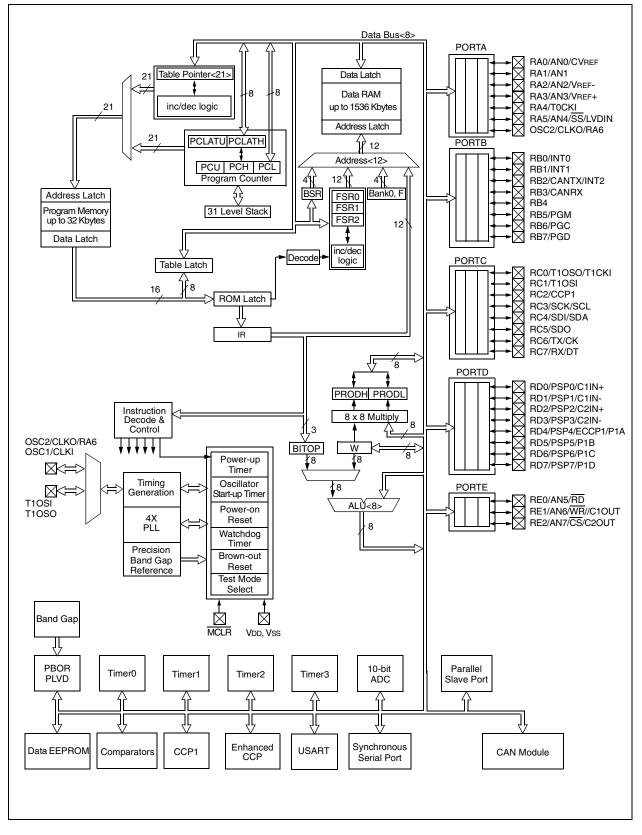


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f258-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-3:			IONS FOR ALL RE	GISTERS (CONTINUI	
Register	Applicable	e Devices	Power-on Reset, Brown-out Reset	MCLR Reset WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt
TRISE	PIC18F2X8	PIC18F4X8	0000 -111	0000 -111	uuuu -uuu
TRISD	PIC18F2X8	PIC18F4X8	1111 1111	1111 1111	uuuu uuuu
TRISC	PIC18F2X8	PIC18F4X8	1111 1111	1111 1111	uuuu uuuu
TRISB	PIC18F2X8	PIC18F4X8	1111 1111	1111 1111	uuuu uuuu
TRISA ⁽⁵⁾	PIC18F2X8	PIC18F4X8	-111 1111 (5)	-111 1111 ⁽⁵⁾	-uuu uuuu (5)
LATE	PIC18F2X8	PIC18F4X8	xxx	uuu	uuu
LATD	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu
LATC	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu
LATB	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu
LATA ⁽⁵⁾	PIC18F2X8	PIC18F4X8	-xxx xxxx(5)	-uuu uuuu ⁽⁵⁾	-uuu uuuu (5)
PORTE	PIC18F2X8	PIC18F4X8	xxx	000	uuu
PORTD	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTC	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTB	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTA ⁽⁵⁾	PIC18F2X8	PIC18F4X8	-x0x 0000 ⁽⁵⁾	-u0u 0000 (5)	-uuu uuuu (5)
TXERRCNT	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu
RXERRCNT	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu
COMSTAT	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu
CIOCON	PIC18F2X8	PIC18F4X8	00	00	uu
BRGCON3	PIC18F2X8	PIC18F4X8	-0000	-0000	-uuuu
BRGCON2	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu
BRGCON1	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu
CANCON	PIC18F2X8	PIC18F4X8	xxxx xxx-	uuuu uuu-	uuuu uuu-
CANSTAT ⁽⁶⁾	PIC18F2X8	PIC18F4X8	xxx- xxx-	uuu- uuu-	uuu- uuu-
RXB0D7	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu
RXB0D6	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu
RXB0D5	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu
RXB0D4	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu
RXB0D3	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu
RXB0D2	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu
RXB0D1	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu
RXB0D0	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for Reset value for specific condition.

5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other oscillator modes, they are disabled and read '0'.

6: Values for CANSTAT also apply to its other instances (CANSTATRO1 through CANSTATRO4).

TABLE 4-2	: REG	ISTER FIL	E SUMM	ARY (CON	TINUED)	-			-
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
CANSTATRO4	OPMODE2	OPMODE1	OPMODE0	_	ICODE2	ICODE1	ICODE0	_	xxx- xxx-	33, 202
TXB2D7	TXB2D77	TXB2D76	TXB2D75	TXB2D74	TXB2D73	TXB2D72	TXB2D71	TXB2D70	XXXX XXXX	35, 208
TXB2D6	TXB2D67	TXB2D66	TXB2D65	TXB2D64	TXB2D63	TXB2D62	TXB2D61	TXB2D60	XXXX XXXX	35, 208
TXB2D5	TXB2D57	TXB2D56	TXB2D55	TXB2D54	TXB2D53	TXB2D52	TXB2D51	TXB2D50	XXXX XXXX	35, 208
TXB2D4	TXB2D47	TXB2D46	TXB2D45	TXB2D44	TXB2D43	TXB2D42	TXB2D41	TXB2D40	xxxx xxxx	35, 208
TXB2D3	TXB2D37	TXB2D36	TXB2D35	TXB2D34	TXB2D33	TXB2D32	TXB2D31	TXB2D30	xxxx xxxx	35, 208
TXB2D2	TXB2D27	TXB2D26	TXB2D25	TXB2D24	TXB2D23	TXB2D22	TXB2D21	TXB2D20	xxxx xxxx	35, 208
TXB2D1	TXB2D17	TXB2D16	TXB2D15	TXB2D14	TXB2D13	TXB2D12	TXB2D11	TXB2D10	xxxx xxxx	35, 208
TXB2D0	TXB2D07	TXB2D06	TXB2D05	TXB2D04	TXB2D03	TXB2D02	TXB2D01	TXB2D00	xxxx xxxx	35, 208
TXB2DLC	_	TXRTR	—	-	DLC3	DLC2	DLC1	DLC0	-x xxxx	35, 209
TXB2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	35, 208
TXB2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	35, 207
TXB2SIDL	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxx- x-xx	35, 207
TXB2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	35, 207
TXB2CON	_	TXABT	TXLARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	-000 0-00	35, 206
RXM1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	35, 217
RXM1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	35, 217
RXM1SIDL	SID2	SID1	SID0	_	_	_	EID17	EID16	xxxxx	36, 217
RXM1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	36, 216
RXM0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	36, 217
RXM0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	36, 217
RXM0SIDL	SID2	SID1	SID0	_	_	_	EID17	EID16	xxxxx	36, 217
RXM0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	36, 216
RXF5EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	36, 216
RXF5EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	36, 216
RXF5SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	36, 215
RXF5SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	36, 215
RXF4EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	36, 216
RXF4EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	36, 216
RXF4SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	36, 215
RXF4SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	36, 215
RXF3EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	36, 216
RXF3EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	36, 216
RXF3SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	36, 215
RXF3SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	36, 215
RXF2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	36, 216
RXF2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	36, 216
RXF2SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	36, 215
RXF2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	36, 215
RXF1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	36, 216
RXF1EIDH	EID15	EID0 EID14	EID13	EID12	EID0	EID10	EID9	EID8	XXXX XXXX	36, 216
RXF1SIDL	SID2	SID14	SIDO		EXIDEN		EID3	EID16	xxx- x-xx	36, 215
RXF1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	36, 215
RXF0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	36, 216
RXF0EIDH	EID7 EID15	EID14	EID3 EID13	EID4 EID12	EID3	EID10	EID9	EID8	XXXX XXXX	36, 216
RXF0SIDL	SID2	SID14	SIDO		EXIDEN		EID9 EID17	EID8		36, 216
						SIDE			xxx- x-xx	
RXF0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	36, 215

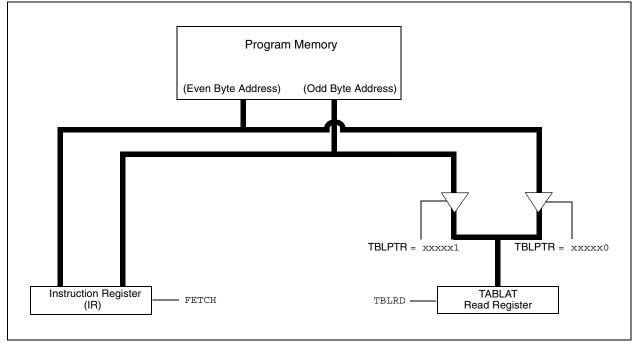
.....

Legend: \mathbf{x} = unknown, \mathbf{u} = unchanged, - = unimplemented, \mathbf{q} = value depends on condition Note

1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's.

2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read '0' in all other oscillator modes. 3:


6.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

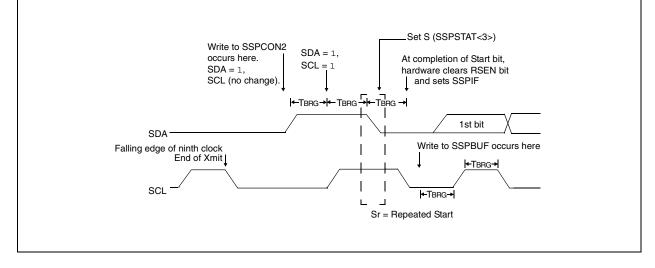
EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW MOVWF MOVLW MOVWF MOVLW	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE ADDR LOW		Load TBLPTR with the base address of the word
READ WORD	MOVWF	TBLPTRL		
_	TBLRD*- MOVF MOVWF TBLRD*- MOVF MOVWF	TABLAT, W WORD_LSB	;	read into TABLAT and increment get data read into TABLAT and increment get data

17.4.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPCON2 < 1 >) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPADD<5:0> and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit (SSPCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - 2: A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.


Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

17.4.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPCON2 is disabled until the Repeated Start condition is complete.

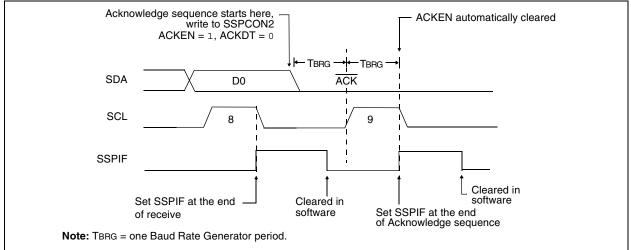
FIGURE 17-20: REPEATED START CONDITION WAVEFORM

17.4.12 ACKNOWLEDGE SEQUENCE TIMING

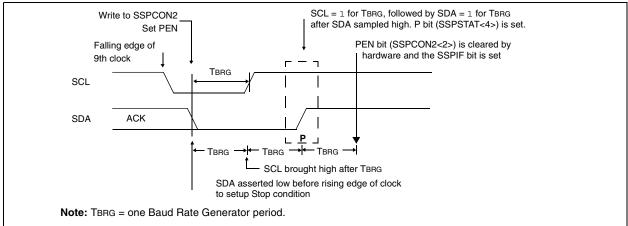
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 17-23).

17.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).


17.4.13 STOP CONDITION TIMING

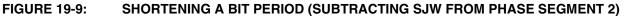
A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to 0. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 17-24).

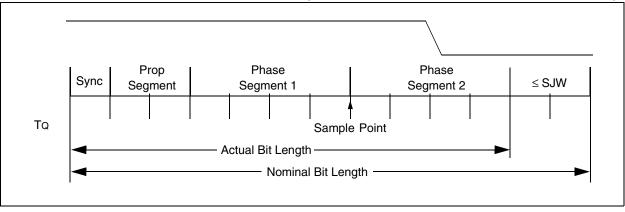

17.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 17-23: ACKNOWLEDGE SEQUENCE WAVEFORM

PIC18FXX8


TER 18-2:	RCSTA: R	ECEIVE S	TATUS AN	ID CONTR	OL REGIS	TER		
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
	bit 7							bit 0
bit 7	SPEN: Seri	ial Port Ena	ole bit					
		ort enabled		RX/DT and	TX/CK pins	as serial po	rt pins)	
bit 6	RX9 : 9-bit F	Receive Ena	uble bit					
		9-bit recept 8-bit recept						
bit 5	SREN: Sing	gle Receive	Enable bit					
	<u>Asynchronc</u> Don't care.	ous mode:						
	1 = Enables	<u>us mode – N</u> s single rece s single rec	eive	is cleared a	fter receptio	n is comple	te)	
	<u>Synchronou</u> Unused in t	<u>us mode – S</u> his mode.	<u>lave:</u>					
bit 4	CREN: Cor	ntinuous Re	ceive Enable	e bit				
		<u>ous mode:</u> s continuou: s continuou						
				til enable bit	CREN is cle	eared (CRE	N overrides S	SREN)
bit 3	ADDEN: Ad	ddress Dete	ct Enable bi	t				
	Asynchrono	ous mode 9-	bit (RX9 = 1	<u>.):</u>				
	is set				-		ve buffer whe n be used as	
bit 2		ning Error b		bytes are n				parity bit
DIL Z		g error (can		by reading l	RCREG regi	ster and rec	eive next va	lid byte)
bit 1		errun Error b	oit					
bit i		n error (can	be cleared t	by clearing b	it CREN)			
bit 0		bit of Receiv	ved Data					
2			it or a parity	bit.				
	Legend:							
	R = Reada	ble bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	'0'
	1							


'1' = Bit is set

REGISTER 18-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

-n = Value at POR

'0' = Bit is cleared x = Bit is unknown

19.9 Programming Time Segments

Some requirements for programming of the time segments:

- Prop Seg + Phase Seg 1 ≥ Phase Seg 2
- Phase Seg 2 ≥ Sync Jump Width

For example, assume that a 125 kHz CAN baud rate is desired using 20 MHz for Fosc. With a Tosc of 50 ns, a baud rate prescaler value of 04h gives a TQ of 500 ns. To obtain a nominal bit rate of 125 kHz, the nominal bit time must be 8 μ s or 16 TQ.

Using 1 TQ for the Sync Segment, 2 TQ for the Propagation Segment and 7 TQ for Phase Segment 1 would place the sample point at 10 TQ after the transition. This leaves 6 TQ for Phase Segment 2.

By the rules above, the Sync Jump Width could be the maximum of 4 Tq. However, normally a large SJW is only necessary when the clock generation of the different nodes is inaccurate or unstable, such as using ceramic resonators. Typically, an SJW of 1 is enough.

19.10 Oscillator Tolerance

As a rule of thumb, the bit timing requirements allow ceramic resonators to be used in applications with transmission rates of up to 125 Kbit/sec. For the full bus speed range of the CAN protocol, a quartz oscillator is required. A maximum node-to-node oscillator variation of 1.7% is allowed.

19.11 Bit Timing Configuration Registers

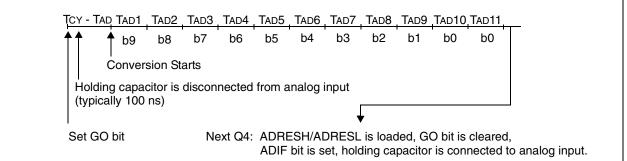
The Configuration registers (BRGCON1, BRGCON2, BRGCON3) control the bit timing for the CAN bus interface. These registers can only be modified when the PIC18FXX8 is in Configuration mode.

19.11.1 BRGCON1

The BRP bits control the baud rate prescaler. The SJW < 1:0 > bits select the synchronization jump width in terms of multiples of Tq.

19.11.2 BRGCON2

The PRSEG bits set the length of the Propagation Segment in terms of TQ. The SEG1PH bits set the length of Phase Segment 1 in TQ. The SAM bit controls how many times the RXCAN pin is sampled. Setting this bit to a '1' causes the bus to be sampled three times; twice at TQ/2 before the sample point and once at the normal sample point (which is at the end of Phase Segment 1). The value of the bus is determined to be the value read during at least two of the samples. If the SAM bit is set to a '0', then the RXCAN pin is sampled only once at the sample point. The SEG2PHTS bit controls how the length of Phase Segment 2 is determined. If this bit is set to a '1', then the length of Phase Segment 2 is determined by the SEG2PH bits of BRGCON3. If the SEG2PHTS bit is set to a '0', then the length of Phase Segment 2 is the greater of Phase Segment 1 and the information processing time (which is fixed at 2 TQ for the PIC18FXX8).


19.11.3 BRGCON3

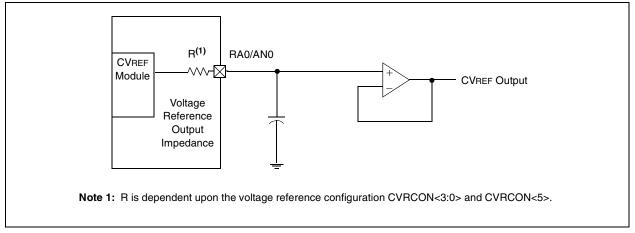
The PHSEG2<2:0> bits set the length (in TQ) of Phase Segment 2 if the SEG2PHTS bit is set to a '1'. If the SEG2PHTS bit is set to a '0', then the PHSEG2<2:0> bits have no effect.

20.5 Use of the ECCP Trigger

An A/D conversion can be started by the "special event trigger" of the ECCP module. This requires that the ECCP1M3:ECCP1M0 bits (ECCP1CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/ DONE bit will be set, starting the A/D conversion and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH/ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the "special event trigger" will be ignored by the A/D module but will still reset the Timer1 (or Timer3) counter.

FIGURE 20-4: A/D CONVERSION TAD CYCLES


TABLE 20-3: SUMMARY OF A/D REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	1111 1111
PIR2	_	CMIF ⁽¹⁾	_	EEIF	BCLIF	LVDIF	TMR3IF	ECCP1IF ⁽¹⁾	-0-0 0000	-0-0 0000
PIE2	_	CMIE ⁽¹⁾	_	EEIE	BCLIE	LVDIE	TMR3IE	ECCP1IE ⁽¹⁾	-0-0 0000	-0-0 0000
IPR2	_	CMIP ⁽¹⁾	_	EEIP	BCLIP	LVDIP	TMR3IP	ECCP1IP ⁽¹⁾	-1-1 1111	-1-1 1111
ADRESH	A/D Resul	t Register							xxxx xxxx	uuuu uuuu
ADRESL	A/D Resul	t Register							xxxx xxxx	uuuu uuuu
ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0
ADCON1	ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000
PORTA	_	RA6	RA5	RA4	RA3	RA2	RA1	RA0	-x0x 0000	-u0u 0000
TRISA		PORTA Data	a Direction	Register					-111 1111	-111 1111
PORTE	_	—	_	_	_	RE2	RE1	RE0	xxx	000
LATE	_	—	_	_		LATE2	LATE1	LATE0	xxx	uuu
TRISE	IBF	OBF	IBOV	PSPMODE		TRISE2	TRISE1	TRISE0	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These bits are reserved on PIC18F2X8 devices; always maintain these bits clear.

FIGURE 22-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 22-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value all ot Rese	her
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000 0000	0000	0000
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000	0000
TRISA	_	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	-111 1111	-111 3	1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used with the comparator voltage reference.

PIC18FXX8

NOTES:

REGISTER 24-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
	—	—	—	WDTPS2	WDTPS1	WDTPS0	WDTEN
bit 7							bit 0

bit 7-4 Unimplemented: Read as '0'

bit 3-1 WDTPS2:WDTPS0: Watchdog Timer Postscale Select bits

- 111 **= 1:128**
- 110 **= 1:64**
- 101 **= 1:32**
- 100 = 1:16
- 011 **= 1:8**
- 010 = **1**:4
- 001 = 1:2
- 000 = 1:1
 - **Note:** The Watchdog Timer postscale select bits configuration used in the PIC18FXXX devices has changed from the configuration used in the PIC18CXXX devices.

bit 0 WDTEN: Watchdog Timer Enable bit

- 1 = WDT enabled
- 0 = WDT disabled (control is placed on the SWDTEN bit)

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when devi	ce is unprogrammed	u = Unchanged from programmed state

REGISTER 24-4: CONFIGUL: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

-n = Value when device is unprogrammed

	R/P-1	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1	
	DEBUG	_	_	_	_	LVP	_	STVREN	
	bit 7							bit 0	
bit 7	DEBUG: Background Debugger Enable bit 1 = Background Debugger disabled. RB6 and RB7 configured as general purpose I/O pins. 0 = Background Debugger enabled. RB6 and RB7 are dedicated to In-Circuit Debug.								
bit 6-3	Unimplemented: Read as '0'								
bit 2	LVP: Low-	LVP: Low-Voltage ICSP Enable bit							
		oltage ICSP e oltage ICSP o							
bit 1	Unimplem	ented: Read	as '0'						
bit 0	STVREN:	Stack Full/Un	derflow Re	set Enable b	oit				
	1 = Stack Full/Underflow will cause Reset0 = Stack Full/Underflow will not cause Reset								
									
	Legend:								
	R = Reada	ble bit	C = Cleara	able bit	U = Unin	nplemented	d bit, read as	'0'	

u = Unchanged from programmed state

PIC18FXX8

NOTES:

TABLE 25-2: PIC18FXXX INSTRUCTION SET (CONTINUED)

Mnem	onic,	Description	Qualas	16-1	Bit Inst	ruction	Word	Status	Natas
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
LITERAL	OPERAT	TIONS							
ADDLW	k	Add literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move literal (12-bit)2nd word	2	1110	1110	00ff	kkkk	None	
		to FSRx 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA ME	MORY ←	PROGRAM MEMORY OPERA	TIONS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with post-increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with post-decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with pre-increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2 (5)	0000	0000	0000	1100	None	
TBLWT*+		Table Write with post-increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with post-decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with pre-increment		0000	0000	0000	1111	None	

Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

26.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

26.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

26.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities and afford fine control of the compiler code generator.

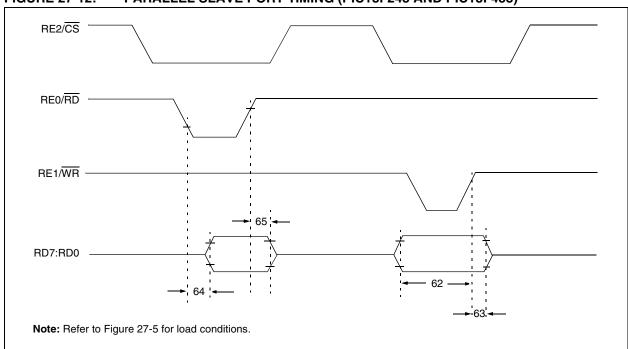
MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, timekeeping and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high-level source debugging with the MPLAB IDE.

26.6 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

26.7 MPLAB SIM Software Simulator


The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

26.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high-speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

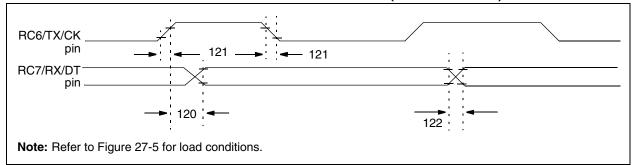


FIGURE 27-12:	PARALLEL SLAVE PORT	TIMING (PIC18F248 AND PIC18F458)
	FANALLL SLAVE FUNI	

TABLE 27-12: PARALLEL SLAVE PORT REQUIREMENTS (PIC18F248 AND PIC18F458)

Param No.	Symbol	Characteristic			Max	Units	Conditions
62	TdtV2wrH	Data-In Valid before $\overline{WR} \uparrow$ or $\overline{CS} \uparrow$ (setup time)				ns ns	Extended Temp. range
63	TwrH2dtl	$\overline{\text{WR}} \uparrow \text{ or } \overline{\text{CS}} \uparrow \text{ to Data-In Invalid} $ P (hold time)	PIC18FXX8	20	_	ns	
			PIC18 LF XX8	35	_	ns	
64	TrdL2dtV	$\overline{\mathrm{RD}}\downarrow\mathrm{and}\overline{\mathrm{CS}}\downarrow\mathrm{to}\mathrm{Data} ext{-}\mathrm{Out}\mathrm{Valid}$			80 90	ns ns	Extended Temp. range
65	TrdH2dtl	\overline{RD} \uparrow or \overline{CS} \downarrow to Data-Out Invali	10	30	ns		
66	TibfINH	Inhibit the IBF flag bit being cleared from $\overline{\rm WR}\uparrow$ or $\overline{\rm CS}\uparrow$		_	3 TCY	ns	

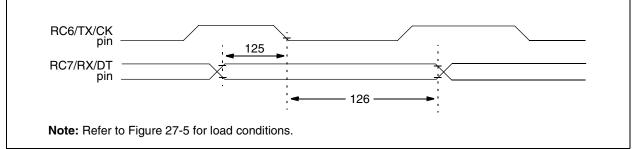

FIGURE 27-21: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 27-21: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic	Characteristic			Units	Conditions
120	TckH2dtV	SYNC XMIT (Master & Slave)					
		Clock High to Data-Out Valid	PIC18FXX8		50	ns	
			PIC18LFXX8		150	ns	
121	Tckrf	Clock Out Rise Time and Fall Time	PIC18FXX8		25	ns	
		(Master mode)	PIC18LFXX8	—	60	ns	
122	Tdtrf	Data-Out Rise Time and Fall Time	PIC18FXX8		25	ns	
			PIC18LFXX8		60	ns	

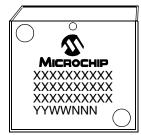
FIGURE 27-22: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 27-22: USART SYNCHRONOUS RECEIVE REQUIREMENTS

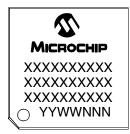
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TdtV2ckl	SYNC RCV (Master & Slave) Data-Hold before $CK \downarrow$ (DT hold time)	10		ns	
126	TckL2dtl	Data-Hold after CK \downarrow (DT hold time)	15	—	ns	

Param No.	Symbol	Characteristic Min		Min	Тур	Max	Units	Conditions
A01	NR	Resolution		_	_	10	bit	$VREF = VDD \ge 3.0V$
A03	EIL	Integral Linearity Error		_	_	<±1	LSb	$VREF=VDD \geq 3.0V$
A04	Edl	Differential Linearity Error		_	_	<±1	LSb	$VREF = VDD \ge 3.0V$
A05	Efs	Full Scale Error		_	_	<±1	LSb	$VREF = VDD \ge 3.0V$
A06	EOFF	Offset Error		_	_	<±1.5	LSb	$VREF = VDD \ge 3.0V$
A10	_	Monotonicity ⁽³⁾		guaranteed		—	$VSS \le VAIN \le VREF$	
A20	VREF	Reference Voltage		0V		_	V	
A20A		(VREFH – VREFL)		3V	_	—	V	For 10-bit resolution
A21	VREFH	Reference Voltage High		Vss		VDD + 0.3V	V	
A22	VREFL	Reference Voltage Low		Vss - 0.3V	_	Vdd	V	
A25	VAIN	Analog Input Voltage		Vss - 0.3V	_	VREF + 0.3V	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source		—	_	10.0	kΩ	
A40	IAD	A/D Conversion	PIC18FXX8	_	180	—	μA	Average current
		Current (VDD)	D) PIC18LFXX8 —	nt (VDD) PIC18 LF XX8 — 90	90	—	μA	consumption when A/D is on (Note 1)
A50	IREF VREF Input Current (Note 2)		0	_	5	μΑ μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD. During A/D conversion cycle.	

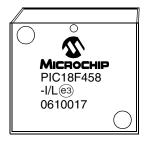
TABLE 27-23: A/D CONVERTER CHARACTERISTICS: PIC18FXX8 (INDUSTRIAL, EXTENDED) PIC18LFXX8 (INDUSTRIAL)


Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current specification includes any such leakage from the A/D module. VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or VDD and VSS pins, whichever is selected as reference input.

2: VSS \leq VAIN \leq VREF


3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

29.1 Package Marking Information (Continued)


44-Lead PLCC

44-Lead TQFP

Example

Example

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com