

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f448-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number				Pin	Buffer	
Pin Name	PIC18F248/258	PIC18F448/458		Туре	Туре	Description	
	SPDIP, SOIC	PDIP	TQFP	PLCC			
		10		01			PORTD is a bidirectional I/O por These pins have TTL input buffe when external memory is enable
RD0/PSP0/C1IN+ RD0 PSP0 C1IN+	_	19	38	21	I/O I/O I	ST TTL Analog	Digital I/O. Parallel Slave Port data. Comparator 1 input.
RD1/PSP1/C1IN- RD1 PSP1 C1IN-	_	20	39	22	I/O I/O I	ST TTL Analog	Digital I/O. Parallel Slave Port data. Comparator 1 input.
RD2/PSP2/C2IN+ RD2 PSP2 C2IN+	_	21	40	23	I/O I/O I	ST TTL Analog	Digital I/O. Parallel Slave Port data. Comparator 2 input.
RD3/PSP3/C2IN- RD3 PSP3 C2IN-	_	22	41	24	I/O I/O I	ST TTL Analog	Digital I/O. Parallel Slave Port data. Comparator 2 input.
RD4/PSP4/ECCP1/ P1A RD4 PSP4 ECCP1 P1A	_	27	2	30	I/O I/O I/O O	ST TTL ST —	Digital I/O. Parallel Slave Port data. ECCP1 capture/compare. ECCP1 PWM output A.
RD5/PSP5/P1B RD5 PSP5 P1B	_	28	3	31	I/O I/O O	ST TTL —	Digital I/O. Parallel Slave Port data. ECCP1 PWM output B.
RD6/PSP6/P1C RD6 PSP6 P1C	_	29	4	32	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. ECCP1 PWM output C.
RD7/PSP7/P1D RD7 PSP7 P1D	_	30	5	33	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. ECCP1 PWM output D.

TABLE 1-2: PIC18FXX8 PINOUT I/O DESCRIPTIONS (CONTINUED)

OD = Open-Drain (no P diode to VDD)

TABLE 3-3:	INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Reset WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
TOSU	PIC18F2X8	PIC18F4X8	0 0000	0 0000	0 uuuu (3)	
TOSH	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu (3)	
TOSL	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu ⁽³⁾	
STKPTR	PIC18F2X8	PIC18F4X8	00-0 0000	uu-0 0000	uu-u uuuu (3)	
PCLATU	PIC18F2X8	PIC18F4X8	0 0000	0 0000	u uuuu	
PCLATH	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu	
PCL	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	PC + 2 ⁽²⁾	
TBLPTRU	PIC18F2X8	PIC18F4X8	00 0000	00 0000	uu uuuu	
TBLPTRH	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu	
TBLPTRL	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu	
TABLAT	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu	
PRODH	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PRODL	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu	
INTCON	PIC18F2X8	PIC18F4X8	0000 000x	0000 000u	սսսս սսսս (1)	
INTCON2	PIC18F2X8	PIC18F4X8	1111-1	1111-1	uuuu-u (1)	
INTCON3	PIC18F2X8	PIC18F4X8	11-0 0-00	11-0 0-00	uu-u u-uu (1)	
INDF0	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A	
POSTINC0	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A	
POSTDEC0	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A	
PREINC0	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A	
PLUSW0	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A	
FSR0H	PIC18F2X8	PIC18F4X8	xxxx	uuuu	uuuu	
FSR0L	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu	
WREG	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu	
INDF1	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A	
POSTINC1	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A	
POSTDEC1	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A	
PREINC1	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A	
PLUSW1	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A	

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 3-2 for Reset value for specific condition.
- 5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
- 6: Values for CANSTAT also apply to its other instances (CANSTATRO1 through CANSTATRO4).

5.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

Generally, a write failure will be a bit which was written as a '1', but reads back as a '0' (due to leakage off the cell).

5.6 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

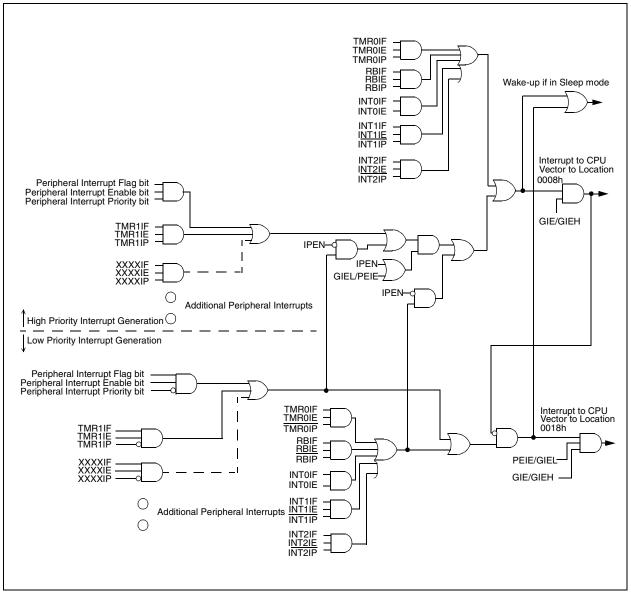
The write initiate sequence and the WREN bit together reduce the probability of an accidental write during brown-out, power glitch or software malfunction.

5.7 Operation During Code-Protect

Data EEPROM memory has its own code-protect mechanism. External read and write operations are disabled if either of these mechanisms are enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect configuration bit. Refer to **Section 24.0 "Special Features of the CPU"** for additional information.

5.8 Using the Data EEPROM

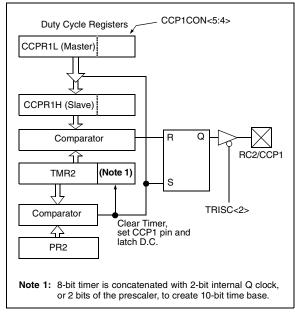

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than specification D124 or D124A. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory. A simple data EEPROM refresh routine is shown in Example 5-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification D124 or D124A.

Loop	CLRF BCF BCF BCF BSF BSF	EEADR EECON1, CFGS EECON1, EEPGD INTCON, GIE EECON1, WREN EECON1, RD	<pre>; Start at address 0 ; Set for memory ; Set for Data EEPROM ; Disable interrupts ; Enable writes ; Loop to refresh array ; Read current address</pre>
	MOVLW	55h	, reau cuitent auuress
	MOVLW	EECON2	; ; Write 55h
		0AAh	
		EECON2	; : Write AAh
	BSF		; Set WR bit to begin write
		EECON1, WR EECON1, WR	; Wait for write to complete
	BRA	\$-2	, maie for write to comprete
	Didi	Y 2	
	INCFSZ	EEADR, F	; Increment address
	BRA	Loop	; Not zero, do it again
	BCF	EECON1, WREN	; Disable writes
	BSF	INTCON, GIE	; Enable interrupts

EXAMPLE 5-3: DATA EEPROM REFRESH ROUTINE

15.4 PWM Mode


In Pulse-Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.

Figure 15-3 shows a simplified block diagram of the CCP module in PWM mode.

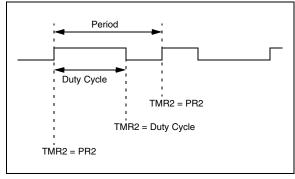

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 15.4.3** "Setup for PWM Operation".

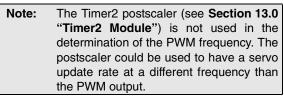
FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 15-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 15-4: PWM OUTPUT

15.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula.


EQUATION 15-1:

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

15.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time.

EQUATION 15-2:

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

FIGURE 16-2: PWM OUTPUT RELATIONSHIPS

ECCP1C <7:6>	ON SIGNAL	0	Cyc	y le ─► Per	PR2 +
00	P1A Modulated, Active-High		; 		
	P1A Modulated, Active-Low		i i	 	
10	P1A Modulated, Active-Low P1B Modulated, Active-High P1B Modulated, Active-Low	- — - —		Pelay	Delay
01	P1A Active, Active-High P1A Active, Active-Low P1B Inactive, Active-High P1B Inactive, Active-Low P1C Inactive, Active-High P1C Inactive, Active-Low P1D Modulated, Active-High P1D Modulated, Active-Low		I I <t< td=""><td></td><td></td></t<>		
11	P1A Inactive, Active-High P1A Inactive, Active-Low P1B Modulated, Active-High P1B Modulated, Active-Low P1C Active, Active-High P1C Active, Active-Low P1D Inactive, Active-High P1D Inactive, Active-Low				

Relationships:

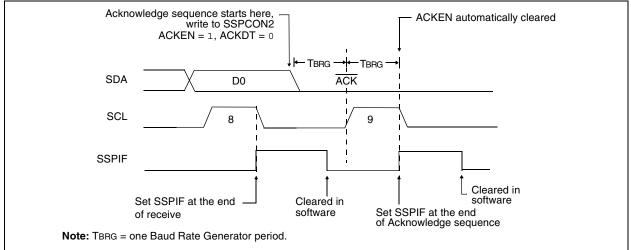
- Period = 4 * Tosc * (PR2 + 1) * (TMR2 Prescale Value)
- Duty Cycle = Tosc * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)
- Delay = 4 * Tosc * ECCP1DEL

17.4.12 ACKNOWLEDGE SEQUENCE TIMING

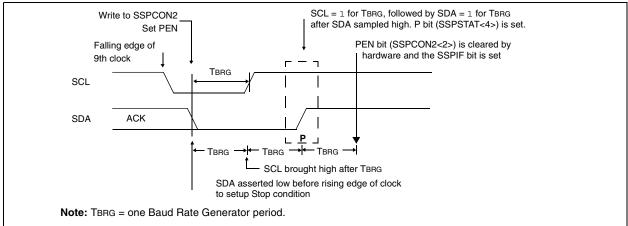
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 17-23).

17.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).


17.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to 0. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 17-24).


17.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 17-23: ACKNOWLEDGE SEQUENCE WAVEFORM

IABLE	ABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)											
BAUD RATE	Fosc =	40 MHz	SPBRG value	33	MHz	SPBRG value	25	MHz	SPBRG value			SPBRG
(Kbps)	KBAUD	% ERROR	(decimal)	KBAUD	% ERROR	(decimal)	KBAUD	% ERROR	(decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	9.60	-0.07	214	9.59	-0.15	162	9.62	+0.16	129
19.2	19.23	+0.16	129	19.28	+0.39	106	19.30	+0.47	80	19.23	+0.16	64
76.8	75.76	-1.36	32	76.39	-0.54	26	78.13	+1.73	19	78.13	+1.73	15
96	96.15	+0.16	25	98.21	+2.31	20	97.66	+1.73	15	96.15	+0.16	12
300	312.50	+4.17	7	294.64	-1.79	6	312.50	+4.17	4	312.50	+4.17	3
500	500	0	4	515.63	+3.13	3	520.83	+4.17	2	416.67	-16.67	2
HIGH	2500	-	0	2062.50	-	0	1562.50	-	0	1250	-	0
LOW	9.77	-	255	8,06	-	255	6.10	-	255	4.88	-	255
BAUD	Fosc =	16 MHz	SPBRG	10 1	NHz	SPBRG	7.15909 MHz SPBRG			5.068	SPBRG	
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	2.41	+0.23	185	2.40	0	131
9.6	9.62	+0.16	103	9.62	+0.16	64	9.52	-0.83	46	9.60	0	32
19.2	19.23	+0.16	51	18.94	-1.36	32	19.45	+1.32	22	18.64	-2.94	16
76.8	76.92	+0.16	12	78.13	+1.73	7	74.57	-2.90	5	79.20	+3.13	3
96	100	+4.17	9	89.29	-6.99	6	89.49	-6.78	4	105.60	+10.00	2
300	333.33	+11.11	2	312.50	+4.17	1	447.44	+49.15	0	316.80	+5.60	0
500	500	0	1	625	+25.00	0	447.44	-10.51	0	NA	-	-
HIGH	1000	-	0	625	-	0	447.44	-	0	316.80	-	0
LOW	3.91	-	255	2.44	-	255	1.75	-	255	1.24	-	255
BAUD	Fosc =	4 MHz	SPBRG	3.5795	45 MHz	SPBRG	1 N	1 MHz SPBRG			32.768 kHz	
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	0.30	+0.16	207	0.29	-2.48	6
1.2	1.20	+0.16	207	1.20	+0.23	185	1.20	+0.16	51	1.02	-14.67	1
2.4	2.40	+0.16	103	2.41	+0.23	92	2.40	+0.16	25	2.05	-14.67	0
9.6	9.62	+0.16	25	9.73	+1.32	22	8.93	-6.99	6	NA	-	-
19.2	19.23	+0.16	12	18.64	-2.90	11	20.83	+8.51	2	NA	-	-
76.8	NA	-	-	74.57	-2.90	2	62.50	-18.62	0	NA	-	-

TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

96

300

500

HIGH

LOW

NA

NA

NA

250

0.98

-

-

-

-

-

-

-

-

0

255

111.86

223.72

NA

55.93

0.22

+16.52

-25.43

-

-

-

1

0

-

0

255

NA

NA

NA

62.50

0.24

-

-

-

-

-

-

-

-

0

255

NA

NA

NA

2.05

0.008

-

-

-

-

-

-

-

-

0

255

STER 19-13:	RXB1CO	N: RECEIV	E BUFFE	R 1 CONTI	ROL REGIS	TER					
	R/C-0	R/W-0	R/W-0	U-0	R-0	R-0	R-0	R-0			
	RXFUL ⁽¹⁾	RXM1 ⁽¹⁾	RXM0 ⁽¹⁾	_	RXRTRRO	FILHIT2	FILHIT1	FILHIT0			
	bit 7							bit 0			
bit 7	RXFUL: Re	eceive Full S	Status bit ⁽¹⁾								
				ived messa ve a new m	•						
	Note: This bit is set by the CAN module and should be cleared by software after the buffer is read.										
bit 6-5	RXM1:RXM	IO: Receive	Buffer Mod	e bits ⁽¹⁾							
			•	ling those w	,						
					led identifier ard identifier						
		ive all valid i	•	with Stanua							
bit 4	Unimplem	ented: Rea	d as '0'								
bit 3	RXRTRRO	: Receive F	lemote Tran	sfer Reques	st bit (read-on	ly)					
		e transfer re									
		note transfer									
bit 2-0		LHITO: Filte		(11				Dession			
	Buffer 1.	indicate whi	ich acceptar	ice filter ena	abled the last	message re	eception into	Receive			
	111 = Res										
	110 = Res	erved eptance Filte	r 5 (BYE5)								
		eptance Filte									
	011 = Acce	eptance Filte	er 3 (RXF3)								
		eptance Filte	. ,	anh maaaih	la when DVD		ia aat				
		•	• •	• •	le when RXB le when RXB						
		•			RXB1CON are			CON.			

Legend:			
R = Readable bit	W = Writable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-13: RXB1CON: RECEIVE BUFFER 1 CONTROL REGISTER

REGISTER 19-23: RXFnEIDH: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER, HIGH BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

bit 7-0

EID15:EID8: Extended Identifier Filter bits

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

REGISTER 19-24: RXFnEIDL: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER, LOW BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 EID7:EID0: Extended Identifier Filter bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-25: RXMnSIDH: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK, HIGH BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 SID10:SID3: Standard Identifier Mask bits or Extended Identifier Mask bits EID28:EID21

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

IER 19-35:	IPRJ: PEF	IPHERAL	INTERRU	PT PRIOR	II Y REGIS	IER 3			
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP	TXB0IP	RXB1IP	RXB0IP	
	bit 7		•		•		•	bit 0	
bit 7	IRXIP: CA	N Invalid Re	ceived Mes	sage Interru	ot Priority bit	t			
	1 = High p 0 = Low pr								
bit 6	WAKIP: C	AN bus Activ	vity Wake-u	o Interrupt P	riority bit				
	1 = High p 0 = Low pr								
bit 5	ERRIP: CA	AN bus Erro	r Interrupt P	riority bit					
	1 = High priority								
	0 = Low pr	iority							
bit 4	TXB2IP: C	AN Transmi	t Buffer 2 In	terrupt Priori	ity bit				
	1 = High p	•							
	0 = Low pr	iority							
bit 3	TXB1IP: C	AN Transmi	t Buffer 1 In	terrupt Priori	ity bit				
	1 = High p	•							
	0 = Low pr	•							
bit 2			t Buffer 0 In	terrupt Priori	ity bit				
	1 = High p	•							
L. 1	0 = Low pr	•			a I. 1a				
bit 1			Butter I In	terrupt Priori	ty Dit				
	1 = High p 0 = Low pr								
bit 0		•	e Buffer 0 In	terrupt Priori	tv bit				
2	1 = High p				.,				
	0 = Low pr	•							
	Legend:								
	R = Reada	ble bit	W = Writa	ble bit	U = Unim	plemented	bit, read as	0'	

REGISTER 19-35: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared x = Bit is unk	nown

19.12 Error Detection

The CAN protocol provides sophisticated error detection mechanisms. The following errors can be detected.

19.12.1 CRC ERROR

With the Cyclic Redundancy Check (CRC), the transmitter calculates special check bits for the bit sequence, from the start of a frame until the end of the data field. This CRC sequence is transmitted in the CRC field. The receiving node also calculates the CRC sequence using the same formula and performs a comparison to the received sequence. If a mismatch is detected, a CRC error has occurred and an error frame is generated. The message is repeated.

19.12.2 ACKNOWLEDGE ERROR

In the Acknowledge field of a message, the transmitter checks if the Acknowledge slot (which was sent out as a recessive bit) contains a dominant bit. If not, no other node has received the frame correctly. An Acknowledge Error has occurred; an error frame is generated and the message will have to be repeated.

19.12.3 FORM ERROR

If a node detects a dominant bit in one of the four segments, including end of frame, interframe space, Acknowledge delimiter or CRC delimiter, then a Form Error has occurred and an error frame is generated. The message is repeated.

19.12.4 BIT ERROR

A Bit Error occurs if a transmitter sends a dominant bit and detects a recessive bit, or if it sends a recessive bit and detects a dominant bit, when monitoring the actual bus level and comparing it to the just transmitted bit. In the case where the transmitter sends a recessive bit and a dominant bit is detected during the arbitration field and the Acknowledge slot, no Bit Error is generated because normal arbitration is occurring.

19.12.5 STUFF BIT ERROR

If, between the start of frame and the CRC delimiter, six consecutive bits with the same polarity are detected, the bit stuffing rule has been violated. A Stuff Bit Error occurs and an error frame is generated. The message is repeated.

19.12.6 ERROR STATES

Detected errors are made public to all other nodes via error frames. The transmission of the erroneous message is aborted and the frame is repeated as soon as possible. Furthermore, each CAN node is in one of the three error states "error-active", "error-passive" or "bus-off" according to the value of the internal error counters. The error-active state is the usual state, where the bus node can transmit messages and activate error frames (made of dominant bits) without any restrictions. In the error-passive state, messages and passive error frames (made of recessive bits) may be transmitted. The bus-off state makes it temporarily impossible for the station to participate in the bus communication. During this state, messages can neither be received nor transmitted.

19.12.7 ERROR MODES AND ERROR COUNTERS

The PIC18FXX8 contains two error counters: the Receive Error Counter (RXERRCNT) and the Transmit Error Counter (TXERRCNT). The values of both counters can be read by the MCU. These counters are incremented or decremented in accordance with the CAN bus specification.

The PIC18FXX8 is error-active if both error counters are below the error-passive limit of 128. It is errorpassive if at least one of the error counters equals or exceeds 128. It goes to bus-off if the transmit error counter equals or exceeds the bus-off limit of 256. The device remains in this state until the bus-off recovery sequence is received. The bus-off recovery sequence consists of 128 occurrences of 11 consecutive recessive bits (see Figure 19-10). Note that the CAN module, after going bus-off, will recover back to erroractive without any intervention by the MCU if the bus remains Idle for 128 x 11 bit times. If this is not desired, the error Interrupt Service Routine should address this. The current error mode of the CAN module can be read by the MCU via the COMSTAT register.

Additionally, there is an Error State Warning flag bit, EWARN, which is set if at least one of the error counters equals or exceeds the error warning limit of 96. EWARN is reset if both error counters are less than the error warning limit.

REGISTER 24-7: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)

11 27-7.					01011			
	U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
	—	—	—	_	WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0
	bit 7							bit 0
bit 7-4	Unimplem	ented: Read	as '0'					
bit 3	WRT3: Wri	ite Protection	bit ⁽¹⁾					
		3 (006000-00 3 (006000-00	,		ed			
h 11 O		ite Protection	,	protootou				
bit 2								
		2 (004000-00	,	•	ed			
	0 = Block 2	2 (004000-00	5FFFh) write	e-protected				
bit 1	WRT1: Wri	ite Protection	bit					
	1 = Block 1	(002000-00	3FFFh) not v	write-protect	ed			
	0 = Block 1	(002000-00	3FFFh) write	e-protected				
bit 0	WRT0: Wri	ite Protection	bit					
	1 = Block 0) (000200-00	1FFFh) not v	write-protect	ed			
	0 = Block 0) (000200-00	1FFFh) write	e-protected				
	Note 1:	Unimpleme	nted in PIC1	8FX48 devic	es; maintair	n this bit set		

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

REGISTER 24-8: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)

1 24-0.				ILCIOIL				
	R/P-1	R/P-1	R-1	U-0	U-0	U-0	U-0	U-0
	WRTD	WRTB	WRTC	—	—	—	—	—
	bit 7							bit 0
bit 7	WRTD: Da	ata EEPRON	/ Write Prot	ection bit				
	1 = Data E	EPROM no	t write-prote	cted				
	0 = Data E	EPROM wr	te-protected	ł				
bit 6	WRTB: Bo	ot Block Wr	ite Protectio	n bit				
	1 = Boot B	lock (00000	0-0001FFh)	not write-pr	otected			
	0 = Boot B	lock (00000	0-0001FFh)	write-protect	cted			
bit 5	WRTC: Co	onfiguration	Register Wr	ite Protectio	n bit			
	1 = Config	uration regis	sters (30000	0-3000FFh)	not write-pr	otected		
	0 = Config	uration regis	sters (30000	0-3000FFh)	write-protect	ted		
	Note:	This bit is r	ead-only ar	nd cannot be	changed in	user mode.		
bit 4-0	Unimplem	ented: Rea	d as '0'					
	•							

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device	e is unprogrammed	u = Unchanged from programmed state

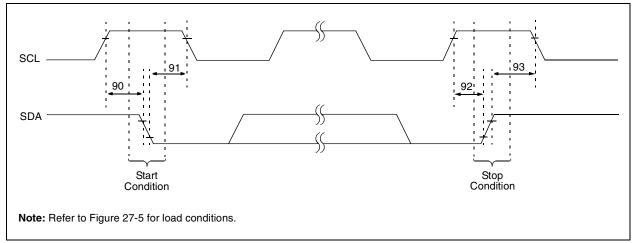
TABLE 25-2: PIC18FXXX INSTRUCTION SET (CONTINUED)

Mnem	onic,	Description	Qualas	16-1	Bit Inst	ruction	Word	Status	Natas
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
LITERAL	OPERAT	TIONS							
ADDLW	k	Add literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move literal (12-bit)2nd word	2	1110	1110	00ff	kkkk	None	
		to FSRx 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA ME	MORY ←	PROGRAM MEMORY OPERA	TIONS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with post-increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with post-decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with pre-increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2 (5)	0000	0000	0000	1100	None	
TBLWT*+		Table Write with post-increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with post-decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with pre-increment		0000	0000	0000	1111	None	

Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.


4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

CLRF	Clear f					
Syntax:	[<i>label</i>] CLF	RF f[,a]			
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in \ [0,1] \end{array}$					
Operation:	$\begin{array}{l} 000h \rightarrow f \\ 1 \rightarrow Z \end{array}$					
Status Affected:	Z					
Encoding:	0110	101a	fff	f	ffff	
Description: Words: Cycles:	Clears the c register. If 'a be selected If 'a' = 1, the as per the E 1	ı' is '0', tl , overrid en the ba	he Acc ing the ank wil	ess BS II be	Bank will R value. selected	
Q Cycle Activity:						
Q1	Q2	Q	3	Q4		
Decode	Read register 'f'	Proce Data			Write jister 'f'	
Example:	CLRF	CLRF FLAG_REG				
Before Instruc FLAG_R After Instructio FLAG_R	EG = 0x on	5A 00				

CLRWDT	Clear Wate	chdog Ti	mer	
Syntax:	[label] CLRWDT			
Operands:	None			
Operation:	$\begin{array}{l} \text{000h} \rightarrow \text{WDT,} \\ \text{000h} \rightarrow \text{WDT postscaler,} \\ 1 \rightarrow \overline{\text{TO,}} \\ 1 \rightarrow \overline{\text{PD}} \end{array}$			
Status Affected:	TO, PD			
Encoding:	0000	0000	0000	0100
Words:	Watchdog postscaler and PD are	of the WI		
Cycles:	1			
2	1			
O Cuclo Activity:				
Q Cycle Activity: Q1	Q2	Q	3	Q4
Q Cycle Activity: Q1 Decode	Q2 No	Q		Q4 No
Q1			SS	
Q1 Decode Example:	No operation CLRWDT	Proce	SS	No
Q1 Decode	No operation CLRWDT	Proce	SS	No
Q1 Decode Example: Before Instruc	No operation CLRWDT tion unter =	Proce	SS	No
Q1 Decode Example: Before Instruc WDT Co After Instructio WDT Co	No operation CLRWDT tion unter = on unter =	Proce Dat	SS	No
Q1 Decode Example: Before Instruc WDT Co After Instructio	No operation CLRWDT tion unter = on unter =	Proce Date ? 0x00	SS	No

FIGURE 27-19: MASTER SSP I²C[™] BUS START/STOP BITS TIMING WAVEFORMS

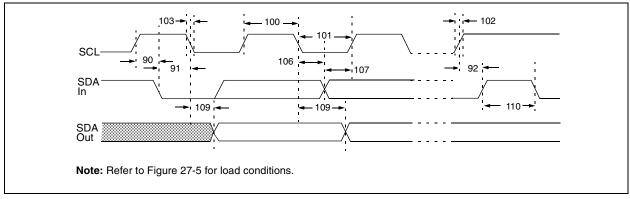
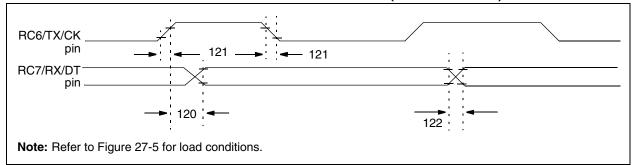


TABLE 27-19:	MASTER SSP I ² C [™] BUS START/STOP BITS REQUIREMENTS
--------------	---


Param No.	Symbol	Characte	ristic	Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		Repeated Start
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		condition
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	After this period, the
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_		first clock pulse is
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)			generated
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		
93	THD:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ns	
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)		1	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins.

FIGURE 27-20: MASTER SSP I²C™ BUS DATA TIMING

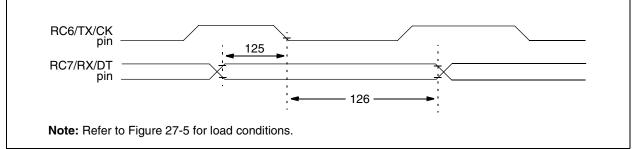

FIGURE 27-21: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 27-21: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

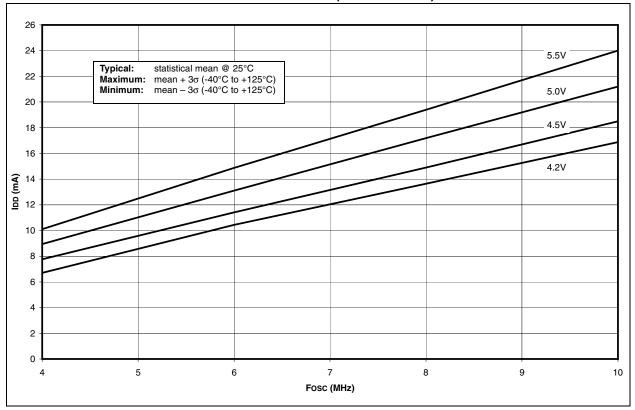
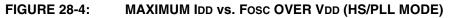
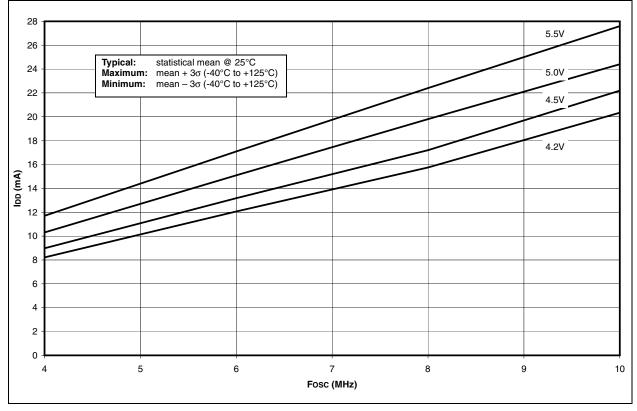
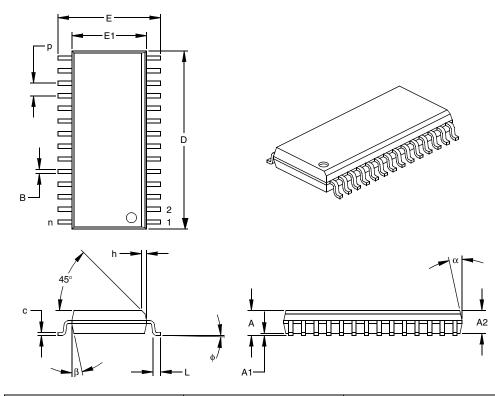

Param No.	Symbol	Characteristic		Min	Мах	Units	Conditions
120	TckH2dtV	SYNC XMIT (Master & Slave)					
		Clock High to Data-Out Valid	PIC18FXX8		50	ns	
			PIC18LFXX8		150	ns	
121	Tckrf	Clock Out Rise Time and Fall Time	PIC18FXX8		25	ns	
		(Master mode)	PIC18LFXX8	—	60	ns	
122	Tdtrf	Data-Out Rise Time and Fall Time	PIC18FXX8		25	ns	
			PIC18LFXX8		60	ns	

FIGURE 27-22: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING




TABLE 27-22: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TdtV2ckl	SYNC RCV (Master & Slave) Data-Hold before $CK \downarrow$ (DT hold time)	10		ns	
126	TckL2dtl	Data-Hold after CK \downarrow (DT hold time)	15	—	ns	


FIGURE 28-3: TYPICAL IDD vs. Fosc OVER VDD (HS/PLL MODE)

28-Lead Plastic Small Outline (SO) – Wide, 300 mil Body (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*			MILLIMETERS			
Di	mension Limits	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		28			28			
Pitch	р		.050			1.27			
Overall Height	А	.093	.099	.104	2.36	2.50	2.64		
Molded Package Thicknes	s A2	.088	.091	.094	2.24	2.31	2.39		
Standoff	§ A1	.004	.008	.012	0.10	0.20	0.30		
Overall Width	E	.394	.407	.420	10.01	10.34	10.67		
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59		
Overall Length	D	.695	.704	.712	17.65	17.87	18.08		
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74		
Foot Length	L	.016	.033	.050	0.41	0.84	1.27		
Foot Angle Top	φ	0	4	8	0	4	8		
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33		
Lead Width	В	.014	.017	.020	0.36	0.42	0.51		
Mold Draft Angle Top	α	0	12	15	0	12	15		
Mold Draft Angle Bottom	β	0	12	15	0	12	15		
O									

* Controlling Parameter

§ Significant Characteristic Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-052

RXBnSIDL (Receive Buffer n
Standard Identifier, Low Byte)
RXERRCNT (Receive Error Count)
RXFnEIDH (Receive Acceptance Filter n
Extended Identifier, High Byte)
RXFnEIDL (Receive Acceptance Filter n
Extended Identifier, Low Byte)
RXFnSIDH (Receive Acceptance Filter n
Standard Identifier Filter, High Byte)
RXFnSIDL (Receive Acceptance Filter n
Standard Identifier Filter, Low Byte)
RXMnEIDH (Receive Acceptance Mask n
Extended Identifier Mask, High Byte)217 RXMnEIDL (Receive Acceptance Mask n
Extended Identifier Mask, Low Byte)
RXMnSIDH (Receive Acceptance Mask n
Standard Identifier Mask, High Byte)
RXMnSIDL (Receive Acceptance Mask n
Standard Identifier Mask, Low Byte)
SSPCON1 (MSSP Control 1, I ² C Mode) 154
SSPCON1 (MSSP Control 1, SPI Mode)145
SSPCON2 (MSSP Control 2, I ² C Mode) 155
SSPSTAT (MSSP Status, I ² C Mode)153
SSPSTAT (MSSP Status, SPI Mode) 144
Status57
STKPTR (Stack Pointer)
T0CON (Timer0 Control)109
T1CON (Timer1 Control)113
T2CON (Timer2 Control)117
T3CON (Timer3 Control)119
TRISE (PORTE Direction/PSP Control)105
TXBnCON (Transmit Buffer n Control)
TXBnDLC (Transmit Buffer n
Data Length Code)
TXBnDm (Transmit Buffer n
Data Field Byte m)
TXBnEIDH (Transmit Buffer n
Extended Identifier, High Byte)
TXBnEIDL (Transmit Buffer n
Extended Identifier, Low Byte)
TXBnSIDH (Transmit Buffer n
Standard Identifier, High Byte)
TXBnSIDL (Transmit Buffer n
Standard Identifier, Low Byte)
TXERRCNT (Transmit Error Count)
TXSTA (Transmit Status and Control)
WDTCON (Watchdog Timer Control)
RESET
Reset
MCLR Reset During Normal Operation
MCLR Reset During Sleep25
Power-on Reset (POR)25
Programmable Brown-out Reset (PBOR)25
RESET Instruction25
Stack Full Reset
Stack Underflow Reset25
Watchdog Timer (WDT) Reset25
RETFIE
RETLW
RETURN
Revision History
RLCF
RLNCF
RRCF
RRNCF

S

SCI. <i>See</i> USART.
SCK Pin
SDI Pin
SDO Pin
Serial Clock (SCK) Pin
Serial Communication Interface.
See USART.
Serial Peripheral Interface. See SPI.
SETF
Slave Select (SS) Pin
Slave Select, SS Pin
SLEEP
Sleep
Software Simulator (MPLAB SIM)
Software Simulator (MPLAB SIM30)
Special Event Trigger. See Compare.
Special Features of the CPU
Configuration Bits
Configuration Bits and
Device IDs
Configuration Registers
Special Function Register Map
Special Function Registers
SPECIAL FUNCTION Registers
Associated Registers 151
Bus Mode Compatibility
Effects of a Reset
Master Mode
Master/Slave Connection
Registers
Serial Clock
Serial Data In (SDI) Pin
Serial Data Out (SDO) Pin
Slave Select
Slave Select Synchronization
Sleep Operation
SPI Clock
SSPBUF Register 148
SSPSR Register
SSPOV
SSPOV Status Flag
SSPSTAT Register
R/W Bit 156, 157
SUBFWB
SUBLW
SUBWF
SUBWFB
SWAPF
т

Table Pointer Operations (table) 68 TBLRD 319 TBLWT 320 Timer0 109 16-bit Mode Timer Reads and Writes 111 Associated Registers 111 Operation 111 Overflow Interrupt 111 Prescaler 111 Prescaler 111
Prescaler. <i>See</i> Prescaler, Timer0. Switching Prescaler Assignment