

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f258-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.4 **External Clock Input**

The EC and ECIO Oscillator modes require an external clock source to be connected to the OSC1 pin. The feedback device between OSC1 and OSC2 is turned off in these modes to save current. There is no oscillator start-up time required after a Power-on Reset or after a recovery from Sleep mode.

In the EC Oscillator mode, the oscillator frequency divided by 4 is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 2-3 shows the pin connections for the EC Oscillator mode.

FIGURE 2-3: **EXTERNAL CLOCK INPUT OPERATION (EC OSC CONFIGURATION**)

The ECIO Oscillator mode functions like the EC mode, except that the OSC2 pin becomes an additional general purpose I/O pin. Figure 2-4 shows the pin connections for the ECIO Oscillator mode.

FIGURE 2-4:

OPERATION (ECIO CONFIGURATION)

EXTERNAL CLOCK INPUT

HS4 (PLL) 2.5

A Phase Locked Loop circuit is provided as a programmable option for users that want to multiply the frequency of the incoming crystal oscillator signal by 4. For an input clock frequency of 10 MHz, the internal clock frequency will be multiplied to 40 MHz. This is useful for customers who are concerned with EMI due to high-frequency crystals.

The PLL can only be enabled when the oscillator configuration bits are programmed for HS mode. If they are programmed for any other mode, the PLL is not enabled and the system clock will come directly from OSC1.

The PLL is one of the modes of the FOSC2:FOSC0 configuration bits. The oscillator mode is specified during device programming.

A PLL lock timer is used to ensure that the PLL has locked before device execution starts. The PLL lock timer has a time-out referred to as TPLL.

FIGURE 2-5: PLL BLOCK DIAGRAM

							1			
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
CANSTATRO1	OPMODE2	OPMODE1	OPMODE0	-	ICODE2	ICODE1	ICODE0		xxx- xxx-	33, 202
RXB1D7	RXB1D77	RXB1D76	RXB1D75	RXB1D74	RXB1D73	RXB1D72	RXB1D71	RXB1D70	xxxx xxxx	34, 214
RXB1D6	RXB1D67	RXB1D66	RXB1D65	RXB1D64	RXB1D63	RXB1D62	RXB1D61	RXB1D60	xxxx xxxx	34, 214
RXB1D5	RXB1D57	RXB1D56	RXB1D55	RXB1D54	RXB1D53	RXB1D52	RXB1D51	RXB1D50	xxxx xxxx	34, 214
RXB1D4	RXB1D47	RXB1D46	RXB1D45	RXB1D44	RXB1D43	RXB1D42	RXB1D41	RXB1D40	xxxx xxxx	34, 214
RXB1D3	RXB1D37	RXB1D36	RXB1D35	RXB1D34	RXB1D33	RXB1D32	RXB1D31	RXB1D30	xxxx xxxx	34, 214
RXB1D2	RXB1D27	RXB1D26	RXB1D25	RXB1D24	RXB1D23	RXB1D22	RXB1D21	RXB1D20	xxxx xxxx	34, 214
RXB1D1	RXB1D17	RXB1D16	RXB1D15	RXB1D14	RXB1D13	RXB1D12	RXB1D11	RXB1D10	xxxx xxxx	34, 214
RXB1D0	RXB1D07	RXB1D06	RXB1D05	RXB1D04	RXB1D03	RXB1D02	RXB1D01	RXB1D00	xxxx xxxx	34, 214
RXB1DLC	-	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	34, 213
RXB1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	34, 213
RXB1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	34, 212
RXB1SIDL	SID2	SID1	SID0	SRR	EXID	_	EID17	EID16	xxxx x-xx	34, 212
RXB1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	34, 212
RXB1CON	RXFUL	RXM1	RXM0	_	RXRTRRO	FILHIT2	FILHIT1	FILHIT0	000- 0000	34, 211
CANSTATRO2	OPMODE2	OPMODE1	OPMODE0	_	ICODE2	ICODE1	ICODE0	_	xxx- xxx-	33, 202
TXB0D7	TXB0D77	TXB0D76	TXB0D75	TXB0D74	TXB0D73	TXB0D72	TXB0D71	TXB0D70	xxxx xxxx	34, 208
TXB0D6	TXB0D67	TXB0D66	TXB0D65	TXB0D64	TXB0D63	TXB0D62	TXB0D61	TXB0D60	xxxx xxxx	34, 208
TXB0D5	TXB0D57	TXB0D56	TXB0D55	TXB0D54	TXB0D53	TXB0D52	TXB0D51	TXB0D50	xxxx xxxx	34, 208
TXB0D4	TXB0D47	TXB0D46	TXB0D45	TXB0D44	TXB0D43	TXB0D42	TXB0D41	TXB0D40	xxxx xxxx	34, 208
TXB0D3	TXB0D37	TXB0D36	TXB0D35	TXB0D34	TXB0D33	TXB0D32	TXB0D31	TXB0D30	xxxx xxxx	34, 208
TXB0D2	TXB0D27	TXB0D26	TXB0D25	TXB0D24	TXB0D23	TXB0D22	TXB0D21	TXB0D20	xxxx xxxx	34, 208
TXB0D1	TXB0D17	TXB0D16	TXB0D15	TXB0D14	TXB0D13	TXB0D12	TXB0D11	TXB0D10	xxxx xxxx	34, 208
TXB0D0	TXB0D07	TXB0D06	TXB0D05	TXB0D04	TXB0D03	TXB0D02	TXB0D01	TXB0D00	xxxx xxxx	34, 208
TXB0DLC	_	TXRTR	_	_	DLC3	DLC2	DLC1	DLC0	-x xxxx	34, 209
TXB0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	34, 208
TXB0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	34, 207
TXB0SIDL	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxx- x-xx	34, 207
TXB0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	35, 207
TXB0CON	_	TXABT	TXLARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	-000 0-00	35, 206
CANSTATRO3	OPMODE2	OPMODE1	OPMODE0	_	ICODE2	ICODE1	ICODE0	_	xxx- xxx-	33, 202
TXB1D7	TXB1D77	TXB1D76	TXB1D75	TXB1D74	TXB1D73	TXB1D72	TXB1D71	TXB1D70	xxxx xxxx	35, 208
TXB1D6	TXB1D67	TXB1D66	TXB1D65	TXB1D64	TXB1D63	TXB1D62	TXB1D61	TXB1D60	xxxx xxxx	35, 208
TXB1D5	TXB1D57	TXB1D56	TXB1D55	TXB1D54	TXB1D53	TXB1D52	TXB1D51	TXB1D50	xxxx xxxx	35, 208
TXB1D4	TXB1D47	TXB1D46	TXB1D45	TXB1D44	TXB1D43	TXB1D42	TXB1D41	TXB1D40	xxxx xxxx	35, 208
TXB1D3	TXB1D37	TXB1D36	TXB1D35	TXB1D34	TXB1D33	TXB1D32	TXB1D31	TXB1D30	xxxx xxxx	35, 208
TXB1D2	TXB1D27	TXB1D26	TXB1D25	TXB1D24	TXB1D23	TXB1D22	TXB1D21	TXB1D20	xxxx xxxx	35, 208
TXB1D1	TXB1D17	TXB1D16	TXB1D15	TXB1D14	TXB1D13	TXB1D12	TXB1D11	TXB1D10	xxxx xxxx	35, 208
TXB1D0	TXB1D07	TXB1D06	TXB1D05	TXB1D04	TXB1D03	TXB1D02	TXB1D01	TXB1D00	xxxx xxxx	35, 208
TXB1DLC	_	TXRTR	_	_	DLC3	DLC2	DLC1	DLC0	-x xxxx	35, 209
TXB1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	35, 208
TXB1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	35, 207
TXB1SIDL	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxx- x-xx	35, 207
TXB1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	35, 207
TXB1CON	—	TXABT	TXLARB	TXERR	TXREQ	—	TXPRI1	TXPRI0	0000 0000	35, 206

TABLE 4-2: REGISTER FILE SUMMARY (CONTINUED)

 $\label{eq:legend: Legend: Legend: u = unchanged, - = unimplemented, q = value depends on condition$

Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's.

2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

3: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read '0' in all other oscillator modes.

6.4 Erasing Flash Program Memory

The minimum erase block is 32 words or 64 bytes. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 64 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. TBLPTR<5:0> are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

For protection, the write initiate sequence for EECON2 must be used.

A long write is necessary for erasing the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

6.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load Table Pointer with address of row being erased.
- 2. Set the EECON1 register for the erase operation:
 - set the EEPGD bit to point to program memory;
 - clear the CFGS bit to access program memory;
 - set the WREN bit to enable writes;
 - set the FREE bit to enable the erase.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write 0AAh to EECON2.
- 6. Set the WR bit. This will begin the row erase cycle.
- 7. The CPU will stall for duration of the erase (about 2 ms using internal timer).
- 8. Re-enable interrupts.

ERASE_ROW	MOVLW MOVLW MOVLW MOVLW MOVWF BSF BCF BSF BSF	upper (CODE_ADDR) TBLPTRU high (CODE_ADDR) TBLPTRH low (CODE_ADDR) TBLPTRL EECON1, EEPGD EECON1, CFGS EECON1, WREN EECON1, FREE	<pre>; load TBLPTR with the base ; address of the memory block ; point to FLASH program memory ; access FLASH program memory ; enable write to memory ; enable Row Erase operation</pre>
Required	BCF MOVLW MOVWF MOVLW	INTCON, GIE 55h EECON2 0AAh	; disable interrupts ; write 55H
Sequence	MOVWF BSF NOP BSF	EECON2 EECON1, WR INTCON, GIE	; write OAAH ; start erase (CPU stall) ; NOP needed for proper code execution ; re-enable interrupts

EXAMPLE 6-2: ERASING A FLASH PROGRAM MEMORY ROW

15.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE registers) clear to avoid false interrupts and should clear the flag bit CCP1IF, following any such change in operating mode.

15.2.4 CCP1 PRESCALER

There are four prescaler settings specified by bits CCP1M3:CCP1M0. Whenever the CCP1 module is turned off, or the CCP1 module is not in Capture mode, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared; therefore, the first capture may be from a non-zero prescaler. Example 15-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

15.2.5 CAN MESSAGE TIME-STAMP

The CAN capture event occurs when a message is received in either of the receive buffers. The CAN module provides a rising edge to the CCP1 module to cause a capture event. This feature is provided to time-stamp the received CAN messages.

This feature is enabled by setting the CANCAP bit of the CAN I/O control register (CIOCON<4>). The message receive signal from the CAN module then takes the place of the events on RC2/CCP1.

EXAMPLE 15-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON, F	; Turn CCP module off
MOVLW	NEW_CAPT_PS	; Load WREG with the
		; new prescaler mode
		; value and CCP ON
MOVWF	CCP1CON	; Load CCP1CON with
		; this value

REGISTER 19-26: RXMnSIDL: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK, LOW BYTE REGISTERS

R/W-x	R/W-x	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x
SID2	SID1	SID0	_	—	—	EID17	EID16
bit 7							bit 0

- bit 7-5 SID2:SID0: Standard Identifier Mask bits or Extended Identifier Mask bits EID20:EID18
- bit 4-2 Unimplemented: Read as '0'
- bit 1-0 EID17:EID16: Extended Identifier Mask bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-27: RXMnEIDH: RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK, HIGH BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 EID15:EID8: Extended Identifier Mask bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-28: RXMnEIDL: RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK, LOW BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 EID7:EID0: Extended Identifier Mask bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	Bridoonz.	DAODIN						
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0
	bit 7							bit 0
bit 7	SEG2PHTS:	Phase Se	gment 2 Tim	e Select bit				
	1 = Freely pro 0 = Maximum	ogrammab of PHEG	le 1 or Informa	tion Process	sing Time (IF	T), whichev	ver is greate	r
bit 6	SAM: Sample	e of the CA	N bus Line	bit				
	1 = Bus line is 0 = Bus line is	s sampled s sampled	three times once at the	prior to the sample poir	sample poin nt	t		
bit 5-3	SEG1PH2:SE	EG1PH0: F	Phase Segm	ent 1 bits				
	111 = Phase 110 = Phase 101 = Phase 010 = Phase 011 = Phase 010 = Phase 001 = Phase 000 = Phase	Segment Segment Segment Segment Segment Segment Segment	1 Time = 8 x 1 Time = 7 x 1 Time = 6 x 1 Time = 5 x 1 Time = 4 x 1 Time = 3 x 1 Time = 2 x 1 Time = 1 x	Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ Τ				
bit 2-0	PRSEG2:PR	SEG0: Pro	pagation Ti	ne Select bi	ts			
	111 = Propag	gation Time	e = 8 x TQ					
	110 = Propage 101 = Propage	pation Time	$e = 7 \times TQ$ $e = 6 \times TQ$					
	100 = Propag	gation Time	$e = 5 \times TQ$					
	011 = Propag	gation Time	e = 4 x Tq					
	010 = Propage	gation Time	$e = 3 \times TQ$					
	001 = Propage	pation Time	$e = 2 \times TQ$ $e = 1 \times TQ$					
	Legend:							
	R = Readable	e bit	W = Writab	le bit	U = Unim	plemented I	oit, read as '	0'
	-n = Value at	POR	'1' = Bit is s	set	'0' = Bit is	cleared	x = Bit is u	nknown

REGISTER 19-30: BRGCON2: BAUD RATE CONTROL REGISTER 2

Note: This register is accessible in Configuration mode only.

19.2.6 CAN INTERRUPT REGISTERS

The registers in this section are the same as described in Section 8.0 "Interrupts". They are duplicated here for convenience.

-n = Value at POR

ER 19-33:	PIR3: PE	RIPHERAL	INTERRU	PT REQUE	ST (FLAG	i) REGISTI	ER 3	
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF	TXB0IF	RXB1IF	RXB0IF
	bit 7							bit 0
bit 7	IRXIF: CA	N Invalid Re	ceived Mess	sage Interrup	t Flag bit			
	1 = An inv 0 = No inv	alid message alid message	e has occurr e on CAN bi	red on the C us	AN bus			
bit 6	WAKIF: C	AN bus Activ	vity Wake-up	o Interrupt Fl	ag bit			
	1 = Activity 0 = No act	y on CAN bu tivity on CAN	s has occur bus	red				
bit 5	ERRIF: C/	AN bus Error	Interrupt Fl	ag bit				
	1 = An err 0 = No CA	or has occur N module er	red in the Ca rors	AN module (multiple sou	irces)		
bit 4	TXB2IF: C	CAN Transmi	t Buffer 2 In	terrupt Flag	oit			
	1 = Transr	nit Buffer 2 h	as complete	ed transmiss	ion of a me	ssage and m	nay be reloa	ded
	0 = Iransr	nit Buffer 2 h	as not comp	pleted transn	hission of a	message		
bit 3	TXB1IF: (AN Transmi	t Butter 1 In	terrupt Flag I	Dit			-ll
	1 = Transr0 = Transr	nit Buffer 1 n nit Buffer 1 h	as complete as not comp	oleted transmiss	ion of a mes	ssage and n message	hay be reloa	aea
bit 2	TXB0IF: C	CAN Transmi	t Buffer 0 In	terrupt Flag I	oit	0		
	1 = Transr 0 = Transr	nit Buffer 0 h nit Buffer 0 h	as complete as not comp	ed transmiss pleted transm	ion of a meen nission of a	ssage and m message	nay be reloa	ded
bit 1	RXB1IF: (CAN Receive	Buffer 1 Int	errupt Flag b	oit			
	1 = Receiv 0 = Receiv	/e Buffer 1 ha /e Buffer 1 ha	as received as not receiv	a new mess ved a new m	age essage			
bit 0	RXB0IF: (CAN Receive	Buffer 0 Int	errupt Flag b	oit			
	1 = Receiv 0 = Receiv	ve Buffer 0 ha ve Buffer 0 ha	as received as not receiv	a new mess ved a new m	age essage			
	Legend:							
	R = Reada	able bit	W = Writa	ble bit	U = Unin	nplemented	bit, read as	'0'

'1' = Bit is set

'0' = Bit is cleared

REGISTE

x = Bit is unknown

21.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select these modes. Figure 21-1 shows the eight possible modes. The TRISD register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Section 27.0 "Electrical Characteristics".

Note: Comparator interrupts should be disabled during a Comparator mode change; otherwise, a false interrupt may occur.

GENERAL FORMAT FOR INSTRUCTIONS FIGURE 25-1: Byte-oriented file register operations **Example Instruction** 10 9 8 7 15 0 OPCODE f (FILE #) ADDWF MYREG, W, B d а d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address Byte to Byte move operations (2-word) 15 12 11 0 OPCODE f (Source FILE #) MOVFF MYREG1, MYREG2 15 12 11 0 f (Destination FILE #) 1111 f = 12-bit file register address Bit-oriented file register operations 15 12 11 987 0 OPCODE b (BIT #) f (FILE #) а BSF MYREG, bit, B b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address Literal operations 15 8 7 0 OPCODE k (literal) MOVLW 0x7F k = 8-bit immediate value **Control** operations CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) GOTO Label 15 12 11 0 1111 n<19:8> (literal) n = 20-bit immediate value 15 8 7 0 CALL MYFUNC OPCODE S n<7:0> (literal) 15 12 11 0 n<19:8> (literal) S = Fast bit 15 11 10 0 OPCODE BRA MYFUNC n<10:0> (literal) 15 8 7 0 OPCODE n<7:0> (literal) BC MYFUNC

CLRF Clear f								
Synta	ax:	[<i>label</i>] CL	RF f[,a	l]				
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]						
Oper	ation:	$\begin{array}{l} 000h \rightarrow f \\ 1 \rightarrow Z \end{array}$						
Statu	is Affected:	Z						
Enco	oding:	0110	101a	fff	f	ffff		
Desc	ription:	Clears the register. If ' be selected If 'a' = 1, th as per the	Clears the contents of the specified register. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).					
Word	ls:	1	1					
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	Read	Proce	ess	1	Write		
		register 'f'	Dat	а	reg	gister 'f'		
Example:		CLRF	CLRF FLAG_REG		ł			
Before Instruction FLAG_REG = 0x5A After Instruction FLAG_REG = 0x00								

CLRWDT	Clear Wate	Clear Watchdog Timer					
Syntax:	[label] Cl	LRWDT					
Operands:	None						
Operation:	$\begin{array}{l} 000h \rightarrow WI \\ 000h \rightarrow WI \\ 1 \rightarrow \overline{\text{TO}}, \\ 1 \rightarrow \overline{\text{PD}} \end{array}$	000h \rightarrow WDT, 000h \rightarrow WDT postscaler, 1 \rightarrow TO, 1 \rightarrow PD					
Status Affected:	TO, PD						
Encoding:	0000	0000	0000	0100			
Description:	Watchdog postscaler and PD are	CLRWDT instruction resets the Watchdog Timer. It also resets the postscaler of the WDT. Status bits TO and PD are set.					
Words:	1						
Words: Cycles:	1 1						
Words: Cycles: Q Cycle Activity:	1 1						
Words: Cycles: Q Cycle Activity: Q1	1 1 Q2	Qa	}	Q4			
Words: Cycles: Q Cycle Activity: Q1 Decode	1 1 Q2 No operation	Q3 Proce Data	ess a	Q4 No operation			
Words: Cycles: Q Cycle Activity: Q1 Decode <u>Example:</u>	1 1 Q2 No operation	Q3 Proce Data	ess a	Q4 No operation			
Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct WDT Con	1 1 Q2 No operation CLRWDT tion unter =	Q3 Proce Data	ess a	Q4 No operation			

ΜΟΥ	FF	Move f to f									
Synta	ax:	[label] N	10VFF	f _s ,f _d							
Oper	ands:	$\begin{array}{l} 0 \leq f_s \leq 4095 \\ 0 \leq f_d \leq 4095 \end{array}$									
Oper	ation:	$(f_s) \rightarrow f_d$									
Statu	s Affected:	None	None								
Enco 1st w 2nd v	ding: ord (source) word (destin.)	1100 ffff ffff ffff _s 1111 ffff ffff ffff _d									
Desc	ription:	The contents of source register ' f_s ' are moved to destination register ' f_d '. Location of source ' f_s ' can be anywhere in the 4096-byte data space (000h to FFFh) and location of destination ' f_d ' can also be anywhere from 000h to FFFh									
		Either source or destination can be W (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port).									
		The MOVFF PCL, TOSU destination	instructi J, TOSH register.	on can or TOS	inot u SL as	se the the					
The MOVFF instruction should not be used to modify interrupt settings while any interrupt is enabled (see page 77						ot be while ge 77).					
Word	ls:	2									
Cycle	es:	2 (3)									
QC	ycle Activity:										
	Q1	Q2	Q	3	(24					
	<u> </u>		Q2 Q3 Q4								

	register 'f' (src)	Data	operation
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example:	MOVFF	REG1,	REG2
		,	

Before Instruction
REG1
REG2

REG1	=	0x33
REG2	=	0x11
After Instruction		
REG1	=	0x33
REG2	=	0x33

MOVLB Move Literal to Low Nibble in BSR						n BSR		
Synta	ax:	[label]	[label] MOVLB k					
Oper	ands:	$0 \le k \le$	255					
Oper	ation:	$k \rightarrow BS$	R					
Statu	s Affected:	None						
Enco	oding:	000	С	0001	kkk	k	kkkk	
Desc	ription:	The 8-b Bank S	oit lite Selec	eral 'k' is t Registe	loade r (BSF	d int R).	o the	
Word	ls:	1						
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2		Q3			Q4	
	Decode	Read lite 'k'	eral	Proce Data	SS A	\ liter ا	Write ral 'k' to BSR	
<u>Exan</u>	Example: MOVLB 5 Before Instruction BSB register = 0x02							
	BSR register = 0x02 After Instruction BSR register = 0x05							

NEG	F	Negate f						
Synta	ax:	[label] N	IEGF 1	[,a]				
Oper	rands:	0 ≤ f ≤ 255 a ∈ [0,1]						
Oper	ration:	$(\overline{f}) + 1 \rightarrow 1$	f					
Statu	is Affected:	N, OV, C, E)C, Z					
Enco	oding:	0110	110a	ffff	ffff			
Desc	ription:	Location 'f' complemer data memo Access Bar overriding t the bank w BSR value.	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value					
Word	ds:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q	3	Q4			
	Decode	Read register 'f'	Proce Dat	ess a re	Write gister 'f'			
<u>Exan</u>	Example: NEGF REG, 1							
	Before Instruc REG After Instructio	tion = 0011	1010 [0	x3A]				
	REG	= 1100	0110 [0	0xC6]				

NOP		No Operation						
Synta	tax: [label] NOP							
Operands: None								
Oper	ation:	No operati	on					
Statu	s Affected:	None						
Encoding:		0000 1111	0000 0000 xxxx xxxx		0000 xxxx			
Desc	ription:	No operation.						
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	No operation	No operat	No operation		No operation		

Example:

None.

SUBLW	Subtract W from Literal SUBWF		Subtract W from f			
Syntax:	[<i>label</i>] SUBLW k	Syntax:	[label] SUBWF f [,d [,a]]			
Operands:	0 ≤ k ≤ 255	Operands:	$0 \le f \le 255$			
Operation:	$k-(W)\toW$		$d \in [0,1]$			
Status Affected:	N, OV, C, DC, Z	Quanting	$\mathbf{a} \in [0, 1]$			
Encoding:	0000 1000 kkkk kkkk	Operation:	$(f) - (W) \rightarrow dest$			
Description:	W is subtracted from the eight-bit	Status Affected:	N, OV, C, DC, Z			
	literal 'k'. The result is placed in W.	Encoding:	0101 11da ffff ffff			
Words:	1	Description:	Subtract W from register 'f' (2's			
Cycles:	1		result is stored in W. If 'd' is '1', the			
Q Cycle Activity:			result is stored back in register 'f'			
Q1	Q2 Q3 Q4		(default). If 'a' is '0', the Access Bank will be selected, overriding the BSB			
Decode	ReadProcessWrite to Wliteral 'k'Data		value. If 'a' is '1', then the bank will be selected as per the BSR value			
Example 1:	SUBLW 0x02		(default).			
Before Instruct	tion	Words:	1			
W	= 1 = 2	Cycles:	1			
After Instructio	 n	Q Cycle Activity:				
w		Q1	Q2 Q3 Q4			
Z N	$\begin{array}{c} = & 1 \\ = & 0 \\ = & 0 \end{array}$	Decode	Read Process Write to register 'f' Data destination			
Example 2:	SUBLW 0x02	Example 1:	SUBWF REG			
Before Instruc	tion	Before Instruc	tion			
W	= 2	REG	= 3			
After Instructio	= ? n	C	= ?			
W	= 0	After Instructio	on _ 1			
C Z	= 1 ; result is zero = 1	W	= 1 = 2			
Ñ	= 0	C Z	= 1 ; result is positive = 0			
Example 3:	SUBLW 0x02	Ň	= 0			
Before Instruc	lion	Example 2:	SUBWF REG, W			
W	= 3	Before Instruc	tion			
After Instructio	_ : n	REG	= 2			
W	= FF ; (2's complement)	Ċ	= ?			
C Z	= 0 ; result is negative = 0	After Instructio	on			
N	= 1	W REG	= 2 = 0			
		Ç	= 1 ; result is zero			
		Z N	= 1 = 0			
		Example 3:	SUBWF REG			
		Before Instruc	tion			
		REG	= 0x01			
		W C	= 0x02 = ?			
		After Instruction	n .			
		REG	= 0xFFh ;(2's complement)			
		Č	= 0x02 ; result is negative			
		Z	= 0x00 - 0x01			
		i N				

NOTES:

FIGURE 27-9: BROWN-OUT RESET AND LOW-VOLTAGE DETECT TIMING

TABLE 27-9:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
BROWN-OUT RESET AND LOW-VOLTAGE DETECT REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2			μs	
31	Twdt	Watchdog Timer Time-out Period (no prescaler)	7	18	33	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc		1024 Tosc		Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	28	72	132	ms	
34	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	2	_	μs	
35	TBOR	Brown-out Reset Pulse Width	200		—	μs	For VDD \leq BVDD (see D005)
36	TIRVST	Time for Internal Reference Voltage to become stable	_	20	50	μs	
37	Tlvd	Low-Voltage Detect Pulse Width	200	_	_	μs	For VDD \leq VLVD (see D420)

© 2006 Microchip Technology Inc.

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		Тсү	—	ns	
71	TscH	SCK Input High Time (Slave mode)	Continuous	1.25 Tcy + 30		ns	
71A			Single Byte	40		ns	(Note 1)
72	TscL	SCK Input Low Time (Slave mode)	Continuous	1.25 Tcy + 30	—	ns	
72A			Single Byte	40		ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input to SCK E	100	_	ns		
73A	Тв2в	Last Clock Edge of Byte 1 to the 1st Cloc	1.5 Tcy + 40		ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK E	100	—	ns		
75	TdoR	SDO Data Output Rise Time	PIC18FXX8	—	25	ns	
			PIC18 LF XX8		45	ns	
76	TdoF	SDO Data Output Fall Time		—	25	ns	
77	TssH2doZ	SS ↑ to SDO Output High-Impedance		10	50	ns	
78	TscR	SCK Output Rise Time (Master mode)	PIC18FXX8	—	25	ns	
			PIC18 LF XX8		45	ns	
79	TscF	SCK Output Fall Time (Master mode)		—	25	ns	
80	TscH2doV, TscL2doV	SDO Data Output Valid after SCK Edge	PIC18FXX8	—	50	ns	
			PIC18 LF XX8		100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge		1.5 Tcy + 40	_	ns	

Note 1: Requires the use of parameter #73A.

2: Only if parameter #71A and #72A are used.

NOTES:

40-Lead Plastic Dual In-line (P) – 600 mil Body (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n	•	40			40	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eВ	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016

Code Examples				
16 x 16 Signed Multiply Routine76				
16 x 16 Unsigned Multiply Routine76				
8 x 8 Signed Multiply Routine				
8 x 8 Unsigned Multiply Routine				
Changing Between Capture Prescalers				
Data EEPROM Refresh Boutine 62				
Data EEPROM Write				
Erasing a Flash Program Memory Row				
Fast Register Stack				
How to Clear RAM (Bank 1) Using				
Indirect Addressing55				
Initializing PORTA				
Initializing PORTB				
Initializing PORTC				
Initializing PORTE 104				
Loading the SSPBUE Register 146				
Reading a Flash Program				
Memory Word				
Saving Status, WREG and BSR				
Registers in RAM92				
WIN and ICODE Bits Usage in				
Interrupt Service Routine to				
Access I X/RX Butters				
Code Protection 265				
COMF 298				
Comparator Module				
Analog Input Connection Considerations				
Associated Registers				
Configuration250				
Effects of a Reset253				
External Reference Signal				
Internal Reference Signal				
Interrupts				
Operation During Sleep 253				
Outputs				
Reference				
Response Time				
Comparator Specifications				
Comparator Voltage Reference Module				
Accuracy/Error				
Associated Registers				
Connection Considerations 256				
Effects of a Beset 256				
Operation During Sleep				
Compare (CCP Module)				
CCP1 Pin Configuration126				
CCPR1 and ECCPR1 Registers 126				
Registers Associated with Capture,				
Compare, Timer1 and Timer3127				
Sonware Interrupt				
Timer1/Timer3 Mode Selection				
Compare (FCCP Module) 133				
Registers Associated with Enhanced				
Capture, Compare, Timer1 and Timer3				
Special Event Trigger				
Compatible 10-Bit Analog-to-Digital				
Converter (A/D) Module. See A/D.				
Configuration Mode (CAN Module)				
CPFSEQ				

CPFSGT
Crystal Oscillator
Capacitor Selection 18
D
Data EEPROM Memory
Associated Registers
EEADR Register
EECON1 Begister 59
EECON2 Begister 59
Operation During Code-Protect 62
Protection Against Spurious Writes 62
Reading 61
Heading
Usaye
Writing to
Writing to
Data Memory
General Purpose Registers
Special Function Registers
Data Memory Map
PIC18F248/448 45
PIC18F258/458 46
DAW
DC and AC Characteristics
Graphs and Tables 361
DC Characteristics
EEPROM and Enhanced Flash 339
PIC18FXX8 (Ind., Ext.) and
PIC18LFXX8 (Ind.)
DCFSNZ
DECF
DECFSZ
Demonstration Boards
PICDEM 1
PICDEM 17 327
PICDEM 18B 327
PICDEM 2 Plus 326
PICDEM 3 326
PICDEM 4 326
PICDEM USB
PICDEM.net Internet/Ethemet
Development Support
Device Differences
Device Migrations
Device Overview
Features7
Direct Addressing 56
Disable Mode (CAN Module) 226
E

Electrical Characteristics	. 329
Enhanced Capture/Compare/PWM (ECCP)	. 131
Auto-Shutdown	. 142
Capture Mode. See Capture	
(ECCP Module).	
Compare Mode. See Compare	
(ECCP Module).	
ECCPR1H Register	. 132
ECCPR1L Register	. 132
Interaction of CCP1 and	
ECCP1 Modules	. 132
Pin Assignments for Various Modes	. 132
PWM Mode. See PWM (ECCP Module).	
Timer Resources	. 132