

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f258-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 8-3:	INTCON3:	INTERRU		ROL REGI	STER 3				
	R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
	INT2IP	INT1IP	—	INT2IE	INT1IE		INT2IF	INT1IF	
	bit 7						·	bit 0	
bit 7	INT2IP: IN	Γ2 External	Interrupt Pri	ority bit					
	5 1	1 = High priority 0 = Low priority							
bit 6	INT1IP: IN	INT1IP: INT1 External Interrupt Priority bit							
	5 1	1 = High priority 0 = Low priority							
bit 5	Unimplem	ented: Read	d as '0'						
bit 4	INT2IE: IN	T2 External	Interrupt En	able bit					
			external inter external inte						
bit 3	INT1IE: IN	T1 External	Interrupt En	able bit					
			external inter external inte						
bit 2	Unimplem	ented: Read	d as '0'						
bit 1	INT2IF: INT	2 External	Interrupt Fla	g bit					
			interrupt occ interrupt did		be cleared i	n software)			
bit 0	INT1IF: INT	1 External	Interrupt Fla	g bit					
	 1 = The INT1 external interrupt occurred (must be cleared in software) 0 = The INT1 external interrupt did not occur 								
	Legend:								
	R = Readal	ole bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	'0'	
	-n = Value a	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown	

Note:	Interrupt flag bits are set when an interrupt condition occurs regardless of the state
	of its corresponding enable bit or the global interrupt enable bit. User software
	should ensure the appropriate interrupt flag bits are clear prior to enabling an
	interrupt. This feature allows software polling.

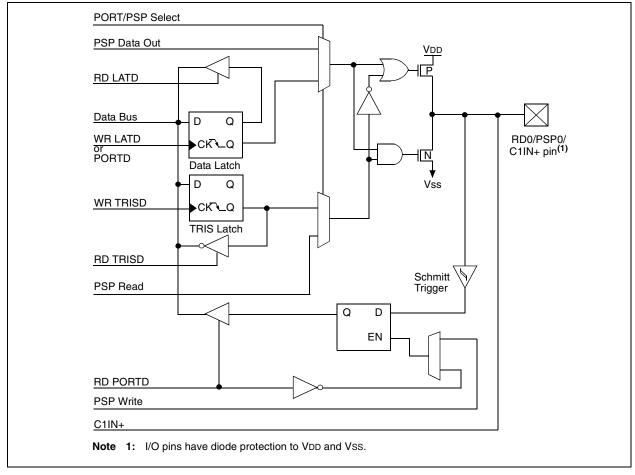
© 2006 Microchip Technology Inc.

9.4 PORTD, TRISD and LATD Registers

Note:	This	port	is	only	available	on	the
	PIC1	8F448	and	PIC1	8F458.		

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register for the port is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

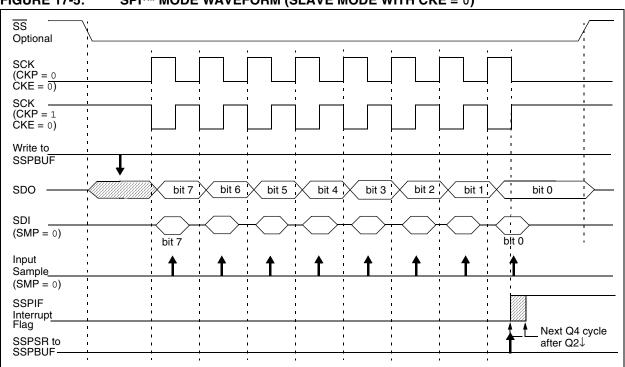

PORTD uses Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTD can be configured as an 8-bit wide, microprocessor port (Parallel Slave Port or PSP) by setting the control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. See **Section 10.0 "Parallel Slave Port"** for additional information.

PORTD is also multiplexed with the analog comparator module and the ECCP module.

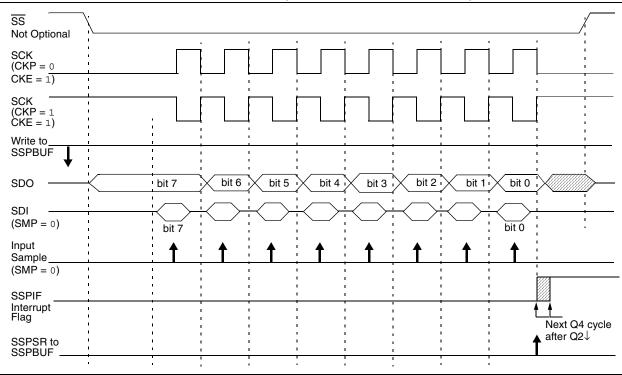
EXAMF	PLE 9-4:	INITIALIZING PORTD
CLRF	PORTD	; Initialize PORTD by
		; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	07h	; comparator off
MOVWF	CMCON	
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD3:RD0 as inputs
		; RD5:RD4 as outputs
		; RD7:RD6 as inputs

FIGURE 9-9: PORTD BLOCK DIAGRAM IN I/O PORT MODE



Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on BOR	allo	e on other sets
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111	1111	1111	1111
TRISD	PORTD Da	ata Direction	Register						1111	1111	1111	1111
TMR1L	Holding Re	gister for the	e Least Sigr	nificant Byte	of the 16-bi	t TMR1 Reg	gister		xxxx	xxxx	uuuu	uuuu
TMR1H	Holding Re	gister for the	e Most Sign	ificant Byte	of the 16-bit	TMR1 Reg	ister		xxxx	xxxx	uuuu	uuuu
T1CON	RD16	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00	0000	u-uu	uuuu
CCPR1L	Capture/Co	ompare/PWN	/I Register 1	(LSB)		•	•		xxxx	xxxx	uuuu	uuuu
CCPR1H	Capture/Co	ompare/PWN	/I Register 1	(MSB)					xxxx	xxxx	uuuu	uuuu
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
PIR2		CMIF	_	EEIF	BCLIF	LVDIF	TMR3IF	ECCP1IF	- 0 - 0	0000	- 0 - 0	0000
PIE2		CMIE	_	EEIE	BCLIE	LVDIE	TMR3IE	ECCP1IE	- 0 - 0	0000	- 0 - 0	0000
IPR2		CMIP	_	EEIP	BCLIP	LVDIP	TMR3IP	ECCP1IP	-1-1	1111	-1-1	1111
TMR3L	Holding Register for the Least Significant Byte of the 16-bit TMR3 Register								xxxx	xxxx	uuuu	uuuu
TMR3H	Holding Register for the Most Significant Byte of the 16-bit TMR3 Register								xxxx	xxxx	uuuu	uuuu
T3CON	RD16	T3ECCP1	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000	0000	uuuu	uuuu

TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3


Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

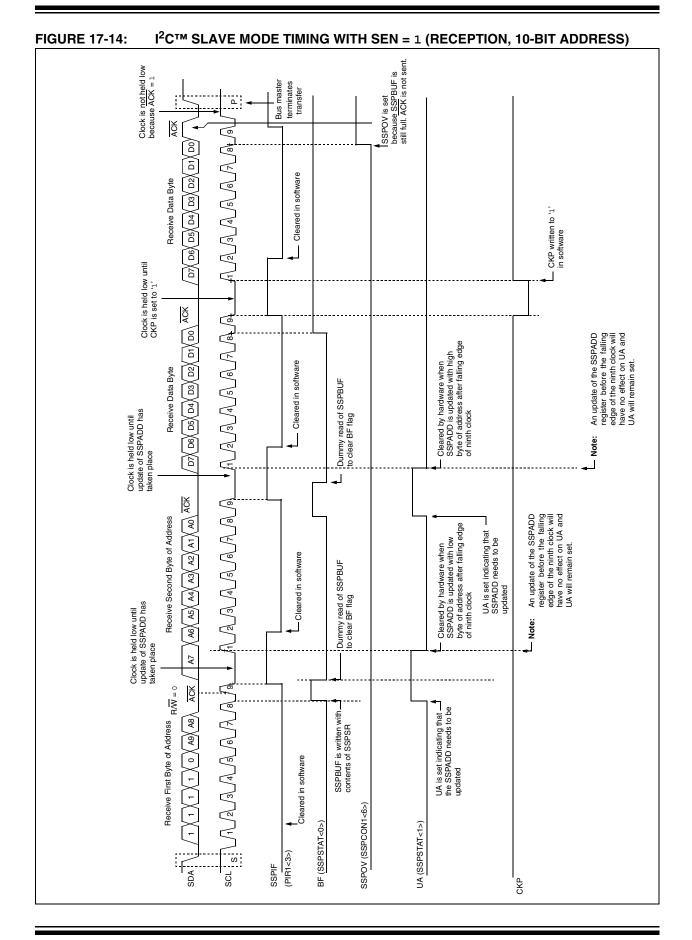

Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's.

FIGURE 17-6: SPI™ MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

© 2006 Microchip Technology Inc.

19.2.3.1 Message Acceptance Filters and Masks

This subsection describes the message acceptance filters and masks for the CAN receive buffers.

REGISTER 19-21: RXFnSIDH: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER, HIGH BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 SID10:SID3: Standard Identifier Filter bits if EXIDEN = 0 or Extended Identifier Filter bits EID28:EID21 if EXIDEN = 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-22: RXFnSIDL: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER, LOW BYTE REGISTERS

	R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16
	bit 7							bit 0
bit 7-5				er bits if EXII 0:EID18 if EX				
bit 4	Unimplemented: Read as '0'							
bit 3	EXIDEN: E	xtended Ide	ntifier Filter	Enable bit				
		•	•	ID message ID message				
bit 2	Unimplem	ented: Read	d as '0'					
bit 1-0	EID17:EID	16: Extende	d Identifier I	Filter bits				
	Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

19.2.5 CAN MODULE I/O CONTROL REGISTER

bit bit

bit

bit

This register controls the operation of the CAN module's I/O pins in relation to the rest of the microcontroller.

REGISTER 19-32: CIOCON: CAN I/O CONTROL REGISTER

	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	—	_	ENDRHI	CANCAP	—		_	—
	bit 7							bit 0
t 7-6	Unimplemented: Read as '0'							
t 5	ENDRHI: E	nable Drive	High bit					
	1 = CANTX pin will drive VDD when recessive 0 = CANTX pin will tri-state when recessive							
t 4	CANCAP:	CAN Messa	ge Receive	Capture Ena	able bit			
				ssage receiv P1 input to 0			on RC2/CCF	91
t 3-0	Unimpleme	ented: Read	as '0'					
	Legend:							
	R = Readal	ole bit	W = Writa	ble bit	U = Unim	plemented	bit, read as	ʻ0'
	-n = Value a	at POR	'1' = Bit is	set	'0' = Bit is	s cleared	x = Bit is u	nknown

19.3 CAN Modes of Operation

The PIC18FXX8 has six main modes of operation:

- Configuration mode
- Disable mode
- Normal Operation mode
- · Listen Only mode
- · Loopback mode
- Error Recognition mode

All modes, except Error Recognition, are requested by setting the REQOP bits (CANCON<7:5>); Error Recognition is requested through the RXM bits of the Receive Buffer register(s). Entry into a mode is Acknowledged by monitoring the OPMODE bits.

When changing modes, the mode will not actually change until all pending message transmissions are complete. Because of this, the user must verify that the device has actually changed into the requested mode before fUrther Operations Are Executed.

19.3.1 CONFIGURATION MODE

The CAN module has to be initialized before the activation. This is only possible if the module is in the Configuration mode. The Configuration mode is requested by setting the REQOP2 bit. Only when the OPMODE2 status bit has a high level can the initialization be performed. Afterwards, the Configuration registers, the Acceptance Mask registers and the Acceptance Filter registers can be written. The module is activated by setting the REQOP control bits to zero.

The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is online. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The CONFIG bit serves as a lock to protect the following registers.

- Configuration registers
- Bus Timing registers
- Identifier Acceptance Filter registers
- Identifier Acceptance Mask registers

In the Configuration mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes.

19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If REQOP<2:0> is set to '001', the module will enter the Module Disable mode. This mode is similar to disabling other peripheral modules by turning off the module enables. This causes the module internal clock to stop unless the module is active (i.e., receiving or transmitting a message). If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an IDLE bus, then accept the module disable command. OPMODE<2:0> = 001 indicates whether the module successfully went into Module Disable mode.

The WAKIF interrupt is the only module interrupt that is still active in the Module Disable mode. If the WAKIE is set, the processor will receive an interrupt whenever the CAN bus detects a dominant state, as occurs with a SOF. If the processor receives an interrupt while it is sleeping, more than one message may get lost. User firmware must anticipate this condition and request retransmission. If the processor is running while it receives an interrupt, only the first message may get lost.

The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

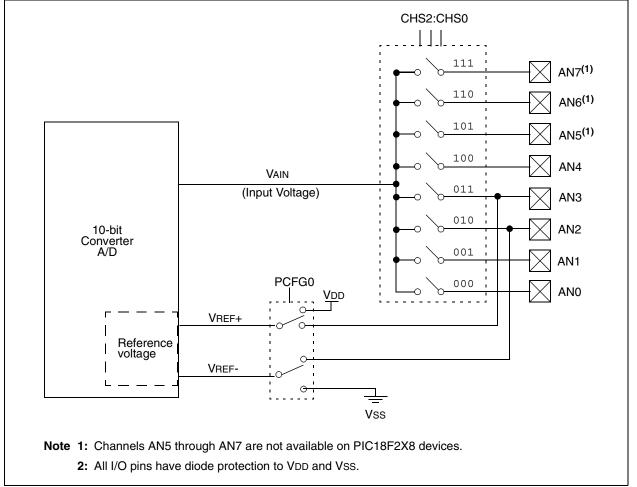
19.3.3 NORMAL MODE

This is the standard operating mode of the PIC18FXX8. In this mode, the device actively monitors all bus messages and generates Acknowledge bits, error frames, etc. This is also the only mode in which the PIC18FXX8 will transmit messages over the CAN bus.

19.3.4 LISTEN ONLY MODE

Listen Only mode provides a means for the PIC18FXX8 to receive all messages, including messages with errors. This mode can be used for bus monitor applications or for detecting the baud rate in 'hot plugging' situations. For auto-baud detection, it is necessary that there are at least two other nodes which are communicating with each other. The baud rate can be detected empirically by testing different values until valid messages are received. The Listen Only mode is a silent mode, meaning no messages will be transmitted while in this state, including error flags or Acknowledge signals. The filters and masks can be used to allow only particular messages to be loaded into the receive registers, or the filter masks can be set to all zeros to allow a message with any identifier to pass. The error counters are reset and deactivated in this state. The Listen Only mode is activated by setting the mode request bits in the CANCON register.

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and VSS) or the voltage level on the RA3/AN3/ VREF+ pin and RA2/AN2/VREF- pin.


The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion is aborted.

Each port pin associated with the A/D converter can be configured as an analog input (RA3 can also be a voltage reference) or as a digital I/O.

The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ADRESL registers, the GO/DONE bit (ADCON0<2>) is cleared and A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 20-1.

FIGURE 20-1: A/D BLOCK DIAGRAM

To calculate the minimum acquisition time, Equation 20-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 20-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following application system assumptions:

•	CHOLD	=	120 pF

• Rs = $2.5 \text{ k}\Omega$

• Conversion Error \leq 1/2 LSb

• VDD = $5V \rightarrow Rss = 7 k\Omega$

- Temperature = 50° C (system max.)
- VHOLD = 0V @ time = 0

EQUATION 20-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 20-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{Tc/CHOLD}(\text{Ric} + \text{Rss} + \text{Rs}))})$
or		
Тс	=	$-(120 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/2047)$

EXAMPLE 20-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
Temper	ature	coefficient is only required for temperatures $> 25^{\circ}$ C.
TACQ	=	$2 \ \mu s + Tc + [(Temp - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C)]$
ТС	=	-CHOLD (RIC + RSS + RS) $\ln(1/2047)$ -120 pF (1 k Ω + 7 k Ω + 2.5 k Ω) $\ln(0.0004885)$ -120 pF (10.5 k Ω) $\ln(0.0004885)$ -1.26 μ s (-7.6241) 9.61 μ s
TACQ	=	2 μs + 9.61 μs + [(50°C – 25°C)(0.05 μs/°C)] 11.61 μs + 1.25 μs 12.86 μs

Note: When using external voltage references with the A/D converter, the source impedance of the external voltage references must be less than 20Ω to obtain the specified A/D resolution. Higher reference source impedances will increase both offset and gain errors. Resistive voltage dividers will not provide a sufficiently low source impedance.

To maintain the best possible performance in A/D conversions, external VREF inputs should be buffered with an operational amplifier or other low output impedance circuit.

20.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 12 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. The seven possible options for TAD are:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC oscillator.

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 20-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

20.3 Configuring Analog Port Pins

The ADCON1, TRISA and TRISE registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input (including the AN4:AN0 pins) may cause the input buffer to consume current that is out of the device's specification.

TABLE 20-1: TAD VS. DEVICE OPERATING FREQUENCIES

AD Clock	Source (TAD)		Device F	requency	
Operation	ADCS2:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz
2 Tosc	000	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 µs
4 Tosc	100	200 ns ⁽²⁾	800 ns ⁽²⁾	3.2 μs	12 μs
8 Tosc	001	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾
16 Tosc	101	800 ns ⁽²⁾	3.2 μs	12.8 μs	48 μs ⁽³⁾
32 Tosc	010	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾
64 Tosc	110	3.2 μs	12.8 μs	51.2 μs ⁽³⁾	192 μs ⁽³⁾
RC	011	2-6 μs ⁽¹⁾	2-6 μs ⁽¹⁾	2-6 μs ⁽¹⁾	2-6 μs ⁽¹⁾

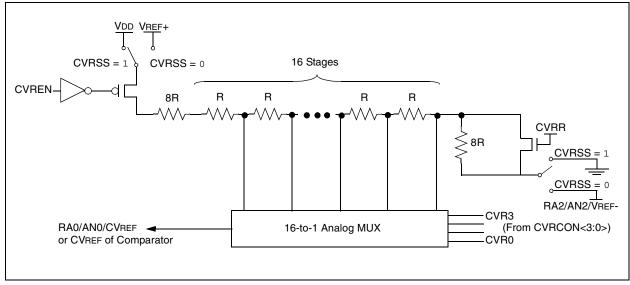
Legend: Shaded cells are outside of recommended range.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

TABLE 20-2: TAD vs. DEVICE OPERATING FREQUENCIES (FOR EXTENDED, LF DEVICES)

AD Clock	Source (TAD)		Device F	requency	
Operation	ADCS2:ADCS0	4 MHz	2 MHz	1.25 MHz	333.33 kHz
2 Tosc	000	500 ns ⁽²⁾	1.0 μs ⁽²⁾	1.6 μs ⁽²⁾	6 µs
4 Tosc	100	1.0 μs ⁽²⁾	2.0 μs ⁽²⁾	3.2 μs ⁽²⁾	12 µs
8 Tosc	001	2.0 μs ⁽²⁾	4.0 μs	6.4 μs	24 μs ⁽³⁾
16 Tosc	101	4.0 μs ⁽²⁾	8.0 μs	12.8 μs	48 μs ⁽³⁾
32 Tosc	010	8.0 μs	16.0 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾
64 Tosc	110	16.0 μs	32.0 μs	51.2 μs ⁽³⁾	192 μs ⁽³⁾
RC	011	3-9 μs ⁽¹⁾	3-9 μs ⁽¹⁾	3-9 μs ⁽¹⁾	3-9 μs ⁽¹⁾


Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 6 µs.

- **2:** These values violate the minimum required TAD time.
- 3: For faster conversion times, the selection of another clock source is recommended.

Note 1: The RC source has a typical TAD time of 4 μ s.

22.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 22-1) keep VREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the VREF output changes with fluctuations in that source. The absolute accuracy of the voltage reference can be found in **Section 27.0 "Electrical Characteristics"**.

22.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

22.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit CVREN (CVRCON register). This Reset also disconnects the reference from the RA2 pin by clearing bit CVROE (CVRCON register) and selects the high-voltage range by clearing bit CVRR (CVRCON register). The CVRSS value select bits, CVRCON<3:0>, are also cleared.

22.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RA0/AN0 pin if the TRISA<0> bit is set and the CVROE bit (CVRCON<6>) is set. Enabling the voltage reference output onto the RA0/AN0 pin, with an input signal present, will increase current consumption. Connecting RA0/AN0 as a digital output, with CVRSS enabled, will also increase current consumption.

The RA0/AN0 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 22-2 shows an example buffering technique.

							-000000	5111)
	U-0	U-0	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1
		_	OSCSEN	_	_	FOSC2	FOSC1	FOSC0
	bit 7							bit 0
bit 7-6	Unimplem	ented: Read	as '0'					
bit 5	OSCSEN:	Oscillator Sy	stem Clock S	witch Enable	bit			
			ock switch op					
	0 = Oscillat	or system cl	ock switch op	tion is enable	ed (oscillator	switching	is enabled)	
bit 4-3	Unimplem	ented: Read	as '0'					
bit 2-0	FOSC2:FO	SC0: Oscilla	tor Selection	bits				
			SC2 configu					
			PLL enabled		ency = (4 x F	OSC)		
			SC2 configui		-by-4 clock o	utout		
	011 = RC c				by + clock o	uipui		
	010 = HS c	oscillator						
	001 = XT c							
	000 = LP o	scillator						
								
	Legend:							
	R = Readal	ole bit	P = Program	nmable bit	U = Unimple	emented bit	t, read as '	0'
	-n = Value v	when device	is unprogram	imed	u = Unchang	ged from p	rogramme	d state

REGISTER 24-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

REGISTER 24-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

								· · /
	U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
	—	_	—	—	BORV1	BORV0	BOREN	PWRTEN
	bit 7							bit 0
bit 7-4	-	ented: Read						
bit 3-2	BORV1:BC	DRV0: Brown	-out Reset V	oltage bits				
	11 = VBOR	set to 2.0V						
	10 = VBOR	set to 2.7V						
	01 = VBOR	set to 4.2V						
	00 = V BOR	set to 4.5V						
bit 1	BOREN: B	rown-out Res	set Enable bi	it				
	1 = Brown-	out Reset en	abled					
	0 = Brown	out Reset dis	sabled					
bit 0	PWRTEN:	Power-up Tir	mer Enable b	bit				
	1 = PWRT	disabled						
	0 = PWRT	enabled						
	Legend:							
	R = Readal	ole bit	P = Program	mmable bit	U = Unim	plemented	bit, read as	s 'O'
	-n = Value v	when device	is unprogram	nmed	u = Uncha	anged from	programm	ed state
								,

REGISTER 24-11: DEVID1: DEVICE ID REGISTER 1 FOR PIC18FXX8 DEVICES (BYTE ADDRESS 3FFFFEh)

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

bit 7-5 **DEV2:DEV0:** Device ID bits These bits are used with the DEV<10:3> bits in the Device ID Register 2 to identify the part number.

000 = PIC18F248

001 = PIC18F448

010 = PIC18F258

011 = PIC18F458

bit 4-0 REV4:REV0: Revision ID bits

These bits are used to indicate the device revision.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

REGISTER 24-12: DEVID2: DEVICE ID REGISTER 2 FOR PIC18FXX8 DEVICES (BYTE ADDRESS 3FFFFFh)

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

bit 7-0 DEV10:DEV3: Device ID bits

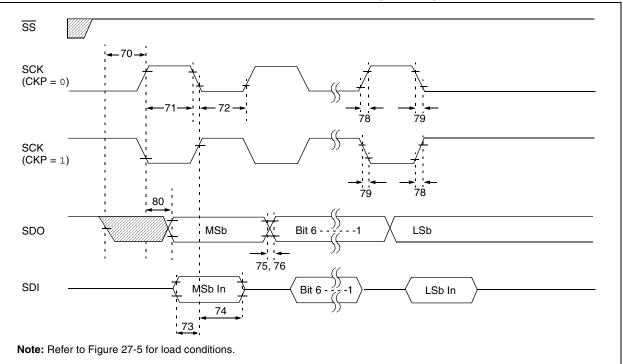
These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number.

00001000 = PIC18FXX8

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

GENERAL FORMAT FOR INSTRUCTIONS FIGURE 25-1: Byte-oriented file register operations **Example Instruction** 10 9 8 7 15 0 OPCODE f (FILE #) ADDWF MYREG, W, B d а d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address Byte to Byte move operations (2-word) 15 12 11 0 OPCODE f (Source FILE #) MOVFF MYREG1, MYREG2 15 12 11 0 f (Destination FILE #) 1111 f = 12-bit file register address Bit-oriented file register operations 15 12 11 987 0 OPCODE b (BIT #) f (FILE #) а BSF MYREG, bit, B b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address Literal operations 15 8 7 0 OPCODE k (literal) MOVLW 0x7F k = 8-bit immediate value **Control** operations CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) GOTO Label 15 12 11 0 1111 n<19:8> (literal) n = 20-bit immediate value 15 8 7 0 CALL MYFUNC OPCODE S n<7:0> (literal) 15 12 11 0 n<19:8> (literal) S = Fast bit 15 11 10 0 OPCODE BRA MYFUNC n<10:0> (literal) 15 8 7 0 OPCODE n<7:0> (literal) BC MYFUNC

GOTO		Unconditi	onal Bra	nch		
Syntax:		[label] C	GOTO k			
Operands:		$0 \le k \le 104$	8575			
Operation:		$k \rightarrow PC < 20$	0:1>			
Status Affecte	d:	None				
Encoding: 1st word (k<7 2nd word(k<1	,	1110 1111	1111 k ₁₉ kkk	k ₇ kk kkkk	-	
Description:		range. The	within ent 20-bit va GOTO is	ire 2-Mi Iue 'k' is	nal branch byte memor s loaded int a two-cycle	0
Words:		2				
Cycles:		2				
Q Cycle Activ	/ity:					
Q1		Q2	Q	3	Q4	
Decoc	le	Read literal 'k'<7:0>	No opera	tion	Read litera 'k'<19:8>, Write to PC	-
No		No	No		No	
operati	on	operation	opera	tion	operation	
Example: After Inst PC		GOTO THI on Address (1				

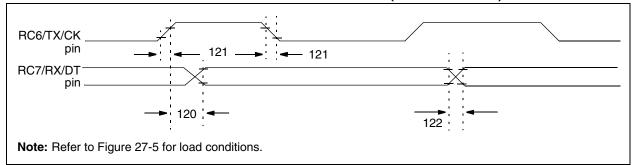

INCF		Incremen	t f						
Syntax:		[label]	[<i>label</i>] INCF f [,d [,a]]						
Operands:		0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	$0 \le f \le 255$ $d \in [0,1]$						
Operation:		(f) + 1 \rightarrow c	lest						
Status Affecte	ed:	C, DC, N,	OV, Z						
Encoding:		0010	10da	fff	f f	fff			
Description:		The conte increment placed in V placed bac is '0', the V overriding the bank v BSR value	ed. If 'd' is W. If 'd' is ck in regis Access Ba the BSR vill be sele	s '0', th '1', the ter 'f' (ank will value. I value. l	e result e result default) be sele If 'a' = 1	is). If 'a' ected, , then			
Words:		1							
Cycles:		1							
Q Cycle Acti	vity:								
Q1		Q2	Q	3	Q4				
Deco	de	Read register 'f'	Proce Dat		Write destina				
Example:		INCF	CNT,						
Before II CN Z C DC After Ins CN Z	T	= 0xFF = 0 = ? = ?							

IORL	w	Inclusive	OR Litera	al with W	1			
Synta	ax:	[label]	[<i>label</i>] IORLW k					
Opera	ands:	$0 \le k \le 25$	5					
Opera	ation:	(W) .OR. I	$x \to W$					
Statu	s Affected:	N, Z						
Enco	ding:	0000	1001	kkkk	kkkk			
Desc	ription:	The conte eight-bit lit W.			l with the is placed in			
Word	s:	1						
Cycle	es:	1						
QC	ycle Activity:							
-	Q1	Q2	Q	3	Q4			
	Decode	Read literal 'k'	Proce Dat		Write to W			
Example:		IORLW	0x35					
	Before Instruc W After Instructic	= 0x9A						
	W	= 0xBF						

IORWF	Inclusive O	R W with f	
Syntax:	[label] IC	RWF f[,d[,a]]
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$		
Operation:	(W) .OR. (f)	\rightarrow dest	
Status Affected:	N, Z		
Encoding:	0001	00da ff:	ff ffff
	(default). If ' will be selec value. If 'a'	placed back i a' is '0', the A sted, overridin = 1, then the b per the BSR y	ccess Bank g the BSR
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination
Example:	IORWF RE	SULT, W	
Before Instruc RESULT W			

0x13 0x93

After Instruction RESULT = W =


TABLE 27-13:	EXAMPLE SPI™ MODE REQUIREMENTS (MASTER MODE, CKE = 0)	

Param No.	Symbol	Characteristi	c	Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		Тсү	-	ns	
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40	—	ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40	—	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input to SCK Edge		100	_	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2		1.5 TCY + 40		ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		100	_	ns	
75	TdoR	SDO Data Output Rise Time	PIC18FXX8		25	ns	
			PIC18LFXX8	—	45	ns	
76	TdoF	SDO Data Output Fall Time			25	ns	
78	TscR	SCK Output Rise Time	PIC18FXX8	—	25	ns	
		(Master mode)	PIC18LFXX8	—	45	ns	
79	TscF	SCK Output Fall Time (Master	mode)	—	25	ns	
80	TscH2doV,	SDO Data Output Valid after	PIC18FXX8	—	50	ns	
	TscL2doV	SCK Edge	PIC18LFXX8	—	100	ns]

Note 1: Requires the use of parameter #73A.

2: Only if parameter #71A and #72A are used.

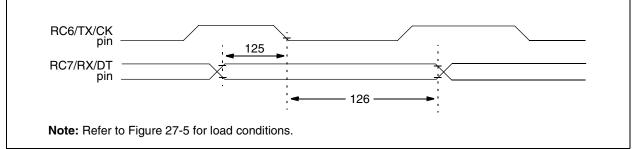

FIGURE 27-21: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 27-21: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Мах	Units	Conditions
120	TckH2dtV	SYNC XMIT (Master & Slave)					
		Clock High to Data-Out Valid	PIC18FXX8		50	ns	
			PIC18LFXX8		150	ns	
121	Tckrf	Clock Out Rise Time and Fall Time	PIC18FXX8		25	ns	
	(Master mode)	PIC18LFXX8	—	60	ns		
122	Tdtrf	Data-Out Rise Time and Fall Time	PIC18FXX8		25	ns	
			PIC18LFXX8		60	ns	

FIGURE 27-22: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 27-22: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TdtV2ckl	SYNC RCV (Master & Slave) Data-Hold before $CK \downarrow$ (DT hold time)	10		ns	
126	TckL2dtl	Data-Hold after CK \downarrow (DT hold time)	15	—	ns	

Transition from OSC1 to
Timer1 Oscillator21
USART Asynchronous Reception 192
USART Asynchronous Transmission
USART Asynchronous Transmission
(Back to Back)190
USART Synchronous Receive
(Master/Slave)
USART Synchronous Reception
(Master Mode, SREN)
USART Synchronous Transmission
USART Synchronous Transmission
(Master/Slave)
USART Synchronous Transmission
(Through TXEN)
Wake-up from Sleep via Interrupt
Timing Diagrams and Specifications
A/D Conversion Requirements
A/D Converter Characteristics
Capture/Compare/PWM Requirements
(CCP1 and ECCP1)
CLKO and I/O Timing
Requirements344
Example SPI Mode Requirements
(Master Mode, CKE = 0)349
Example SPI Mode Requirements
(Master Mode, CKE = 1)
Example SPI Mode Requirements
(Slave Mode, CKE = 0)
Example SPI Slave Mode
Requirements (CKE = 1)
External Clock Timing Requirements
I ² C Bus Data Requirements
(Slave Mode)
I ² C Bus Start/Stop Bits Requirements
(Slave Mode)353
Master SSP I ² C Bus Data
Requirements
Master SSP I ² C Bus Start/Stop Bits
Requirements
Parallel Slave Port Requirements
(PIC18F248 and PIC18F458)
PLL Clock
Reset, Watchdog Timer, Oscillator
Start-up Timer, Power-up Timer,
Brown-out Reset and Low-Voltage Detect Requirements
•
Timer0 and Timer1 External
Clock Requirements
USART Synchronous Receive
Requirements
USART Synchronous Transmission
Requirements
TSTFSZ
TXSTA Register
BRGH Bit185

U

USART
Asynchronous Mode189
Reception
Setting Up 9-Bit Mode with
Address Detect 191
Transmission189
Asynchronous Reception192
Asynchronous Transmission
Associated Registers 190
Baud Rate Generator (BRG) 185
Associated Registers
Baud Rate Error, Calculating 185
Baud Rate Formula 185
Baud Rates for Asynchronous Mode
(BRGH = 0)
Baud Rates for Asynchronous Mode
(BRGH = 1)
Baud Rates for Synchronous Mode 186
High Baud Rate Select (BRGH Bit) 185
Sampling 185
Serial Port Enable (SPEN) Bit 183
Synchronous Master Mode 193
Reception 195
Transmission 193
Synchronous Master Reception
Associated Registers 195
Synchronous Master Transmission
Associated Registers 193
Synchronous Slave Mode 196
Reception 196
Transmission 196
Synchronous Slave Reception 197
Synchronous Slave Transmission
Associated Registers 197
V
Voltage Reference Specifications
W
Wake-up from Sleep
Using Interrupts
Watchdog Timer (WDT)

Associated Registers	273
Control Register	
Postscaler	273
Programming Considerations	272
RC Oscillator	
Time-out Period	
WCOL	. 171, 172, 173, 176
WCOL Status Flag	. 171, 172, 173, 176
WDT. See Watchdog Timer.	
WWW, On-Line Support	5
x	
	201

XORLW	321
XORWF	322