

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K × 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f448-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 OSCILLATOR CONFIGURATIONS

2.1 Oscillator Types

The PIC18FXX8 can be operated in one of eight oscillator modes, programmable by three configuration bits (FOSC2, FOSC1 and FOSC0).

- 1. LP Low-Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High-Speed Crystal/Resonator
- 4. HS4 High-Speed Crystal/Resonator with PLL enabled
- 5. RC External Resistor/Capacitor
- 6. RCIO External Resistor/Capacitor with I/O pin enabled
- 7. EC External Clock
- 8. ECIO External Clock with I/O pin enabled

2.2 Crystal Oscillator/Ceramic Resonators

In XT, LP, HS or HS4 (PLL) Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections. An external clock source may also be connected to the OSC1 pin, as shown in Figure 2-3 and Figure 2-4.

The PIC18FXX8 oscillator design requires the use of a parallel cut crystal.

Note: Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications.

FIGURE 2-1:

CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 2-1: CERAMIC RESONATORS

Ranges Tested:								
Mode	Mode Freq OSC1							
XT	455 kHz 2.0 MHz 4.0 MHz	68-100 pF 15-68 pF 15-68 pF						
HS	8.0 MHz 16.0 MHz	10-68 pF 10-22 pF	10-68 pF 10-22 pF					
These values	These values are for design guidance only. See notes following Table 2-2.							
Resonators Used:								
455 kHz	Panasonic E	FO-A455K04B	±0.3%					

455 kHz	Panasonic EFO-A455K04B	±0.3%				
2.0 MHz	2.0 MHz Murata Erie CSA2.00MG					
4.0 MHz	±0.5%					
8.0 MHz	±0.5%					
16.0 MHz Murata Erie CSA16.00MX ±0.5%						
All resonators used did not have built-in capacitors.						

3.1 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when a VDD rise is detected. To take advantage of the POR circuitry, connect the MCLR pin directly (or through a resistor) to VDD. This eliminates external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (refer to parameter D004). For a slow rise time, see Figure 3-2.

When the device starts normal operation (exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met. Brown-out Reset may be used to meet the voltage start-up condition.

3.2 MCLR

PIC18FXX8 devices have a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the MCLR pin differs from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both Resets and current draws outside of device specification during the Reset event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 3-2, is suggested.

FIGURE 3-2: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

3: R1 = 10002 to 1 k02 Will limit any current flowing into MCLR from external capacitor C, in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

3.3 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out (parameter #33), only on power-up from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in Reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit (PWRTEN in CONFIG2L register) is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due to VDD, temperature and process variation. See DC parameter #33 for details.

3.4 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter #32). This additional delay ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP, HS and HS4 modes and only on Power-on Reset or wake-up from Sleep.

3.5 PLL Lock Time-out

With the PLL enabled, the time-out sequence following a Power-on Reset is different from other oscillator modes. A portion of the Power-up Timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out (OST).

3.6 Brown-out Reset (BOR)

A configuration bit, BOREN, can disable (if clear/ programmed), or enable (if set), the Brown-out Reset circuitry. If VDD falls below parameter D005 for greater than parameter #35, the brown-out situation resets the chip. A Reset may not occur if VDD falls below parameter D005 for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will then be invoked and will keep the chip in Reset an additional time delay (parameter #33). If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute the additional time delay.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:	
TOSU	—	0 0000	30, 38								
TOSH	Top-of-Stack	0000 0000	30, 38								
TOSL	Top-of-Stack	0000 0000	30, 38								
STKPTR	STKFUL	STKUNF	_	Return Stack F	Pointer				00-0 0000	30, 39	
PCLATU	_	—	bit 21 ⁽²⁾	Holding Regist	ter for PC<20	:16>			0 0000	30, 40	
PCLATH	Holding Regis		0000 0000	30, 40							
PCL	PC Low Byte	PC Low Byte (PC<7:0>)									
TBLPTRU	—	— — bit 21 ⁽²⁾ Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)									
TBLPTRH	Program Men	nory Table Poin	ter High Byte (TBLPTR<15:8>	·)				0000 0000	30, 68	
TBLPTRL	Program Men	nory Table Poin	ter Low Byte ((BLPTR<7:0					0000 0000	30, 68	
TABLAT	Program Men	nory Table Latc	h						0000 0000	30, 68	
PRODH	Product Regis	ster High Byte							XXXX XXXX	30, 75	
PRODL	Product Regis	ster Low Byte			1	1	1		XXXX XXXX	30, 75	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	30, 79	
INTCON2	RBPU	INTEDG0	INTEDG1	_	_	TMR0IP	_	RBIP	1111-1	30, 80	
INTCON3	INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF	11-0 0-00	30, 81	
INDF0	Uses contents	s of FSR0 to ac	ldress data me	mory – value of	FSR0 not ch	anged (not a p	physical regis	ster)	N/A	30, 55	
POSTINC0	Uses contents	s of FSR0 to ac	ldress data me	mory – value of	FSR0 post-ii	ncremented (n	ot a physical	register)	N/A	30, 55	
POSTDEC0	Uses contents	s of FSR0 to ac	ldress data me	mory – value of	FSR0 post-ii	ncremented (n	ot a physical	register)	N/A	30, 55	
PREINC0	Uses contents	s of FSR0 to ac	ldress data me	mory – value of	FSR0 pre-in	cremented (no	t a physical ı	egister)	N/A	30, 55	
PLUSW0	Uses contents	s of FSR0 to ac	ldress data me	mory – value of	FSR0 offset	by W (not a pł	nysical regist	er)	N/A	30, 55	
FSR0H	—	—	—	—	Indirect Data	a Memory Add	ress Pointer	0 High	xxxx	30, 55	
FSR0L	Indirect Data	Memory Addre	ss Pointer 0 Lo	w Byte					XXXX XXXX	30, 55	
WREG	Working Regi	ster							XXXX XXXX	30, 55	
INDF1	Uses contents	s of FSR1 to ac	ldress data me	mory – value of	FSR1 not ch	nanged (not a p	physical regis	ster)	N/A	30, 55	
POSTINC1	Uses contents	s of FSR1 to ac	ldress data me	mory – value of	FSR1 post-i	ncremented (n	ot a physical	register)	N/A	30, 55	
POSTDEC1	Uses contents	s of FSR1 to ac	ldress data me	mory – value of	FSR1 post-i	ncremented (n	ot a physical	register)	N/A	30, 55	
PREINC1	Uses contents	s of FSR1 to ac	ldress data me	mory – value of	FSR1 pre-in	cremented (no	t a physical ı	egister)	N/A	30, 55	
PLUSW1	Uses contents	s of FSR1 to ac	ldress data me	mory – value of	FSR1 offset	by W (not a pł	nysical regist	er)	N/A	30, 55	
FSR1H	—	_	—	—	Indirect Data	a Memory Add	ress Pointer	1 High	xxxx	31, 55	
FSR1L	Indirect Data	Memory Addre	ss Pointer 1 Lo	w Byte	1				XXXX XXXX	31, 55	
BSR	—	—	—	—	Bank Select	Register			0000	31, 54	
INDF2	Uses contents	s of FSR2 to ac	ldress data me	mory – value of	FSR2 not ch	nanged (not a p	physical regis	ster)	N/A	31, 55	
POSTINC2	Uses contents	s of FSR2 to ac	ldress data me	mory – value of	FSR2 post-ii	ncremented (n	ot a physical	register)	N/A	31, 55	
POSTDEC2	Uses contents	s of FSR2 to ac	ldress data me	mory – value of	FSR2 post-ii	ncremented (n	ot a physical	register)	N/A	31, 55	
PREINC2	Uses contents	s of FSR2 to ac	ldress data me	mory – value of	FSR2 pre-in	cremented (no	t a physical ı	egister)	N/A	31, 55	
PLUSW2	Uses contents	s of FSR2 to ac	ldress data me	mory – value of	FSR2 offset	by W (not a pł	nysical regist	er)	N/A	31, 55	
FSR2H	—	—	_	_	Indirect Data	a Memory Add	ress Pointer	2 High	xxxx	31, 55	
FSR2L	Indirect Data	Memory Addre	ss Pointer 2 Lo	w Byte					XXXX XXXX	31, 55	
STATUS	—	—	—	N	OV	Z	DC	С	x xxxx	31, 57	
TMR0H	Timer0 Regis	ter High Byte							0000 0000	31, 111	
TMR0L	Timer0 Regis	ter Low Byte	_						XXXX XXXX	31, 111	
TOCON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	31, 109	
OSCCON	—	—		_	-	-	—	SCS	0	31, 20	
LVDCON	—	—	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	00 0101	31, 261	
WDTCON	_	—		_	—	—	_	SWDTEN	0	31, 272	
RCON	IPEN	—	—	RĪ	ΤŌ	PD	POR	BOR	01 110q	31, 58, 91	

	TABLE 4-2:	REGISTER FILE SUMMARY
--	------------	-----------------------

Legend: \mathbf{x} = unknown, \mathbf{u} = unchanged, - = unimplemented, \mathbf{q} = value depends on condition Note

These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's. 1:

Bit 21 of the TBLPTRU allows access to the device configuration bits. 2:

RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read '0' in all other oscillator modes. 3:

8.0 INTERRUPTS

The PIC18FXX8 devices have multiple interrupt sources and an interrupt priority feature that allows each interrupt source to be assigned a high priority level or a low priority level. The high priority interrupt vector is at 000008h and the low priority interrupt vector is at 000018h. High priority interrupt events will override any low priority interrupts that may be in progress.

There are 13 registers that are used to control interrupt operation. These registers are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2, PIR3
- PIE1, PIE2, PIE3
- IPR1, IPR2, IPR3

It is recommended that the Microchip header files, supplied with MPLAB[®] IDE, be used for the symbolic bit names in these registers. This allows the assembler/ compiler to automatically take care of the placement of these bits within the specified register.

Each interrupt source has three bits to control its operation. The functions of these bits are:

- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- Priority bit to select high priority or low priority

The interrupt priority feature is enabled by setting the IPEN bit (RCON register). When interrupt priority is enabled, there are two bits that enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all interrupts. Setting the GIEL bit (INTCON register) enables all interrupts that have the priority bit cleared. When the interrupt flag, enable bit and appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 000008h or 000018h, depending on the priority level. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PICmicro[®] mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. The PEIE bit (INTCON register) enables/disables all peripheral interrupt sources. The GIE bit (INTCON register) enables/disables all interrupt sources. All interrupts branch to address 00008h in Compatibility mode.

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High priority interrupt sources can interrupt a low priority interrupt.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (000008h or 000018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INT pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding enable bit or the GIE bit.

Note: Do not use the MOVFF instruction to modify any of the interrupt control registers while **any** interrupt is enabled. Doing so may cause erratic microcontroller behavior.

REGISTER 8-3:	INTCON3: INTERRUPT CONTROL REGISTER 3								
	R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	
	bit 7							bit 0	
bit 7	INT2IP: IN	T2 External	Interrupt Pri	ority bit					
	1 = High priority 0 = Low priority								
bit 6	INT1IP: IN	T1 External	Interrupt Pri	ority bit					
	1 = High pr 0 = Low pri	1 = High priority 0 = Low priority							
bit 5	Unimplem	ented: Read	d as '0'						
bit 4	INT2IE: IN	T2 External	Interrupt En	able bit					
	1 = Enables 0 = Disable	s the INT2 e s the INT2 e	external inter external inte	rrupt rrupt					
bit 3	INT1IE: IN	T1 External	Interrupt En	able bit					
	1 = Enable: 0 = Disable	s the INT1 e s the INT1 e	external inter external inte	rrupt rrupt					
bit 2	Unimplem	ented: Read	d as '0'						
bit 1	INT2IF: IN	F2 External	Interrupt Fla	g bit					
	1 = The IN 0 = The IN	Γ2 external i Γ2 external i	nterrupt occ nterrupt did	urred (must not occur	be cleared i	n software)			
bit 0	INT1IF: INT	F1 External	Interrupt Fla	g bit					
	 1 = The INT1 external interrupt occurred (must be cleared in software) 0 = The INT1 external interrupt did not occur 								
Legend:									
	R = Reada	ble bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	0'	
	-n = Value a	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown	

Note:	Interrupt flag bits are set when an interrupt condition occurs regardless of the state
	of its corresponding enable bit or the global interrupt enable bit. User software
	should ensure the appropriate interrupt flag bits are clear prior to enabling an
	interrupt. This feature allows software polling.

© 2006 Microchip Technology Inc.

Name	Bit#	Buffer	Function
RA0/AN0/CVREF	bit 0	TTL	Input/output, analog input or analog comparator voltage reference output.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit 2	TTL	Input/output, analog input or VREF
RA3/AN3/VREF+	bit 3	TTL	Input/output, analog input or VREF+.
RA4/T0CKI	bit 4	ST/OD	Input/output, external clock input for Timer0, output is open-drain type.
RA5/AN4/SS/LVDIN	bit 5	TTL	Input/output, analog input, slave select input for synchronous serial port or Low-Voltage Detect input.
OSC2/CLKO/RA6	bit 6	TTL	Oscillator clock output or input/output.

TABLE 9-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input, OD = Open-Drain

TABLE 9-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTA	—	RA6	RA5	RA4	RA3	RA2	RA1	RA0	-00x 0000	-uuu uuuu
LATA	—	Latch A	Latch A Data Output Register							-uuu uuuu
TRISA	—	PORTA	PORTA Data Direction Register						-111 1111	-111 1111
ADCON1	ADFM	ADCS2	_		PCFG3	PCFG2	PCFG1	PCFG0	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

17.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I^2C protocol. It consists of all '0's with R/W = 0.

The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-bit Address mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 17-15).

FIGURE 17-15: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT ADDRESS MODE)

17.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition, or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive bit. Serial data is received via SDA while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I²C operation. See **Section 17.4.7 "Baud Rate Generator**" for more details.

A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPCON2<0>).
- 2. SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- 9. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit PEN (SSPCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

NOTES:

TABLE 19-3:	VALUES FOR	ICODE<2:0>

ICOD <2:0>	Interrupt	Boolean Expression							
000	None	ERR•WAK•TX0•TX1•TX2•RX0• RX1							
001	Error	ERR							
010	TXB2	ERR•TX0•TX1•TX2							
011	TXB1	ERR•TX0•TX1							
100	TXB0	ERR•TX0							
101	RXB1	ERR•TX0•TX1•TX2•RX0•RX1							
110	RXB0	ERR•TX0•TX1•TX2•RX0							
111	Wake on Interrupt	ERR•TX0•TX1•TX2•RX0•RX1• WAK							
Key:									
ERR =	ERR = ERRIF * ERRIE RX0 = RXB0IF * RXB0IE								
1X0 = T	TX0 = TXB0IF * TXB0IE RX1 = RXB1IF * RXB1IE								
TX1 = I TX2 = T	XB1IF * TXE XB2IF * TXE	BILE WAK = WAKIF * WAKIE B2IE							

19.13.4 MESSAGE ERROR INTERRUPT

When an error occurs during transmission or reception of a message, the message error flag IRXIF will be set and if the IRXIE bit is set, an interrupt will be generated. This is intended to be used to facilitate baud rate determination when used in conjunction with Listen Only mode.

19.13.5 BUS ACTIVITY WAKE-UP INTERRUPT

When the PIC18FXX8 is in Sleep mode and the bus activity wake-up interrupt is enabled, an interrupt will be generated and the WAKIF bit will be set when activity is detected on the CAN bus. This interrupt causes the PIC18FXX8 to exit Sleep mode. The interrupt is reset by the MCU, clearing the WAKIF bit.

19.13.6 ERROR INTERRUPT

When the error interrupt is enabled, an interrupt is generated if an overflow condition occurs or if the error state of transmitter or receiver has changed. The error flags in COMSTAT will indicate one of the following conditions.

19.13.6.1 Receiver Overflow

An overflow condition occurs when the MAB has assembled a valid received message (the message meets the criteria of the acceptance filters) and the receive buffer associated with the filter is not available for loading of a new message. The associated COMSTAT.RXnOVFL bit will be set to indicate the overflow condition. This bit must be cleared by the MCU.

19.13.6.2 Receiver Warning

The receive error counter has reached the MCU warning limit of 96.

19.13.6.3 Transmitter Warning

The transmit error counter has reached the MCU warning limit of 96.

19.13.6.4 Receiver Bus Passive

The receive error counter has exceeded the errorpassive limit of 127 and the device has gone to error-passive state.

19.13.6.5 Transmitter Bus Passive

The transmit error counter has exceeded the errorpassive limit of 127 and the device has gone to error-passive state.

19.13.6.6 Bus-Off

The transmit error counter has exceeded 255 and the device has gone to bus-off state.

19.13.7 INTERRUPT ACKNOWLEDGE

Interrupts are directly associated with one or more status flags in the PIR register. Interrupts are pending as long as one of the flags is set. Once an interrupt flag is set by the device, the flag cannot be reset by the microcontroller until the interrupt condition is removed.

					· ·			,
	U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
	—	—	_	—	CP3 ⁽¹⁾	CP2 ⁽¹⁾	CP1	CP0
	bit 7							bit 0
bit 7-4	Unimpleme	nted: Read	as '0'					
bit 3	CP3: Code I	Protection b	it ⁽¹⁾					
	1 = Block 3 ((006000-00	7FFFh) not c	ode-protecte	ed			
	0 = Block 3 ((006000-00	7FFFh) code	e-protected				
bit 2	CP2: Code I	Protection b	it ⁽¹⁾					
	1 = Block 2	(004000-00	5FFFh) not c	ode-protecte	ed			
	0 = Block 2 ((004000-00	5FFFh) code	-protected				
bit 1	CP1: Code F	Protection b	it					
	1 = Block 1	(002000-00	3FFFh) not c	ode-protecte	ed			
	0 = Block 1	(002000-00	3FFFh) code	-protected				
bit 0	CP0: Code F	Protection b	it					
	1 = Block 0	(000200-00	1FFFh) not c	ode-protecte	ed			
	0 = Block 0 ((000200-00	1FFFh) code	-protected				
	Note 1: ા	Jnimplemer	nted in PIC18	3FX48 device	es; maintain	this bit set		

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device	ce is unprogrammed	u = Unchanged from programmed state

REGISTER 24-6: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

-n = Value when device is unprogrammed

	R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0					
	CPD	CPB	_	—	—	—	—	—					
	bit 7							bit 0					
bit 7	CPD: Data EEPROM Code Protection bit 1 = Data EEPROM not code-protected 0 = Data EEPROM code-protected												
bit 6	CPB: Boot Block Code Protection bit 1 = Boot Block (000000-0001FFh) not code-protected 0 = Boot Block (000000-0001FFh) code-protected												
bit 5-0	Unimplem	ented: Rea	d as '0'										
	Legend:												
	R = Reada	ble bit	C = Clear	able bit	U = Unin	nplemented	bit, read as '	ʻ0'					

u = Unchanged from programmed state

	U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1			
		_	—	—	EBTR3 ⁽¹⁾	EBTR2 ⁽¹⁾	EBTR1	EBTR0			
	bit 7							bit 0			
bit 7-4	Unimplem	nented: Rea	ad as '0'								
bit 3	EBTR3: Ta	able Read P	Protection bit	t(1)							
	1 = Block 3 0 = Block 3	3 (006000-0 3 (006000-0	07FFFh) no 07FFFh) pr	ot protected otected from	from table re n table reads	ads executed executed in	d in other blo other blocks	ocks s			
bit 2	EBTR2: Ta	able Read F	Protection bit	t(1)							
	1 = Block 2 0 = Block 2	2 (004000-0 2 (004000-0	05FFFh) no 05FFFh) pr	ot protected of otected from	from table re 1 table reads	ads executed executed in	d in other blo other blocks	ocks ;			
bit 1	EBTR1: Ta	able Read F	Protection bit	t							
	1 = Block 0 = Block	1 (002000-0 1 (002000-0	03FFFh) no 03FFFh) pr	ot protected of otected from	from table re n table reads	ads executed executed in	d in other blo other blocks	ocks ;			
bit 0	EBTR0: Ta	able Read F	Protection bit	t							
	1 = Block (0 = Block (1 = Block 0 (000200-001FFFh) not protected from table reads executed in other blocks 0 = Block 0 (000200-001FFFh) protected from table reads executed in other blocks 									
	Note 1:	Unimplem	ented in PIC	C18FX48 de	vices; mainta	ain this bit se	t.				
	l egend:										

REGISTER 24-9: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device	e is unprogrammed	u = Unchanged from programmed state

REGISTER 24-10: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)

U-0	R/P-1	U-0	U-0	U-0	U-0	U-0	U-0
—	EBTRB	—	—	—	—	—	—
bit 7							bit 0

bit 7 Unimplemented: Read as '0'

bit 6 **EBTRB:** Boot Block Table Read Protection bit

1 = Boot Block (000000-0001FFh) not protected from table reads executed in other blocks

0 = Boot Block (000000-0001FFh) protected from table reads executed in other blocks

bit 5-0 Unimplemented: Read as '0'

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device	is unprogrammed	u = Unchanged from programmed state

FIGURE 24-6: EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED

25.0 INSTRUCTION SET SUMMARY

The PIC18 instruction set adds many enhancements to the previous PICmicro instruction sets, while maintaining an easy migration from these PICmicro instruction sets.

Most instructions are a single program memory word (16 bits) but there are three instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal operations
- Control operations

The PIC18 instruction set summary in Table 25-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 25-1 shows the opcode field descriptions.

Most **byte-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction.

The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located.

The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for three double-word instructions. These three instructions were made double-word instructions so that all the required information is available in these 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 25-1 shows the general formats that the instructions can have.

All examples use the format 'nnh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

The Instruction Set Summary, shown in Table 25-2, lists the instructions recognized by the Microchip MPASM[™] Assembler.

Section 25.2 "Instruction Set" provides a description of each instruction.

25.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified and the result is stored according to either the instruction or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a "CLRF PORTB" instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended result that the condition that sets the RBIF flag would be cleared.

INCF	SZ	Increment	f, Skip if 0					
Synta	ax:	[label] IN	ICFSZ f[,d [,a]]				
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Oper	ation:	(f) + 1 \rightarrow de skip if result	est, t = 0					
Statu	s Affected:	None						
Enco	ding:	0011	11da :	fff	ffff			
Desc	nption:	I he content incremented placed in W placed back If the result which is alre and a NOP is it a two-cycl Access Ban overriding th the bank will BSR value of	s of registe d. If 'd' is '0 . If 'd' is '1' a in register is '0', the n eady fetche s executed e instructio k will be se ne BSR valu I be selecte (default).	r T are , the res 'f' (defa ext inst d is dis insteac n. If 'a' elected, ue. If 'a' ed as pe	sult is sult is ault). ruction carded I, making is '0', the = 1, then er the			
Word	ls:	1	. ,					
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction								
QC	vcle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read	Process	, M	/rite to			
16 - 1-		register t	Data	des	stination			
IT SK	ID: 01	02	03		04			
	No	No	No		No			
	operation	operation	operation	ор	eration			
lf sk	ip and followe	d by 2-word in	struction:					
	Q1	Q2	Q3		Q4			
	No	No	No		No			
	operation	operation	operation	ор	eration			
	No operation	No operation	No operatior	и ор	No eration			
Exan	nple:	HERE NZERO ZERO	INCFSZ :	CNT				
	Before Instruc PC	tion = Address	S (HERE)					
	After Instructio CNT If CNT	on = CNT + = 0;	1					
		= Address $\rightarrow 0^{\circ}$	S (ZERO)					
	PC	= Address	(NZERO)					

INFSNZ		Inc	rement	f, Skip i	f not 0)	
Syntax:		[<i>la</i>	abel] IN	IFSNZ	f [,d [,	a]]	
Operands: $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Operatio	on:	(f) ski	+ 1 \rightarrow de p if resul	est, t≠0			
Status A	ffected:	No	ne				
Encodin	ig:		0100	10da	fff	f	ffff
Description: The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default						sult is sult is ault). ched is ed ess Bank BSR will be (default).	
Words:		1					
Cycles:		1(2 No	2) ote: 3 c by a	ycles if s a 2-word	kip an I instru	d fol Ictior	lowed 1.
Q Cycle	e Activity:						
	Q1	1	Q2	Q	3		Q4
	Decode	F reg	lead ister 'f'	Proce Dat	ess a	W des	rite to stination
If skip:							
	Q1	1	Q2	Q	3		Q4
	No		No	No			No
	peration	ope	eration	opera	tion	ор	eration
li skip a		u by i		Struction	1. >		04
	No		No	No)		No.
0	peration	ope	eration	operat	tion	ор	eration
	No		No	No			No
0	peration	оре	eration	opera	tion	ор	eration
Example:		HE ZE NZ	ERE ERO IERO	INFSNZ	REG		
Be	fore Instruc PC	tion =	Addres	s (HERI	Ξ)		
Aft	er Instructio REG If REG PC If REG PC	on ≠ = = =	REG + 0; Addres: 0; Addres:	1 s (nzem s (zero	RO) D)		

SLEEP	P Enter Sleep Mode		Sleep Mode SUBFWB		Subtract f from W with Borrow				
Syntax:	[label] SLEEP		Syntax:	[label]	SUBFWB f	[,d [,a]]			
Operands:	None			Operands:	0 ≤ f ≤ 255	5			
Operation:	$00h \rightarrow WI$	DT,			d ∈ [0,1]				
	$0 \rightarrow WDT$	postscaler,		Onersting	$a \in [0, 1]$	$\overline{(0)}$, deat			
	$1 \rightarrow 10,$ $0 \rightarrow PD$				(vv) - (1)	$(C) \rightarrow \text{dest}$			
Status Affected:	TO. PD			Status Affected:	N, OV, C,	DC, Z			
Encodina:	0000	0000 00	0.0 0.011	Encoding:	0101	01da ff	ff ffff		
Description:	The Powe	or-Down status	bit (PD) is	Description:	Subtract r	egister 'f' and	Carry flag		
Description.	cleared. T	he Time-out st	tatus bit (TO)		method). I	f 'd' is '0', the i	result is stored		
	is set. Wa	tchdog Timer a	and its		in W. If 'd'	is '1', the res	ult is stored in		
	postscaler	r are cleared.	Sleen mode		register 'f'	(default). If 'a ank will be sel	' is '0', the		
	with the os	scillator stoppe	ed.		overriding	the BSR valu	e. If 'a' is '1',		
Words:	1				then the b	ank will be se	lected as per		
Cycles:	1				the BSR v	alue (default)			
Q Cycle Activity:				Words:	1				
Q1	Q2	Q3	Q4	Cycles:	1				
Decode	No	Process	Go to	Q Cycle Activity:	00	00	04		
	operation	Data	Sleep		Q2 Road	Q3 Process	Q4 Write to		
Example:				Decode	register 'f'	Data	destination		
Example.	SLEEP			Example 1	SUBFWB	REG			
$\overline{TO} =$?			Before Instruc	tion				
PD =	?			REG	= 0x03				
After Instructi	on 1 +			W C	= 0x02 = 0x01				
$\frac{10}{PD} =$	0			After Instruction	on				
+ If WDT causes	waka-un this t	hit is cleared		REG W	= 0xFF = 0x02				
	wake-up, and i			C	= 0x00				
				N	= 0x00 = 0x01	; result is neg	jative		
				Example 2:	SUBFWB	REG, 0, 0)		
				Before Instruc	tion				
				REG W	= 2				
				C	= 1				
				After Instructio	on = 2				
				W	= 3				
				Z	= 1 = 0				
				Ν	= 0	; result is posi	itive		
				Example 3:	SUBFWB	REG, 1, ()		
				Before Instruc	tion				
				W REG	= 1 = 2				
				C After Instructio	= 0				
				REG	= 0				
				W C	= 2 = 1				
				Z	= 1	; result is zero)		
				IN	- 0				

27.2 DC Characteristics: PIC18FXX8 (Industrial, Extended) PIC18LFXX8 (Industrial) (Continued)

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic/ Device	Min	Мах	Units	Conditions	
	Vol	Output Low Voltage					
D080		I/O ports	—	0.6	V	IOL = 8.5 mA, VDD = 4.2V, -40°C to +85°C	
D080A			—	0.6	V	IOL = 7.0 mA, VDD = 4.2V, -40°C to +125°C	
D083		OSC2/CLKO (RC mode)	—	0.6	V	IOL = 1.6 mA, VDD = 4.2V, -40°C to +85°C	
D083A			—	0.6	V	IOL = 1.2 mA, VDD = 4.2V, -40°C to +125°C	
	Vон	Output High Voltage ⁽³⁾					
D090		I/O ports	Vdd - 0.7	—	V	IOH = -3.0 mA, VDD = 4.2V, -40°C to +85°C	
D090A			Vdd - 0.7	—	V	IOH = -2.5 mA, VDD = 4.2V, -40°С to +125°С	
D092		OSC2/CLKO (RC mode)	Vdd - 0.7	—	V	IOH = -1.3 mA, VDD = 4.2V, -40°С to +85°С	
D092A			Vdd - 0.7	—	V	IOH = -1.0 mA, VDD = 4.2V, -40°С to +125°С	
D150	Vod	Open-Drain High Voltage	—	7.5	V	RA4 pin	
		Capacitive Loading Specs on Output Pins					
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	50	pF	To meet the AC Timing Specifications	
D102	Св	SCL, SDA	—	400	pF	In I ² C™ mode	

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PICmicro[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 27-14:

Note: Refer to Figure 27-5 for load conditions.

TABLE 27-14: EXAMPLE SPI™ MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param No.	Symbol	Characterist	Min	Max	Units	Conditions	
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30	—	ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input to SCK Edge		100	_	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to t of Byte 2	1.5 TCY + 40	_	ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to	100	_	ns		
75	TdoR	SDO Data Output Rise Time	PIC18FXX8	—	25	ns	
			PIC18LFXX8	—	45	ns	
76	TdoF	SDO Data Output Fall Time		—	25	ns	
78	TscR	SCK Output Rise Time	PIC18FXX8	—	25	ns	
		(Master mode)	PIC18LFXX8	—	45	ns	
79	TscF	SCK Output Fall Time (Master mode)		—	25	ns	
80	TscH2doV,	SDO Data Output Valid after	PIC18FXX8	—	50	ns	
	TscL2doV	SCK Edge	K Edge PIC18LFXX8		100	ns	
81	TdoV2scH, TdoV2scL	SDO Data Output Setup to SO	CK Edge	Тсү	_	ns	

Note 1: Requires the use of parameter #73A.

2: Only if parameter #71A and #72A are used.

FIGURE 28-13: AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 100 pF, $+25^{\circ}$ C)

APPENDIX C: DEVICE MIGRATIONS

This section is intended to describe the functional and electrical specification differences when migrating between functionally similar devices (such as from a PIC16C74A to a PIC16C74B).

Not Applicable

APPENDIX D: MIGRATING FROM OTHER PICmicro® DEVICES

This discusses some of the issues in migrating from other PICmicro devices to the PIC18FXX8 family of devices.

D.1 PIC16CXXX to PIC18FXX8

See Application Note AN716 "Migrating Designs from PIC16C74A/74B to PIC18C442" (DS00716).

D.2 PIC17CXXX to PIC18FXX8

See Application Note AN726 "PIC17CXXX to PIC18CXXX Migration" (DS00726).