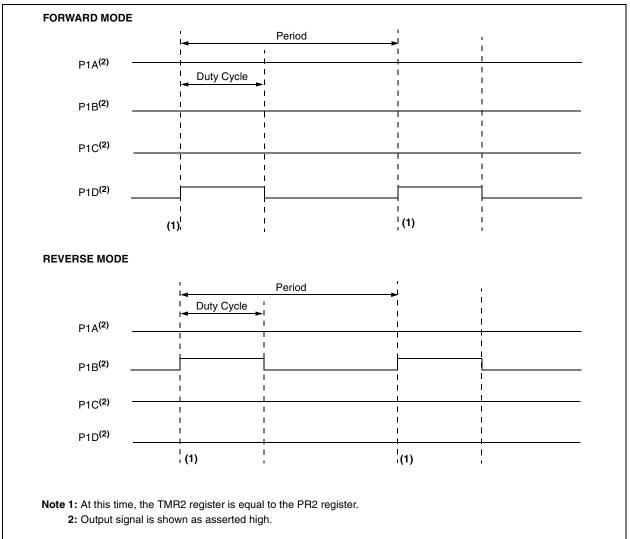
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets		
PORTD	RD7	RD6	RD6 RD5 RD4 RD3 RD2 RD1 RD0						xxxx xxxx	uuuu uuuu		
LATD	LATD [LATD Data Output Register xxxx uuuu uuuu										
TRISD	PORT	PORTD Data Direction Register 1111 1111 1111 1111										
TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111		

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,			e on other sets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000	2000 x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111	1111	1111	1111
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register										uuuu	uuuu
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register									xxxx	uuuu	uuuu
T1CON	RD16	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	0-00	0000	u-uu	uuuu

 $\label{eq:logend: Legend: Legend: x = unknown, u = unchanged, - = unimplemented, read as `0`. Shaded cells are not used by the Timer1 module.$


Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's.

16.5.3 FULL-BRIDGE MODE

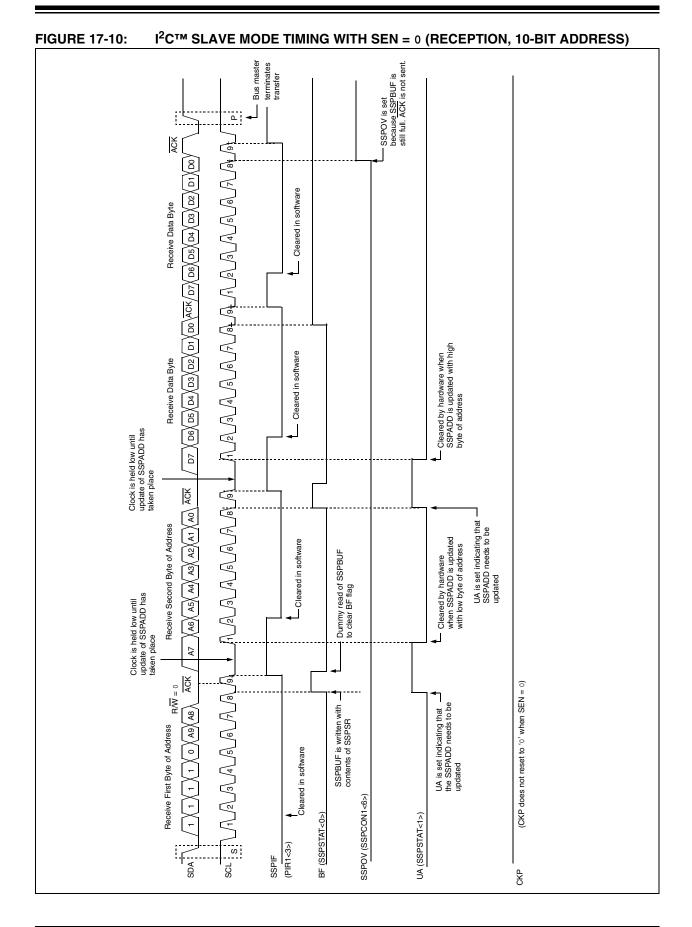

In Full-Bridge Output mode, four pins are used as outputs; however, only two outputs are active at a time. In the Forward mode, pin RD4/PSP4/ECCP1/P1A is continuously active and pin RD7/PSP7/P1D is modulated. In the Reverse mode, RD6/PSP6/P1C pin is continuously active and RD5/PSP5/P1B pin is modulated. These are illustrated in Figure 16-5.

FIGURE 16-5: FULL-BRIDGE PWM OUTPUT

P1A, P1B, P1C and P1D outputs are multiplexed with the PORTD<4:7> data latches. The TRISD<4:7> bits must be cleared to make the P1A, P1B, P1C and P1D pins output.

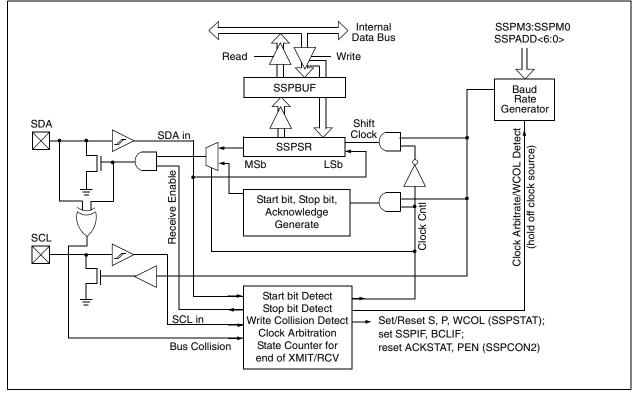
PIC18FXX8

17.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.


Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt if enabled):

- Start condition
- Stop condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

FIGURE 17-16: MSSP BLOCK DIAGRAM (I²C[™] MASTER MODE)

EXAMPLE 19-1: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS TX/RX BUFFERS (CONTINUED)

RXB	OInterru	ıpt	
	BCF	PIR3, RXB0IF	; Clear the interrupt flag
	GOTO	AccessBuffer	
Acce	essBuffe	er	; This is either TX or RX interrupt
	; Сору	CANCON.ICODE bits to CANSTAT.W	VIN bits
	MOVF	CANCON, W	; Clear CANCON.WIN bits before copying
		b'11110001'	; new ones.
	ANDLW	D.11110001	; Use previously saved CANCON value to ; make sure same value.
	MOVWF	CANCON	; Copy masked value back to TempCANCON
	MOVF	TempCANSTAT, W	; Retrieve ICODE bits
		b'00001110'	; Use previously saved CANSTAT value
			; to make sure same value.
	IORWF	CANCON	; Copy ICODE bits to WIN bits.
			; Copy the result to actual CANCON
	; Acces	s current buffer	
	; User	code	
	; Resto	ore CANCON.WIN bits	
	MOVF	CANCON, W	; Preserve current non WIN bits
	ANDLW	b'11110001'	
	IORWF	TempCANCON, W	; Restore original WIN bits
	MOVWF	CANCON	
	; Do no	t need to restore CANSTAT - it	is read-only register.
	; Retur	n from interrupt or check for	another module interrupt source
		-	

ГER 19-3:	COMSTAT: COMMUNICATION STATUS REGISTER											
	R/C-0	R/C-0	R-0	R-0	R-0	R-0	R-0	R-0				
	RXB0OVFL RX	(B1OVFL	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN				
	bit 7							bit 0				
bit 7	RXB0OVFL: Re	eceive Buffe	er 0 Overflo	ow bit								
	 1 = Receive Buffer 0 overflowed 0 = Receive Buffer 0 has not overflowed 											
bit 6	RXB10VFL: Receive Buffer 1 Overflow bit											
	 1 = Receive Buffer 1 overflowed 0 = Receive Buffer 1 has not overflowed 											
bit 5	TXBO: Transmi	tter Bus-Of	f bit									
	1 = Transmit Er 0 = Transmit Er											
bit 4	TXBP: Transmitter Bus Passive bit											
	1 = Transmission Error Counter > 127 0 = Transmission Error Counter \leq 127											
bit 3	RXBP: Receive	r Bus Pass	ive bit									
	1 = Receive Error Counter > 127 0 = Receive Error Counter \leq 127											
bit 2	TXWARN: Tran	smitter Wa	rning bit									
	$1 = 127 \ge Trans$ 0 = Transmit Er			5								
bit 1	RXWARN: Rec	eiver Warni	ng bit									
	$1 = 127 \ge \text{Receive Error Counter} > 95$ 0 = Receive Error Counter ≤ 95											
bit 0	EWARN: Error	Warning bit										
	This bit is a flag	of the RXV	VARN and	TXWARN b	its.							
	1 = The RXWA 0 = Neither the				e set							
	Legend:											
	R = Readable bi	it W = V	Vritable bit	C = Cleara	able bit	U = Unimple	emented bit,	read as '0'				
	-n = Value at PC	-n = Value at POR $(1)^{2}$ = Bit is set $(0)^{2}$ = Bit is cleared x = Bit is unknown										

REGISTER 19-3: COMSTAT: COMMUNICATION STATUS REGISTER

19.2.4 CAN BAUD RATE REGISTERS

This subsection describes the CAN Baud Rate registers.

REGISTER 19-29: BRGCON1: BAUD RATE CONTROL REGISTER 1

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0
	bit 7							bit 0
bit 7-6	SJW1:SJW	/0: Synchro	nized Jump	Width bits				
	•		•	Time = 4 x T				
			•	Time = 3 x T				
	•		•	Time = 2 x T Time = 1 x T				
bit 5-0	00 = Synchronization Jump Width Time = 1 x TQ BRP5:BRP0: Baud Rate Prescaler bits							
bit 5-0								
	111111 = $T_Q = (2 \times 64)/FOSC$ 111110 = $T_Q = (2 \times 63)/FOSC$							
	:							
	:							
	$00001 = TQ = (2 \times 2)/FOSC$							
	000000 = Tq = (2 x 1)/Fosc							
	Legend:							
	R = Readal	ole bit	W = Writa	ble bit	U = Unin	nplemented	bit, read as	0'
	-n = Value a	at POR	'1' = Bit is	set	'0' = Bit i	s cleared	x = Bit is u	nknown

Note: This register is accessible in Configuration mode only.

19.6 Message Acceptance Filters and Masks

The message acceptance filters and masks are used to determine if a message in the message assembly buffer should be loaded into either of the receive buffers. Once a valid message has been received into the MAB, the identifier fields of the message are compared to the filter values. If there is a match, that message will be loaded into the appropriate receive buffer. The filter masks are used to determine which bits in the identifier are examined with the filters. A truth table is shown below in Table 19-2 that indicates how each bit in the identifier is compared to the masks and filters to determine if a message should be loaded into a receive buffer. The mask essentially determines which bits to apply the acceptance filters to. If any mask bit is set to a zero, then that bit will automatically be accepted regardless of the filter bit.

Mask bit n	Filter bit n	Message Identifier bit n001	Accept or Reject bit n
0	х	x	Accept
1	0	0	Accept
1	0	1	Reject
1	1	0	Reject
1	1	1	Accept

TABLE 19-2: FILTER/MASK TRUTH TABLE

Legend: x = don't care

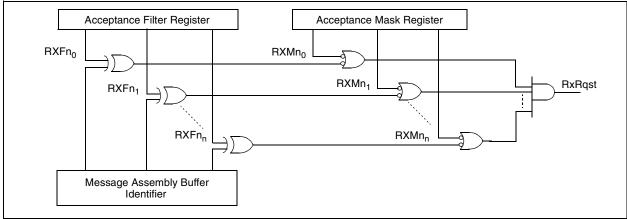
As shown in the receive buffer block diagram (Figure 19-4), acceptance filters RXF0 and RXF1 and filter mask RXM0 are associated with RXB0. Filters RXF2, RXF3, RXF4 and RXF5 and mask RXM1 are associated with RXB1. When a filter matches and a message is loaded into the receive buffer, the filter number that enabled the message reception is loaded into the FILHIT bit(s).

For RXB1, the RXB1CON register contains the FILHIT<2:0> bits. They are coded as follows:

- 101 = Acceptance Filter 5 (RXF5)
- 100 = Acceptance Filter 4 (RXF4)
- 011 = Acceptance Filter 3 (RXF3)
- 010 = Acceptance Filter 2 (RXF2)
- 001 = Acceptance Filter 1 (RXF1)
- 000 = Acceptance Filter 0 (RXF0)

Note: '000' and '001' can only occur if the RXB0DBEN bit is set in the RXB0CON register allowing RXB0 messages to rollover into RXB1.

The coding of the RXB0DBEN bit enables these three bits to be used similarly to the FILHIT bits and to distinguish a hit on filter RXF0 and RXF1, in either RXB0, or after a rollover into RXB1.


- 111 = Acceptance Filter 1 (RXF1)
- 110 = Acceptance Filter 0 (RXF0)
- 001 = Acceptance Filter 1 (RXF1)
- 000 = Acceptance Filter 0

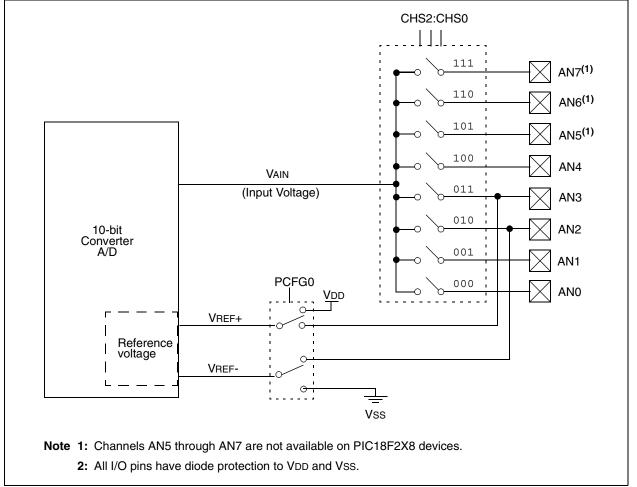
If the RXB0DBEN bit is clear, there are six codes corresponding to the six filters. If the RXB0DBEN bit is set, there are six codes corresponding to the six filters plus two additional codes corresponding to RXF0 and RXF1 filters that rollover into RXB1.

If more than one acceptance filter matches, the FILHIT bits will encode the binary value of the lowest numbered filter that matched. In other words, if filter RXF2 and filter RXF4 match, FILHIT will be loaded with the value for RXF2. This essentially prioritizes the acceptance filters with a lower number filter having higher priority. Messages are compared to filters in ascending order of filter number.

The mask and filter registers can only be modified when the PIC18FXX8 is in Configuration mode. The mask and filter registers cannot be read outside of Configuration mode. When outside of Configuration mode, all mask and filter registers will be read as '0'.

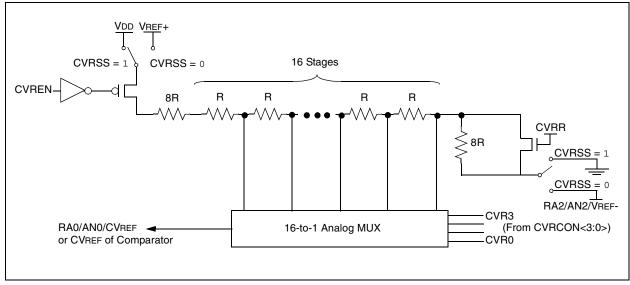
FIGURE 19-6: MESSAGE ACCEPTANCE MASK AND FILTER OPERATION

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and VSS) or the voltage level on the RA3/AN3/ VREF+ pin and RA2/AN2/VREF- pin.


The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion is aborted.


Each port pin associated with the A/D converter can be configured as an analog input (RA3 can also be a voltage reference) or as a digital I/O.

The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ADRESL registers, the GO/DONE bit (ADCON0<2>) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 20-1.

FIGURE 20-1: A/D BLOCK DIAGRAM

22.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 22-1) keep VREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the VREF output changes with fluctuations in that source. The absolute accuracy of the voltage reference can be found in **Section 27.0 "Electrical Characteristics"**.

22.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

22.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit CVREN (CVRCON register). This Reset also disconnects the reference from the RA2 pin by clearing bit CVROE (CVRCON register) and selects the high-voltage range by clearing bit CVRR (CVRCON register). The CVRSS value select bits, CVRCON<3:0>, are also cleared.

22.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA0/AN0 pin if the TRISA<0> bit is set and the CVROE bit (CVRCON<6>) is set. Enabling the voltage reference output onto the RA0/AN0 pin, with an input signal present, will increase current consumption. Connecting RA0/AN0 as a digital output, with CVRSS enabled, will also increase current consumption.

The RA0/AN0 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 22-2 shows an example buffering technique.

PIC18FXX8

RET	URN	Return fro	Return from Subroutine					
Synta	ax:	[label] F	[label] RETURN [s]					
Operands:		$s\in [0,1]$	s ∈ [0,1]					
Operation:		if s = 1 (WS) \rightarrow W (STATUSS (BSRS) \rightarrow	$(TOS) \rightarrow PC,$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow Status,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged					
Statu	s Affected:	None						
Enco	ding:	0000	0000	000	1	001s		
Description:		popped and is loaded in 's'= 1, the of registers W loaded into registers W	Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the program counter. If 's'= 1, the contents of the shadow registers WS, STATUSS and BSRS are loaded into their corresponding registers W, Status and BSR. If 's' = 0, no update of these registers occurs (default).					
Word	ls:	1						
Cycle	es:	2	2					
QC	ycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	No operation	Proce Data			op PC m stack		
	No	No	No			No		
operation		operation operation operation						
<u>Exan</u>	n <u>ple:</u> After Interrupt PC = TC	return DS						

RLCF	Rotate Left f through Carry
Syntax:	[<i>label</i>] RLCF f [,d [,a]]
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$
Operation:	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow C,$ $(C) \rightarrow dest < 0 >$
Status Affected:	C, N, Z
Encoding:	0011 01da ffff ffff
Words:	one bit to the left through the Carry flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default). C \leftarrow register f \leftarrow 1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	ReadProcessWrite toregister 'f'Datadestination
Example:	RLCF REG, W
Before Instruc REG C After Instructio REG	= 1110 0110 = 0
WC	= 1100 1100 = 1

TABLE 27-3: COMPARATOR SPECIFICATIONS

Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
D300	VIOFF	Input Offset Voltage	—	±5.0	±10	mV	
D301	VICM	Input Common Mode Voltage	0	_	Vdd - 1.5	V	
D302	CMRR	CMRR	+55*			db	
D300	TRESP	Response Time ⁽¹⁾	—	300* 350*	400* 600*	ns ns	PIC18FXX8 PIC18LFXX8
D301	TMC20V	Comparator Mode Change to Output Valid	—	—	10*	μs	

These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from Vss to VDD.

TABLE 27-4: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: VDD range as described in Section 27.1 "DC Characteristics" , $-40^{\circ}C < TA < +125^{\circ}C$							
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
D310	VRES	Resolution	VDD/24		VDD/32	LSB	
D311	VRAA	Absolute Accuracy		Ι	0.5	LSB	
D312	Vrur	Unit Resistor Value (R)	_	2K*		Ω	
D310	TSET	Settling Time ⁽¹⁾	_		10*	μs	

* These parameters are characterized but not tested.

Note 1: Settling time measured while CVRR = 1 and CVR<3:0> transitions from 0000 to 1111.

BSF	
BTFSS	94
BTG	95
BZ	
С	
C Compilers	
MPLAB C17	• •
MPLAB C18	
MPLAB C30	
CALL)6
CAN Module	
Aborting Transmission22	28
Acknowledge Error23	37
Baud Rate Registers21	8
Baud Rate Setting23	33
Bit Error	37
Bit Time Partitioning (diagram)23	33
Bit Timing Configuration Registers23	
BRGCON1	
BRGCON2	
BRGCON3	
Calculating To, Nominal Bit Rate and	0
Nominal Bit Time	
Configuration Mode	
Control and Status Registers	
Controller Register Map	
CRC Error23	
Disable Mode22	
Error Detection23	
Error Modes and Error Counters	37
Error Modes State (diagram)23	88
Error Recognition Mode22	27
Error States	
Filter/Mask Truth (table)23	32
Form Error23	
Hard Synchronization23	35
I/O Control Register22	
Information Processing Time	
Initiating Transmission	
Internal Message Reception	.0
Flowchart	1
Internal Transmit Message	, ,
5	0
Flowchart	
Interrupt Registers	
Interrupts	
Bus Activity Wake-up	
Bus-Off23	-
Code Bits23	8
Error23	
Message Error23	9
Receive	
Receiver Bus Passive23	9
Receiver Overflow23	39
Receiver Warning23	39
Transmit23	
Transmitter Bus Passive	
Transmitter Warning	-
Lengthening a Bit Period	-
(diagram)23	35
(alagian)	

Listen Only Mode Loopback Mode Message Acceptance Filters	
and Masks 215,	232
Message Acceptance Mask and	
Filter Operation (diagram)	232
Message Reception	
Message Time-Stamping	
Message Transmission	
Modes of Operation	
Normal Mode	
Oscillator Tolerance	
Overview	
Phase Buffer Segments	
Programming Time Segments	
Propagation Segment	
Receive Buffer Registers	
Receive Buffers	
Receive Message Buffering	
Receive Priority	
Registers	
Resynchronization	235
Sample Point	
Shortening a Bit Period (diagram)	236
Stuff Bit Error	237
Synchronization	235
Synchronization Rules	
Synchronization Segment	
Time Quanta	
Transmit Buffer Registers	
Transmit Buffers	
Transmit Priority	
Transmit/Receive Buffers	
Values for ICODE (table)	
Capture (CCP Module)	
CAN Message Time-Stamp	
CCP Pin Configuration	
CCP1 Prescaler	105
CCPR1H:CCPR1L Registers	120
Software Interrupt	125
Timer1/Timer3 Mode Selection	
Capture (ECCP Module)	
CAN Message Time-Stamp	
Capture/Compare/PWM (CCP)	123
Capture Mode. See Capture	
(CCP Module).	
CCP1 Module	
Timer Resources	
CCPR1H Register	
CCPR1L Register	124
Compare Mode. See Compare	
(CCP Module).	
Interaction of CCP1 and	
ECCP1 Modules	124
PWM Mode. See PWM (CCP Module).	
Ceramic Resonators	
Ranges Tested	. 17
Clocking Scheme	
CLRF	
CLRWDT	