

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

201010	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f258t-i-sog

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Effects of Sleep Mode on the On-Chip Oscillator

When the device executes a SLEEP instruction, the on-chip clocks and oscillator are turned off and the device is held at the beginning of an instruction cycle (Q1 state). With the oscillator off, the OSC1 and OSC2 signals will stop oscillating. Since all the transistor switching currents have been removed, Sleep mode achieves the lowest current consumption of the device (only leakage currents). Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The user can wake from Sleep through external Reset, Watchdog Timer Reset or through an interrupt.

2.8 Power-up Delays

Power-up delays are controlled by two timers so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply and clock are stable. For additional information on Reset operation, see **Section 3.0 "Reset"**.

The first timer is the Power-up Timer (PWRT), which optionally provides a fixed delay of TPWRT (parameter #D033) on power-up only (POR and BOR). The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable.

With the PLL enabled (HS4 Oscillator mode), the timeout sequence following a Power-on Reset is different from other oscillator modes. The time-out sequence is as follows: the PWRT time-out is invoked after a POR time delay has expired, then the Oscillator Start-up Timer (OST) is invoked. However, this is still not a sufficient amount of time to allow the PLL to lock at high frequencies. The PWRT timer is used to provide an additional fixed 2 ms (nominal) to allow the PLL ample time to lock to the incoming clock frequency.

TABLE 2-3: OSC1 AND OSC2 PIN STATES IN SLEEP MODE

OSC Mode	OSC1 Pin	OSC2 Pin
RC	Floating, external resistor should pull high	At logic low
RCIO	Floating, external resistor should pull high	Configured as PORTA, bit 6
ECIO	Floating	Configured as PORTA, bit 6
EC	Floating	At logic low
LP, XT and HS	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level

Note: See Table 3-1 in Section 3.0 "Reset" for time-outs due to Sleep and MCLR Reset.

8.3 PIE Registers

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

The Peripheral Interrupt Enable (PIE) registers contain the individual enable bits for the peripheral interrupts (Register 8-7 through Register 8-9). Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Enable registers (PIE1, PIE2, PIE3). When IPEN is clear, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 8-7:	PIE1. PERIPHERAL	INTERRUPT ENABLE REGISTER 1
	FIEL. FENIFIENAL	

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE				
	bit 7							bit 0				
				-	ot Enable bit	(1)						
		s the PSP re s the PSP r										
	ADIE: A/D	Converter Ir	nterrupt Ena	ble bit								
	1 = Enables the A/D interrupt											
	0 = Disables the A/D interrupt											
		RT Receive	-									
		s the USAR s the USAR		•								
	TXIE: USA	RT Transmi	t Interrupt E	nable bit								
		s the USAR										
	0 = Disable	es the USAR	T transmit i	nterrupt								
		-		l Port Interru	pt Enable b	it						
		s the MSSP es the MSSF	•									
		CP1 Interru	•	t								
		s the CCP1										
	0 = Disable	es the CCP1	interrupt									
		MR2 to PR2		•	bit							
		s the TMR2 s the TMR2										
)	TMR1IE: T	MR1 Overflo	ow Interrupt	Enable bit								
		s the TMR1										
	0 = Disable	es the TMR1	overflow in	terrupt								
	Note 1:		•	e on PIC18 reads as '0'.	F4X8 device	es. For PIC1	8F2X8 devi	ces, this bit				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 8-8:	REGISTER 8-8: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2										
	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	CMIE ⁽¹⁾	_	EEIE	BCLIE	LVDIE	TMR3IE	ECCP1IE ⁽¹⁾			
	bit 7							bit 0			
bit 7	•	ented: Rea		(1)							
bit 6		nparator Inte	•								
		es the compa es the compa		-							
bit 5	Unimplem	ented: Rea	d as '0'								
bit 4	EEIE: EEP	ROM Write	Interrupt Er	able bit							
	1 = Enable 0 = Disable										
bit 3	BCLIE: Bu	s Collision I	nterrupt Ena	able bit							
	1 = Enable 0 = Disable										
bit 2	LVDIE: LO	w-Voltage D	etect Interru	ipt Enable b	it						
	1 = Enable	d		-							
	0 = Disable	ed									
bit 1	TMR3IE: T	MR3 Overfle	ow Interrupt	Enable bit							
	1 = Enable	s the TMR3	overflow in	terrupt							
	0 = Disable	es the TMR3	overflow ir	iterrupt							
bit 0	ECCP1IE:	ECCP1 Inte	rrupt Enabl	e bit ⁽¹⁾							
	1 = Enable	s the ECCP	1 interrupt								
	0 = Disable	es the ECCF	1 interrupt								

Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit is unimplemented and reads as '0'.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

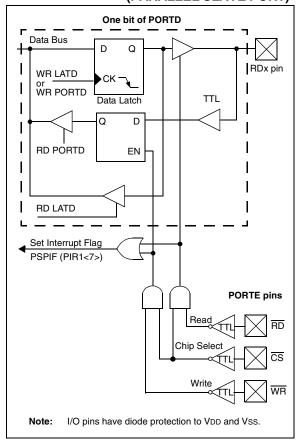
ER 8-12:	IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3											
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP	TXB0IP	RXB1IP	RXB0IP				
	bit 7							bit 0				
bit 7		•	e Received	Interrupt Pric	ority bit							
	1 = High pr 0 = Low pri	,										
bit 6	WAKIP: Bu	is Activity W	lake-up Inte	rrupt Priority	bit							
		1 = High priority 0 = Low priority										
bit 5	ERRIP: CA	N bus Erro	r Interrupt Pi	riority bit								
	1 = High pr 0 = Low pri											
bit 4	TXB2IP: Tr	ansmit Buff	er 2 Interrup	ot Priority bit								
	1 = High pr 0 = Low pri	,										
bit 3	TXB1IP: Tr	TXB1IP: Transmit Buffer 1 Interrupt Priority bit										
	1 = High pr 0 = Low pri	,										
bit 2	TXB0IP: Transmit Buffer 0 Interrupt Priority bit											
	1 = High pr 0 = Low pri	•										
bit 1	RXB1IP: R	eceive Buff	er 1 Interrup	t Priority bit								
	1 = High pr 0 = Low pri	,										
bit 0	RXB0IP: Receive Buffer 0 Interrupt Priority bit											
	1 = High pr 0 = Low pri											
	Legend:]				
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	nplemented	bit, read as '	0'				

REGISTER 8-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

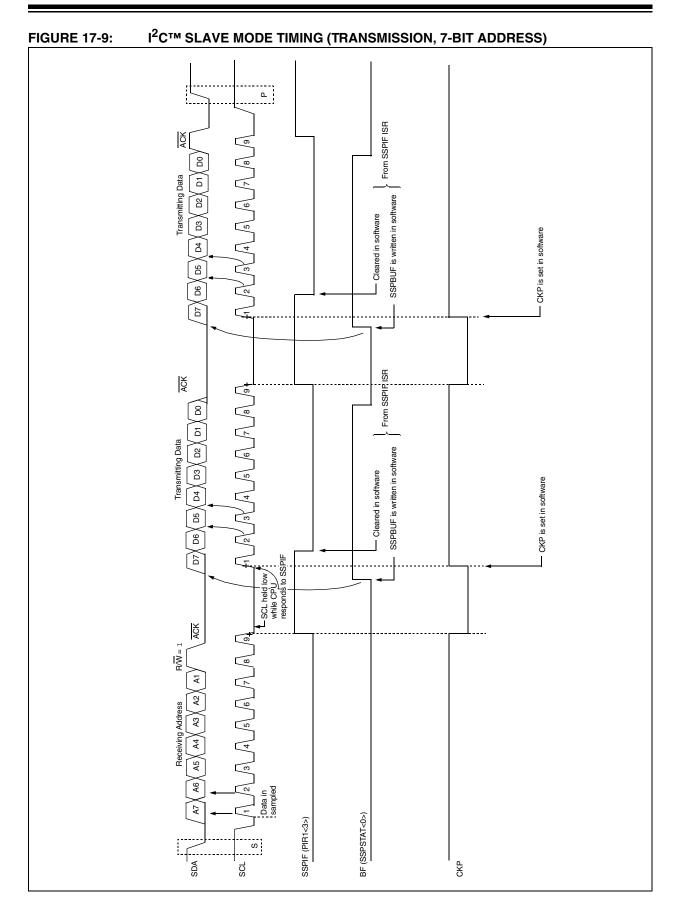
10.0 PARALLEL SLAVE PORT

Note:	The Parallel Slave Port is only available on
	PIC18F4X8 devices.


In addition to its function as a general I/O port, PORTD can also operate as an 8-bit wide Parallel Slave Port (PSP) or microprocessor port. PSP operation is controlled by the 4 upper bits of the TRISE register (Register 9-1). Setting control bit PSPMODE (TRISE<4>) enables PSP operation. In Slave mode, the port is asynchronously readable and writable by the external world.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting the control bit PSPMODE enables the PORTE I/O pins to become control inputs for the microprocessor port. When set, port pin RE0 is the RD input, RE1 is the WR input and RE2 is the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set).

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The timing for the control signals in Write and Read modes is shown in Figure 10-2 and Figure 10-3, respectively.


FIGURE 10-1:

PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

FIGURE 10-2: PARALLEL SLAVE PORT WRITE WAVEFORMS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	1111 1111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000u
TXREG	USART Transmit Register								0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate (Generator Re	gister						0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's.

TABLE 18-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	1111 1111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000u
RCREG	USART Red	ceive Registe	r						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate	Generator Re	gister						0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's.

19.5 Message Reception

19.5.1 RECEIVE MESSAGE BUFFERING

The PIC18FXX8 includes two full receive buffers with multiple acceptance filters for each. There is also a separate Message Assembly Buffer (MAB) which acts as a third receive buffer (see Figure 19-4).

19.5.2 RECEIVE BUFFERS

Of the three receive buffers, the MAB is always committed to receiving the next message from the bus. The remaining two receive buffers are called RXB0 and RXB1 and can receive a complete message from the protocol engine. The MCU can access one buffer while the other buffer is available for message reception or holding a previously received message.

The MAB assembles all messages received. These messages will be transferred to the RXBn buffers only if the acceptance filter criteria are met.

Note: The entire contents of the MAB are moved into the receive buffer once a message is accepted. This means that regardless of the type of identifier (standard or extended) and the number of data bytes received, the entire receive buffer is overwritten with the MAB contents. Therefore, the contents of all registers in the buffer must be assumed to have been modified when any message is received.

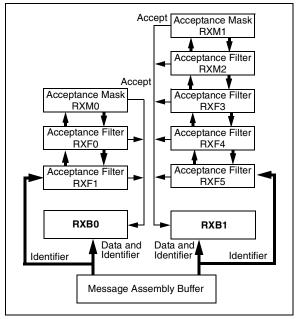
When a message is moved into either of the receive buffers, the appropriate RXBnIF bit is set. This bit must be cleared by the MCU when it has completed processing the message in the buffer in order to allow a new message to be received into the buffer. This bit provides a positive lockout to ensure that the MCU has finished with the message before the PIC18FXX8 attempts to load a new message into the receive buffer. If the RXBnIE bit is set, an interrupt will be generated to indicate that a valid message has been received.

19.5.3 RECEIVE PRIORITY

RXB0 is the higher priority buffer and has two message acceptance filters associated with it. RXB1 is the lower priority buffer and has four acceptance filters associated with it. The lower number of acceptance filters makes the match on RXB0 more restrictive and implies a higher priority for that buffer. Additionally, the RXB0CON register can be configured such if RXB0 contains a valid message and another valid message is received, an overflow error will not occur and the new message will be moved into RXB1 regardless of the acceptance criteria of RXB1. There are also two programmable acceptance filter masks available, one for each receive buffer (see Section 19.6 "Message Acceptance Filters and Masks").

When a message is received, bits <3:0> of the RXBnCON register will indicate the acceptance filter number that enabled reception and whether the received message is a remote transfer request.

The RXM bits set special Receive modes. Normally, these bits are set to '00' to enable reception of all valid messages as determined by the appropriate acceptance filters. In this case, the determination of whether or not to receive standard or extended messages is determined by the EXIDE bit in the Acceptance Filter register. If the RXM bits are set to '01' or '10', the receiver will accept only messages with standard or extended identifiers, respectively. If an acceptance filter has the EXIDE bit set, such that it does not correspond with the RXM mode, that acceptance filter is rendered useless. These two modes of RXM bits can be used in systems where it is known that only standard or extended messages will be on the bus. If the RXM bits are set to '11', the buffer will receive all messages regardless of the values of the acceptance filters. Also, if a message has an error before the end of frame, that portion of the message assembled in the MAB before the error frame will be loaded into the buffer. This mode has some value in debugging a CAN system and would not be used in an actual system environment.


19.5.4 TIME-STAMPING

The CAN module can be programmed to generate a time-stamp for every message that is received. When enabled, the module generates a capture signal for CCP1 which in turns captures the value of either Timer1 or Timer3. This value can be used as the message time-stamp.

To use the time-stamp capability, the CANCAP bit (CIOCAN<4>) must be set. This replaces the capture input for CCP1 with the signal generated from the CAN module. In addition, CCP1CON<3:0> must be set to '0011' to enable the CCP special event trigger for CAN events.

RECEIVE BUFFER BLOCK DIAGRAM

23.2.1 REFERENCE VOLTAGE SET POINT

The internal reference voltage of the LVD module may be used by other internal circuitry (the Programmable Brown-out Reset). If these circuits are disabled (lower current consumption), the reference voltage circuit requires a time to become stable before a low-voltage condition can be reliably detected. This time is invariant of system clock speed. This start-up time is specified in electrical specification parameter #36. The low-voltage interrupt flag will not be enabled until a stable reference voltage is reached. Refer to the waveform in Figure 23-4.

23.2.2 CURRENT CONSUMPTION

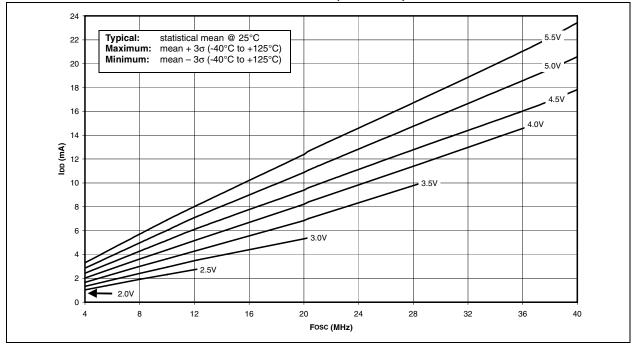
When the module is enabled, the LVD comparator and voltage divider are enabled and will consume static current. The voltage divider can be tapped from multiple places in the resistor array. Total current consumption, when enabled, is specified in electrical specification parameter #D022B.

23.3 Operation During Sleep

When enabled, the LVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the LVDIF bit will be set and the device will wakeup from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

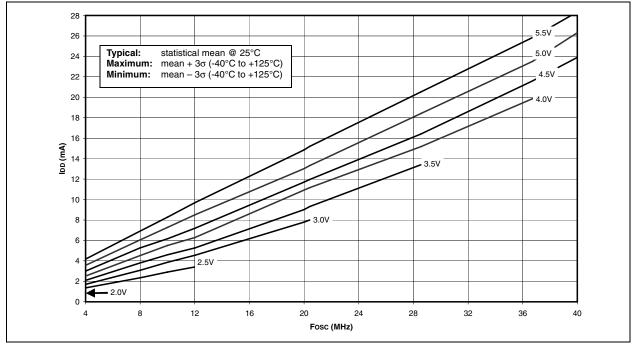
23.4 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the LVD module to be turned off.


RLNCF	Rotate Left	f (no ca	arry)	
Syntax:	[label]	RLNCF	f [,d [,	.a]]
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
Operation:	$(f{<}n{>}) ightarrow de$ $(f{<}7{>}) ightarrow de$		>,	
Status Affected:	N, Z			
Encoding:	0100	01da	ffff	ffff
	placed in W stored back	/. If 'd' is t in regisi ccess Ba he BSR ' nk will be	'1', the ter 'f' (d ank will ∣ value. If e select	efault). If 'a' be selected, f 'a' is '1',
	_	regi	ister f	
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	}	Q4
Decode	Read	Proce	SS	Write to
Decode	Read register 'f'	Proce Data		Write to destination
Example:	register 'f'			
	register 'f' RLNCF	Data		

RRCF	Rotate Rig	ht f throu	igh Carry	/
Syntax:	[label] R	RCF f[,d [,a]]	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
Operation:	$(f < n >) \rightarrow de$ $(f < 0 >) \rightarrow C$ $(C) \rightarrow dest$,	>,	
Status Affected:	C, N, Z			
Encoding:	0011	00da	ffff	ffff
	If 'd' is '1', t register 'f' (Access Bar overriding t then the ba	default). I nk will be he BSR v	f 'a' is 'o', selected, alue. If 'a	, the .' is '1',
	the BSR va	, 	,	7
		, 	ult). ster f]
Words:		, 	,]-•
Words: Cycles:		, 	,]
		, 	,]
Cycles:		, 	,	
Cycles: Q Cycle Activity:	C 1 1 Q2 Read	► regi Q3 Proces	ster f	Q4 Vrite to
Cycles: Q Cycle Activity: Q1	1 1 Q2	- regi	ster f	 Q4
Cycles: Q Cycle Activity: Q1	C 1 1 Q2 Read register 'f'	► regi Q3 Proces	ster f	Q4 Vrite to
Cycles: Q Cycle Activity: Q1 Decode	C 1 1 Q2 Read register 'f'	Q3 Proces Data	ster f	Q4 Vrite to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruc REG	C 1 1 1 Q2 Read register 'f' RRCF F	Q3 Proces Data	ster f	Q4 Vrite to
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct	C 1 1 1 Q2 Read register 'f' RRCF H tion = 1110 (= 0	Q3 Proces Data	ster f	Q4 Vrite to

28.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES


Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

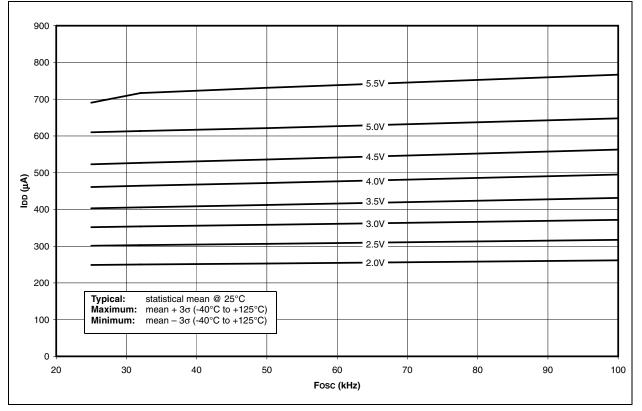


FIGURE 28-7: TYPICAL IDD vs. Fosc OVER VDD (LP MODE)

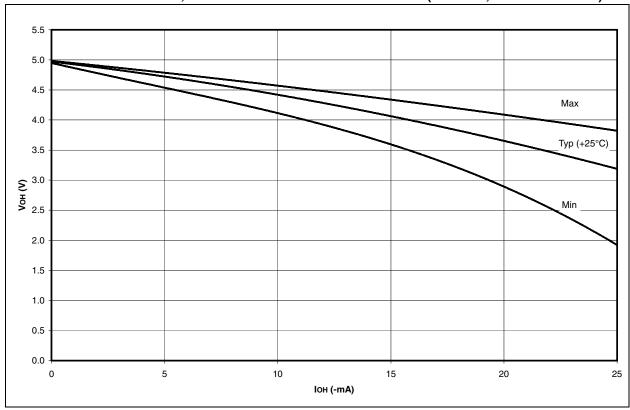
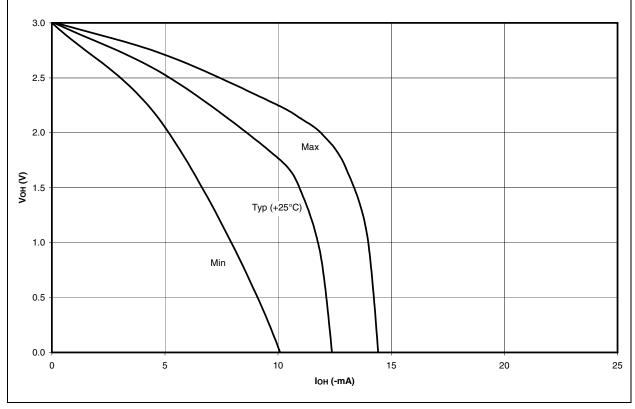
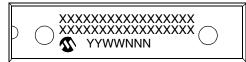



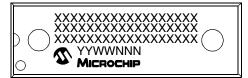
FIGURE 28-21: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)



© 2006 Microchip Technology Inc.

29.0 PACKAGING INFORMATION

29.1 Package Marking Information

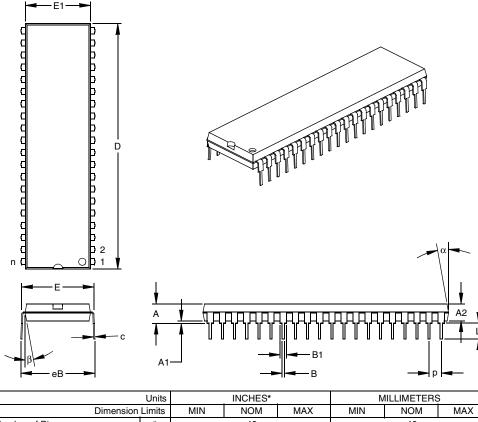

28-Lead SPDIP

28-Lead SOIC

40-Lead PDIP

Example

Example


Example

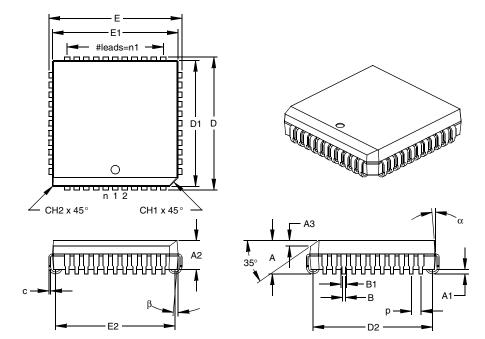
Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

40-Lead Plastic Dual In-line (P) – 600 mil Body (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Dimensior	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		40			40	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic


Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016

44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		N	MILLIMETERS	
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.050			1.27	
Pins per Side	n1		11			11	
Overall Height	Α	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	Е	.685	.690	.695	17.40	17.53	17.65
Overall Length	D	.685	.690	.695	17.40	17.53	17.65
Molded Package Width	E1	.650	.653	.656	16.51	16.59	16.66
Molded Package Length	D1	.650	.653	.656	16.51	16.59	16.66
Footprint Width	E2	.590	.620	.630	14.99	15.75	16.00
Footprint Length	D2	.590	.620	.630	14.99	15.75	16.00
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-047

Drawing No. C04-048

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (June 2001)

Original data sheet for the PIC18FXX8 family.

Revision B (May 2002)

Updated information on CAN module, device memory and register maps, I/O ports and Enhanced CCP.

Revision C (January 2003)

This revision includes the DC and AC Characteristics Graphs and Tables (see Section 28.0 "DC and AC Characteristics Graphs and Tables"), Section 27.0 "Electrical Characteristics" have been updated and CAN certification information has been added.

Revision D (September 2004)

Data Sheet Errata (DS80134 and DS80161) issues have been addressed and corrected along with minor corrections to the data sheet text.

Revision E (October 2006)

Packaging diagrams updated.

TABLE B-1: DEVICE DIFFERENCES

	Features	PIC18F248	PIC18F258	PIC18F448	PIC18F458
Internal	Bytes	16K	32K	16K	32K
Program Memory	# of Single-Word Instructions	8192	16384	8192	16384
Data Memor	y (Bytes)	768	1536	768	1536
I/O Ports		Ports A, B, C	Ports A, B, C	Ports A, B, C, D, E	Ports A, B, C, D, E
Enhanced C Modules	apture/Compare/PWM	-	_	1	1
Parallel Slav	e Port	No	No	Yes	Yes
10-bit Analog	g-to-Digital Converter	5 input channels	5 input channels	8 input channels	8 input channels
Analog Com	parators	No	No	2	2
Analog Com	parators VREF Output	N/A	N/A	Yes	Yes
Packages		28-pin SPDIP 28-pin SOIC	28-pin SPDIP 28-pin SOIC	40-pin PDIP 44-pin PLCC 44-pin TQFP	40-pin PDIP 44-pin PLCC 44-pin TQFP

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Prescaler, Timer2128
PRO MATE II Universal Device
Programmer
Program Counter
PCL Register
•
PCLATH Register 40
PCLATU Register 40
Program Memory
Fast Register Stack
Instructions
Two-Word43
Map and Stack for PIC18F248/448
Map and Stack for PIC18F258/458
PUSH and POP Instructions
Return Address Stack
Return Stack Pointer (STKPTR)
Stack Full/Underflow Resets
Top-of-Stack Access
Program Verification and
Code Protection
Associated Registers Summary 276
Configuration Register Protection
Data EEPROM Code Protection
Program Memory Code Protection
Programming, Device Instructions
PUSH
PWM (CCP Module) 128
CCPR1H:CCPR1L Registers 128
Duty Cycle
Example Frequencies/Resolutions
Period128
Registers Associated with
PWM and Timer2129
Setup for PWM Operation 129
TMR2 to PR2 Match 117, 128
PWM (ECCP Module) 134
Full-Bridge Application Example 138
Full-Bridge Mode137
Direction Change 138
Half-Bridge Mode
Half-Bridge Output Mode
Applications Example136
Output Configurations134
Output Polarity Configuration
Output Relationships Diagram
Programmable Dead-Band Delay
Registers Associated with Enhanced PWM
and Timer2141
Setup for PWM Operation 141
Standard Mode
Start-up Considerations
System Implementation140
Q
Q
Q Clock
R
PAM See Data Momony
RAM. See Data Memory.
RCALL
RCON Register

RCALL	
RCON Register	
Significance of Status Bits vs.	
Initialization Condition	
RCSTA Register	
SPEN Bit	
Receiver Warning	
Register File	

Registers	49
ADCON0 (A/D Control 0)	
ADCON1 (A/D Control 1)	
BRGCON1 (Baud Rate Control 1)	
BRGCON2 (Baud Rate Control 2)	219
BRGCON3 (Baud Rate Control 3)	220
CANCON (CAN Control)	201
CANSTAT (CAN Status)	
CCP1CON (CCP1 Control)	
CIOCON (CAN I/O Control)	
CMCON (Comparator Control)	
COMSTAT (CAN	
Communication Status)	205
CONFIG1H (Configuration 1 High)	
CONFIG2H (Configuration 2 High)	
CONFIG2L (Configuration 2 Low)	
CONFIG4L (Configuration 4 Low)	
CONFIG5H (Configuration 5 High)	
CONFIG5L (Configuration 5 Low)	
CONFIG6H (Configuration 6 High)	
CONFIG6L (Configuration 6 Low)	
CONFIG7H (Configuration 7 High)	
CONFIG7L (Configuration 7 Low)	270
CVRCON (Comparator Voltage	
Reference Control)	
DEVID1 (Device ID 1)	271
DEVID2 (Device ID 2)	271
ECCP1CON (ECCP1 Control)	131
ECCP1DEL (PWM Delay)	140
ECCPAS (Enhanced Capture/Compare/PWM	
Auto-Shutdown Control)	142
EECON1 (EEPROM Control 1)	
INTCON (Interrupt Control)	
INTCON2 (Interrupt Control 2)	80
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3)	80 81
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1)	80 81 88
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2)	80 81 88 89
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3)	80 81 88 89 . 90, 224
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control)	
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control)	
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1)	80 81 88 89 . 90, 224 261 20 85
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2)	80 81 88 89 . 90, 224 261 85 86
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3)	80 81 88 89 . 90, 224 261 85 86
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request	80 81 88 89 . 90, 224 261 85 86 . 87, 223
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1)	80 81 88 89 . 90, 224 261 85 86 . 87, 223
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request	80 81 88 90, 224 261 20 85 85 86 87, 223 82
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2)	80 81 88 90, 224 261 20 85 85 86 87, 223 82
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request	80 81 88 90, 224 90, 224 261 20 85 85 86 87, 223 82 82 83
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3)	80 81 88 90, 224 90, 224 261 20 85 85 86 87, 223 82 87, 223 82 83 . 84, 222
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request	80 81 88 90, 224 90, 224 261 20 85 85 86 87, 223 82 87, 223 82 83 . 84, 222
 INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) 	80 81 88 90, 224 90, 224 261 20 85 85 86 87, 223 87, 223 82 83 . 84, 222
 INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) 	80 81 88 90, 224 90, 224 261 20 85 85 86 87, 223 87, 223 82 83 . 84, 222
 INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) 	80 81 88 89 90, 224 261 20 85 85 86 87, 223 87, 223 82 83 . 84, 222
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control)	80 81 88 89 90, 224 261 20 85 85 86 87, 223 87, 223 82 83 . 84, 222
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control) RXB1CON (Receive Buffer 1 Control)	80 81 88 89 90, 224 261 20 85 85 86 87, 223 82 83 . 84, 222
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control)	80 81 88 89 90, 224 261 20 85 85 86 87, 223 82 83 . 84, 222
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control) RXB1CON (Receive Buffer 1 Control) RXBnDLC (Receive Buffer n Data Length Code) RXBnDm (Receive Buffer n	80 81 88 89 90, 224 261 20 85 85 86 87, 223 83 . 84, 222
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control) RXB1CON (Receive Buffer 1 Control) RXBnDLC (Receive Buffer n Data Length Code)	80 81 88 89 90, 224 261 20 85 85 86 87, 223 83 . 84, 222
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control) RXB1CON (Receive Buffer 1 Control) RXBDLC (Receive Buffer n Data Length Code) RXBnDm (Receive Buffer n Data Field Byte m) RXBnEIDH (Receive Buffer n	80 81 88 89 90, 224 261 20 85 86 87, 223 82 83 83 84, 222 58, 91 84, 222 11 84 210 211 213 214
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Buffer 0 Control) RXB0CON (Receive Buffer 1 Control) RXB0CON (Receive Buffer n Data Length Code) RXBnDM (Receive Buffer n Data Field Byte m) RXBnEIDH (Receive Buffer n Extended Identifier, High Byte)	80 81 88 89 90, 224 261 20 85 86 87, 223 82 83 83 84, 222 58, 91 84, 222 11 84 210 211 213 214
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control) RXB1CON (Receive Buffer n Data Length Code) RXBnDLC (Receive Buffer n Data Field Byte m) RXBnEIDH (Receive Buffer n Extended Identifier, High Byte) RXBnEIDL (Receive Buffer n	80 81 88 89 90, 224 261 20 85 85 86 87, 223 87, 223 87, 223 87, 223 83 84, 222 58, 91 211 211 213 214 212
 INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Buffer 0 Control) RXB0CON (Receive Buffer n Data Length Code) RXBnDm (Receive Buffer n Extended Identifier, High Byte) RXBnEIDL (Receive Buffer n Extended Identifier, Low Byte) 	80 81 88 89 90, 224 261 20 85 85 86 87, 223 87, 223 87, 223 87, 223 83 84, 222 58, 91 211 211 213 214 212
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control) RXB1CON (Receive Buffer n Data Length Code) RXBnDLC (Receive Buffer n Data Field Byte m) RXBnEIDH (Receive Buffer n Extended Identifier, High Byte) RXBnEIDL (Receive Buffer n	80 81 81 88 90, 224 261 20 85 85 86 87, 223 87, 223 87, 223 87, 223 83 84, 222 58, 91 211 213 214 214 212 213