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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC18FXX8
2.6.2 OSCILLATOR TRANSITIONS

The PIC18FXX8 devices contain circuitry to prevent
“glitches” when switching between oscillator sources.
Essentially, the circuitry waits for eight rising edges of
the clock source that the processor is switching to. This
ensures that the new clock source is stable and that its
pulse width will not be less than the shortest pulse
width of the two clock sources.

Figure 2-7 shows a timing diagram indicating the tran-
sition from the main oscillator to the Timer1 oscillator.
The Timer1 oscillator is assumed to be running all the
time. After the SCS bit is set, the processor is frozen at
the next occurring Q1 cycle. After eight synchronization
cycles are counted from the Timer1 oscillator,
operation resumes. No additional delays are required
after the synchronization cycles.

The sequence of events that takes place when switch-
ing from the Timer1 oscillator to the main oscillator will
depend on the mode of the main oscillator. In addition
to eight clock cycles of the main oscillator, additional
delays may take place.

If the main oscillator is configured for an external
crystal (HS, XT, LP), the transition will take place after
an oscillator start-up time (TOST) has occurred. A timing
diagram indicating the transition from the Timer1
oscillator to the main oscillator for HS, XT and LP
modes is shown in Figure 2-8. 

FIGURE 2-7: TIMING DIAGRAM FOR TRANSITION FROM OSC1 TO TIMER1 OSCILLATOR             

FIGURE 2-8: TIMING DIAGRAM FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS, XT, LP)      
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PIC18FXX8
3.1 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when a
VDD rise is detected. To take advantage of the POR
circuitry, connect the MCLR pin directly (or through a
resistor) to VDD. This eliminates external RC compo-
nents usually needed to create a Power-on Reset
delay. A minimum rise rate for VDD is specified (refer to
parameter D004). For a slow rise time, see Figure 3-2.

When the device starts normal operation (exits the
Reset condition), device operating parameters
(voltage, frequency, temperature, etc.) must be met to
ensure operation. If these conditions are not met, the
device must be held in Reset until the operating condi-
tions are met. Brown-out Reset may be used to meet
the voltage start-up condition.

3.2 MCLR

PIC18FXX8 devices have a noise filter in the MCLR
Reset path. The filter will detect and ignore small
pulses.

It should be noted that a WDT Reset does not drive
MCLR pin low.

The behavior of the ESD protection on the MCLR pin
differs from previous devices of this family. Voltages
applied to the pin that exceed its specification can
result in both Resets and current draws outside of
device specification during the Reset event. For this
reason, Microchip recommends that the MCLR pin no
longer be tied directly to VDD. The use of an RC
network, as shown in Figure 3-2, is suggested.

FIGURE 3-2: EXTERNAL POWER-ON 
RESET CIRCUIT (FOR 
SLOW VDD POWER-UP)        

3.3 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out
(parameter #33), only on power-up from the POR. The
Power-up Timer operates on an internal RC oscillator.
The chip is kept in Reset as long as the PWRT is active.
The PWRT’s time delay allows VDD to rise to an accept-
able level. A configuration bit (PWRTEN in CONFIG2L
register) is provided to enable/disable the PWRT.

The power-up time delay will vary from chip to chip due
to VDD, temperature and process variation. See DC
parameter #33 for details.

3.4 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024
oscillator cycle (from OSC1 input) delay after the
PWRT delay is over (parameter #32). This additional
delay ensures that the crystal oscillator or resonator
has started and stabilized.

The OST time-out is invoked only for XT, LP, HS and
HS4 modes and only on Power-on Reset or wake-up
from Sleep.

3.5 PLL Lock Time-out

With the PLL enabled, the time-out sequence following
a Power-on Reset is different from other oscillator
modes. A portion of the Power-up Timer is used to pro-
vide a fixed time-out that is sufficient for the PLL to lock
to the main oscillator frequency. This PLL lock time-out
(TPLL) is typically 2 ms and follows the oscillator
start-up time-out (OST).

3.6 Brown-out Reset (BOR)

A configuration bit, BOREN, can disable (if clear/
programmed), or enable (if set), the Brown-out Reset
circuitry. If VDD falls below parameter D005 for greater
than parameter #35, the brown-out situation resets the
chip. A Reset may not occur if VDD falls below param-
eter D005 for less than parameter #35. The chip will
remain in Brown-out Reset until VDD rises above BVDD.
The Power-up Timer will then be invoked and will keep
the chip in Reset an additional time delay (parameter
#33). If VDD drops below BVDD while the Power-up
Timer is running, the chip will go back into a Brown-out
Reset and the Power-up Timer will be initialized. Once
VDD rises above BVDD, the Power-up Timer will
execute the additional time delay. 

Note 1: External Power-on Reset circuit is required
only if the VDD power-up slope is too slow.
The diode D helps discharge the capacitor
quickly when VDD powers down.

2: R < 40 kΩ is recommended to make sure that
the voltage drop across R does not violate
the device’s electrical specification.

3: R1 = 100Ω to 1 kΩ will limit any current flow-
ing into MCLR from external capacitor C, in
the event of MCLR/VPP pin breakdown due to
Electrostatic Discharge (ESD) or Electrical
Overstress (EOS).

C

R1
RD

VDD

MCLR

PIC18FXXX
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PIC18FXX8
FIGURE 4-5: DATA MEMORY MAP FOR PIC18F248/448   
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PIC18FXX8
    
TABLE 4-1: SPECIAL FUNCTION REGISTER MAP

Address Name Address Name Address Name Address Name

FFFh TOSU FDFh INDF2(2) FBFh CCPR1H F9Fh IPR1

FFEh TOSH FDEh POSTINC2(2) FBEh CCPR1L F9Eh PIR1

FFDh TOSL FDDh POSTDEC2(2) FBDh CCP1CON F9Dh PIE1

FFCh STKPTR FDCh PREINC2(2) FBCh ECCPR1H(5) F9Ch —

FFBh PCLATU FDBh PLUSW2(2) FBBh ECCPR1L(5) F9Bh —

FFAh PCLATH FDAh FSR2H FBAh ECCP1CON(5) F9Ah —

FF9h PCL FD9h FSR2L FB9h — F99h —

FF8h TBLPTRU FD8h STATUS FB8h — F98h —

FF7h TBLPTRH FD7h TMR0H FB7h ECCP1DEL(5) F97h —

FF6h TBLPTRL FD6h TMR0L FB6h ECCPAS(5) F96h TRISE(5) 

FF5h TABLAT FD5h T0CON FB5h CVRCON(5) F95h TRISD(5)  

FF4h PRODH FD4h — FB4h CMCON(5) F94h TRISC

FF3h PRODL FD3h OSCCON FB3h TMR3H F93h TRISB

FF2h INTCON FD2h LVDCON FB2h TMR3L F92h TRISA

FF1h INTCON2 FD1h WDTCON FB1h T3CON F91h —

FF0h INTCON3 FD0h RCON FB0h — F90h —

FEFh INDF0(2) FCFh TMR1H FAFh SPBRG F8Fh —

FEEh POSTINC0(2) FCEh TMR1L FAEh RCREG F8Eh —

FEDh POSTDEC0(2) FCDh T1CON FADh TXREG F8Dh LATE(5) 

FECh PREINC0(2) FCCh TMR2 FACh TXSTA F8Ch LATD(5) 

FEBh PLUSW0(2) FCBh PR2 FABh RCSTA F8Bh LATC

FEAh FSR0H FCAh T2CON FAAh — F8Ah LATB

FE9h FSR0L FC9h SSPBUF FA9h EEADR F89h LATA

FE8h WREG FC8h SSPADD FA8h EEDATA F88h —

FE7h INDF1(2) FC7h SSPSTAT FA7h EECON2 F87h —

FE6h POSTINC1(2) FC6h SSPCON1 FA6h EECON1 F86h —

FE5h POSTDEC1(2) FC5h SSPCON2 FA5h IPR3 F85h —

FE4h PREINC1(2) FC4h ADRESH FA4h PIR3 F84h PORTE(5) 

FE3h PLUSW1(2) FC3h ADRESL FA3h PIE3 F83h PORTD(5) 

FE2h FSR1H FC2h ADCON0 FA2h IPR2 F82h PORTC

FE1h FSR1L FC1h ADCON1 FA1h PIR2 F81h PORTB

FE0h BSR FC0h — FA0h PIE2 F80h PORTA

Note 1: Unimplemented registers are read as ‘0’.
2: This is not a physical register.

3: Contents of register are dependent on WIN2:WIN0 bits in the CANCON register.
4: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given 

for each instance of the CANSTAT register due to the Microchip header file requirement.
5: These registers are not implemented on the PIC18F248 and PIC18F258.
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PIC18FXX8
6.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and
erasable during normal operation over the entire VDD

range.

A read from program memory is executed on one byte
at a time. A write to program memory is executed on
blocks of 8 bytes at a time. Program memory is erased
in blocks of 64 bytes at a time. A bulk erase operation
may not be issued from user code.

Writing or erasing program memory will cease instruc-
tion fetches until the operation is complete. The
program memory cannot be accessed during the write
or erase, therefore, code cannot execute. An internal
programming timer terminates program memory writes
and erases. 

A value written to program memory does not need to be
a valid instruction. Executing a program memory
location that forms an invalid instruction results in a
NOP.

6.1 Table Reads and Table Writes

In order to read and write program memory, there are
two operations that allow the processor to move bytes
between the program memory space and the data
RAM: 

• Table Read (TBLRD)
• Table Write (TBLWT)

The program memory space is 16 bits wide, while the
data RAM space is 8 bits wide. Table reads and table
writes move data between these two memory spaces
through an 8-bit register (TABLAT).

Table read operations retrieve data from program
memory and place it into the data RAM space.
Figure 6-1 shows the operation of a table read with
program memory and data RAM.

Table write operations store data from the data memory
space into holding registers in program memory. The
procedure to write the contents of the holding registers
into program memory is detailed in Section 6.5
“Writing to Flash Program Memory”. Figure 6-2
shows the operation of a table write with program
memory and data RAM.

Table operations work with byte entities. A table block
containing data, rather than program instructions, is not
required to be word aligned. Therefore, a table block
can start and end at any byte address. If a table write is
being used to write executable code into program
memory, program instructions will need to be word
aligned.

FIGURE 6-1: TABLE READ OPERATION

Table Pointer(1)

Table Latch (8-bit)
Program Memory

TBLPTRH TBLPTRL
TABLAT

TBLPTRU

Instruction: TBLRD*

Note 1: Table Pointer points to a byte in program memory.

Program Memory
(TBLPTR)
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PIC18FXX8
FIGURE 9-1: RA3:RA0 AND RA5 PINS 
BLOCK DIAGRAM   

FIGURE 9-2: RA4/T0CKI PIN BLOCK 
DIAGRAM   

FIGURE 9-3: OSC2/CLKO/RA6 PIN BLOCK DIAGRAM 
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Note 1: CLKO is 1/4 of FOSC.

2: I/O pin has diode protection to VDD and VSS.
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PIC18FXX8
9.4 PORTD, TRISD and LATD 
Registers

PORTD is an 8-bit wide, bidirectional port. The corre-
sponding Data Direction register for the port is TRISD.
Setting a TRISD bit (= 1) will make the corresponding
PORTD pin an input (i.e., put the corresponding output
driver in a high-impedance mode). Clearing a TRISD
bit (= 0) will make the corresponding PORTD pin an
output (i.e., put the contents of the output latch on the
selected pin).

Read-modify-write operations on the LATD register
read and write the latched output value for PORTD. 

PORTD uses Schmitt Trigger input buffers. Each pin is
individually configurable as an input or output.

PORTD can be configured as an 8-bit wide, micro-
processor port (Parallel Slave Port or PSP) by setting
the control bit PSPMODE (TRISE<4>). In this mode,
the input buffers are TTL. See Section 10.0 “Parallel
Slave Port” for additional information. 

PORTD is also multiplexed with the analog comparator
module and the ECCP module.

EXAMPLE 9-4: INITIALIZING PORTD

FIGURE 9-9: PORTD BLOCK DIAGRAM IN I/O PORT MODE

Note: This port is only available on the
PIC18F448 and PIC18F458. 

CLRF PORTD ; Initialize PORTD by 
; clearing output 
; data latches 

CLRF LATD ; Alternate method 
; to clear output 
; data latches 

MOVLW 07h ; comparator off
MOVWF CMCON
MOVLW 0CFh ; Value used to 

; initialize data 
; direction 

MOVWF TRISD ; Set RD3:RD0 as inputs
; RD5:RD4 as outputs 
; RD7:RD6 as inputs 

PORT/PSP Select

Data Bus

WR LATD

WR TRISD

Data Latch

TRIS Latch

RD TRISD

QD

QCK

Q D

EN

QD

QCK

P

N

VDD

Vss

RD PORTD

RD0/PSP0/
or
PORTD

RD LATD

Schmitt
Trigger

Note 1: I/O pins have diode protection to VDD and VSS.

PSP Data Out

PSP Write

PSP Read

C1IN+

C1IN+ pin(1)
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PIC18FXX8
REGISTER 17-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0

bit 7 bit 0

bit 7 WCOL: Write Collision Detect bit (Transmit mode only)

1 = The SSPBUF register is written while it is still transmitting the previous word
(must be cleared in software) 

0 = No collision 

bit 6 SSPOV: Receive Overflow Indicator bit 
SPI Slave mode: 
1 = A new byte is received while the SSPBUF register is still holding the previous data. In case

of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode.The user
must read the SSPBUF even if only transmitting data to avoid setting overflow (must be
cleared in software).

0 = No overflow

Note: In Master mode, the overflow bit is not set since each new reception (and
transmission) is initiated by writing to the SSPBUF register.

bit 5 SSPEN: Synchronous Serial Port Enable bit 

1 = Enables serial port and configures SCK, SDO, SDI and SS as serial port pins 
0 = Disables serial port and configures these pins as I/O port pins

Note: When enabled, these pins must be properly configured as input or output.

bit 4 CKP: Clock Polarity Select bit 
1 = Idle state for clock is a high level 
0 = Idle state for clock is a low level

bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

0101 = SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin 
0100 = SPI Slave mode, clock = SCK pin, SS pin control enabled
0011 = SPI Master mode, clock = TMR2 output/2 
0010 = SPI Master mode, clock = FOSC/64 
0001 = SPI Master mode, clock = FOSC/16 
0000 = SPI Master mode, clock = FOSC/4 

Note: Bit combinations not specifically listed here are either reserved or implemented in
I2C mode only.

Legend:  

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
© 2006 Microchip Technology Inc. DS41159E-page 145



PIC18FXX8
FIGURE 17-10: I2C™ SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESS) 
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18.3.2 USART SYNCHRONOUS MASTER 
RECEPTION

Once Synchronous Master mode is selected, reception
is enabled by setting either enable bit SREN (RCSTA
register) or enable bit CREN (RCSTA register). Data is
sampled on the RC7/RX/DT pin on the falling edge of
the clock. If enable bit SREN is set, only a single word
is received. If enable bit CREN is set, the reception is
continuous until CREN is cleared. If both bits are set,
then CREN takes precedence.

Steps to follow when setting up a Synchronous Master
Reception:

1. Initialize the SPBRG register for the appropriate
baud rate (Section 18.1 “USART Baud Rate
Generator (BRG)”).

2. Enable the synchronous master serial port by
setting bits SYNC, SPEN and CSRC.

3. Ensure bits CREN and SREN are clear.

4. If interrupts are desired, set enable bit RCIE.
5. If 9-bit reception is desired, set bit RX9.
6. If a single reception is required, set bit SREN.

For continuous reception, set bit CREN.
7. Interrupt flag bit RCIF will be set when reception

is complete and an interrupt will be generated if
the enable bit RCIE was set.

8. Read the RCSTA register to get the ninth bit (if
enabled) and determine if any error occurred
during reception.

9. Read the 8-bit received data by reading the
RCREG register.

10. If any error occurred, clear the error by clearing
bit CREN.

TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION       

FIGURE 18-8: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)       

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on 

POR, BOR

Value on 
all other 
Resets

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 0000 000u

PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000

PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000

IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 000x 0000 000u

RCREG USART Receive Register 0000 0000 0000 0000

TXSTA CSRC TX9 TXEN SYNC — BRGH TRMT TX9D 0000 -010 0000 -010

SPBRG Baud Rate Generator Register 0000 0000 0000 0000

Legend: x = unknown, - = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.

CREN bit

RC7/RX/DT pin

RC6/TX/CK pin

Write to
bit SREN

SREN bit

RCIF bit
(Interrupt)

Read
RXREG

Note:  Timing diagram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q2 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

‘0’

bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7

‘0’

Q1 Q2 Q3 Q4
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REGISTER 19-19: RXBnDm: RECEIVE BUFFER n DATA FIELD BYTE m REGISTERS             

REGISTER 19-20: RXERRCNT: RECEIVE ERROR COUNT REGISTER               

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

RXBnDm7 RXBnDm6 RXBnDm5 RXBnDm4 RXBnDm3 RXBnDm2 RXBnDm1 RXBnDm0

bit 7 bit 0

bit 7-0 RXBnDm7:RXBnDm0: Receive Buffer n Data Field Byte m bits (where 0 ≤ n < 1 and 0 < m < 7)
Each receive buffer has an array of registers. For example, Receive Buffer 0 has 8 registers:
RXB0D0 to RXB0D7.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

REC7 REC6 REC5 REC4 REC3 REC2 REC1 REC0

bit 7 bit 0

bit 7-0 REC7:REC0: Receive Error Counter bits

This register contains the receive error value as defined by the CAN specifications.
When RXERRCNT > 127, the module will go into an error passive state. RXERRCNT does not
have the ability to put the module in “Bus-Off” state.

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
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19.7 Baud Rate Setting

All nodes on a given CAN bus must have the same
nominal bit rate. The CAN protocol uses Non-Return-
to-Zero (NRZ) coding which does not encode a clock
within the data stream. Therefore, the receive clock
must be recovered by the receiving nodes and
synchronized to the transmitters clock.

As oscillators and transmission time may vary from
node to node, the receiver must have some type of
Phase Lock Loop (PLL) synchronized to data transmis-
sion edges to synchronize and maintain the receiver
clock. Since the data is NRZ coded, it is necessary to
include bit stuffing to ensure that an edge occurs at
least every six bit times to maintain the Digital Phase
Lock Loop (DPLL) synchronization.

The bit timing of the PIC18FXX8 is implemented using
a DPLL that is configured to synchronize to the
incoming data and provides the nominal timing for the
transmitted data. The DPLL breaks each bit time into
multiple segments made up of minimal periods of time
called the Time Quanta (TQ).

Bus timing functions executed within the bit time frame,
such as synchronization to the local oscillator, network
transmission delay compensation and sample point
positioning, are defined by the programmable bit timing
logic of the DPLL.

All devices on the CAN bus must use the same bit rate.
However, all devices are not required to have the same
master oscillator clock frequency. For the different clock
frequencies of the individual devices, the bit rate has to
be adjusted by appropriately setting the baud rate
prescaler and number of time quanta in each segment.

The Nominal Bit Rate is the number of bits transmitted
per second, assuming an ideal transmitter with an ideal
oscillator, in the absence of resynchronization. The
nominal bit rate is defined to be a maximum of 1 Mb/s.

The Nominal Bit Time is defined as: 

TBIT = 1/Nominal Bit Rate

The nominal bit time can be thought of as being divided
into separate, non-overlapping time segments. These
segments (Figure 19-7) include:

• Synchronization Segment (Sync_Seg)

• Propagation Time Segment (Prop_Seg)
• Phase Buffer Segment 1 (Phase_Seg1)
• Phase Buffer Segment 2 (Phase_Seg2)

The time segments (and thus, the nominal bit time) are,
in turn, made up of integer units of time called time
quanta or TQ (see Figure 19-7). By definition, the
nominal bit time is programmable from a minimum of
8 TQ to a maximum of 25 TQ. Also, by definition, the
minimum nominal bit time is 1 μs corresponding to a
maximum 1 Mb/s rate. The actual duration is given by
the relationship:

Nominal Bit Time = TQ * (Sync_Seg + Prop_Seg + 
Phase_Seg1 + Phase_Seg2)

The time quantum is a fixed unit derived from the
oscillator period. It is also defined by the programmable
baud rate prescaler, with integer values from 1 to 64, in
addition to a fixed divide-by-two for clock generation.
Mathematically, this is

TQ (μs) = (2 * (BRP + 1))/FOSC (MHz)

or 

TQ (μs) = (2 * (BRP + 1)) * TOSC (μs) 

where FOSC is the clock frequency, TOSC is the
corresponding oscillator period and BRP is an integer
(0 through 63) represented by the binary values of
BRGCON1<5:0>.

FIGURE 19-7: BIT TIME PARTITIONING 

Input 

Sync Propagation
Segment

Phase
Segment 1

Phase
Segment 2

Sample Point

TQ

Nominal Bit Time

Bit
Time
Intervals

Signal

Segment
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19.8 Synchronization

To compensate for phase shifts between the oscillator
frequencies of each of the nodes on the bus, each CAN
controller must be able to synchronize to the relevant
signal edge of the incoming signal. When an edge in
the transmitted data is detected, the logic will compare
the location of the edge to the expected time
(Sync_Seg). The circuit will then adjust the values of
Phase Segment 1 and Phase Segment 2, as
necessary. There are two mechanisms used for
synchronization.

19.8.1 HARD SYNCHRONIZATION

Hard synchronization is only done when there is a reces-
sive to dominant edge during a bus Idle condition, indi-
cating the start of a message. After hard
synchronization, the bit time counters are restarted with
Sync_Seg. Hard synchronization forces the edge which
has occurred to lie within the synchronization segment of
the restarted bit time. Due to the rules of synchroniza-
tion, if a hard synchronization occurs, there will not be a
resynchronization within that bit time.

19.8.2 RESYNCHRONIZATION

As a result of resynchronization, Phase Segment 1
may be lengthened or Phase Segment 2 may be short-
ened. The amount of lengthening or shortening of the
phase buffer segments has an upper bound given by
the Synchronization Jump Width (SJW). The value of
the SJW will be added to Phase Segment 1 (see
Figure 19-8) or subtracted from Phase Segment 2 (see
Figure 19-9). The SJW is programmable between 1 TQ

and 4 TQ.

Clocking information will only be derived from reces-
sive to dominant transitions. The property, that only a
fixed maximum number of successive bits have the
same value, ensures resynchronization to the bit
stream during a frame. 

The phase error of an edge is given by the position of
the edge relative to Sync_Seg, measured in TQ. The
phase error is defined in magnitude of TQ as follows:

• e = 0 if the edge lies within Sync_Seg.

• e > 0 if the edge lies before the sample point.
• e < 0 if the edge lies after the sample point of the 

previous bit.

If the magnitude of the phase error is less than or equal
to the programmed value of the synchronization jump
width, the effect of a resynchronization is the same as
that of a hard synchronization.

If the magnitude of the phase error is larger than the
synchronization jump width and if the phase error is
positive, then Phase Segment 1 is lengthened by an
amount equal to the synchronization jump width.

If the magnitude of the phase error is larger than the
resynchronization jump width and if the phase error is
negative, then Phase Segment 2 is shortened by an
amount equal to the synchronization jump width.

19.8.3 SYNCHRONIZATION RULES

• Only one synchronization within one bit time is 
allowed.

• An edge will be used for synchronization only if 
the value detected at the previous sample point 
(previously read bus value) differs from the bus 
value immediately after the edge.

• All other recessive to dominant edges, fulfilling 
rules 1 and 2, will be used for resynchronization 
with the exception that a node transmitting a 
dominant bit will not perform a resynchronization 
as a result of a recessive to dominant edge with a 
positive phase error.

FIGURE 19-8: LENGTHENING A BIT PERIOD (ADDING SJW TO PHASE SEGMENT 1)

Input 

Sync
Prop

Segment
Phase

Segment 1
Phase

Segment 2≤ SJW

Sample Point
TQ

Signal

Nominal Bit Length

Actual Bit Length

Bit
Time
Segments
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20.2 Selecting the A/D Conversion 
Clock

The A/D conversion time per bit is defined as TAD. The
A/D conversion requires 12 TAD per 10-bit conversion.
The source of the A/D conversion clock is software
selectable. The seven possible options for TAD are: 

• 2 TOSC

• 4 TOSC

• 8 TOSC

• 16 TOSC

• 32 TOSC 
• 64 TOSC

• Internal RC oscillator.

For correct A/D conversions, the A/D conversion clock
(TAD) must be selected to ensure a minimum TAD time
of 1.6 μs.

Table 20-1 shows the resultant TAD times derived from
the device operating frequencies and the A/D clock
source selected.

20.3 Configuring Analog Port Pins

The ADCON1, TRISA and TRISE registers control the
operation of the A/D port pins. The port pins that are
desired as analog inputs must have their corresponding
TRIS bits set (input). If the TRIS bit is cleared (output),
the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the
CHS2:CHS0 bits and the TRIS bits.       

TABLE 20-1: TAD vs. DEVICE OPERATING FREQUENCIES       

TABLE 20-2: TAD vs. DEVICE OPERATING FREQUENCIES (FOR EXTENDED, LF DEVICES)      

Note 1: When reading the port register, all pins
configured as analog input channels will
read as cleared (a low level). Pins config-
ured as digital inputs will convert an
analog input. Analog levels on a digitally
configured input will not affect the
conversion accuracy.

2: Analog levels on any pin that is defined as
a digital input (including the AN4:AN0
pins) may cause the input buffer to
consume current that is out of the
device’s specification.

AD Clock Source (TAD) Device Frequency

Operation ADCS2:ADCS0 20 MHz 5 MHz 1.25 MHz 333.33 kHz

2 TOSC 000 100 ns(2) 400 ns(2) 1.6 μs 6 μs

4 TOSC 100 200 ns(2) 800 ns(2) 3.2 μs 12 μs

8 TOSC 001 400 ns(2) 1.6 μs 6.4 μs 24 μs(3)

16 TOSC 101 800 ns(2) 3.2 μs 12.8 μs 48 μs(3)

32 TOSC 010 1.6 μs 6.4 μs 25.6 μs(3) 96 μs(3)

64 TOSC 110 3.2 μs 12.8 μs 51.2 μs(3) 192 μs(3)

RC 011 2-6 μs(1) 2-6 μs(1) 2-6 μs(1) 2-6 μs(1)

Legend: Shaded cells are outside of recommended range.
Note 1: The RC source has a typical TAD time of 4 μs.

2: These values violate the minimum required TAD time.
3: For faster conversion times, the selection of another clock source is recommended.

AD Clock Source (TAD) Device Frequency

Operation ADCS2:ADCS0 4 MHz 2 MHz 1.25 MHz 333.33 kHz

2 TOSC 000 500 ns(2) 1.0 μs(2) 1.6 μs(2) 6 μs

4 TOSC 100 1.0 μs(2) 2.0 μs(2) 3.2 μs(2) 12 μs

8 TOSC 001 2.0 μs(2) 4.0 μs 6.4 μs 24 μs(3)

16 TOSC 101 4.0 μs(2) 8.0 μs 12.8 μs 48 μs(3)

32 TOSC 010 8.0 μs 16.0 μs 25.6 μs(3) 96 μs(3)

64 TOSC 110 16.0 μs 32.0 μs 51.2 μs(3) 192 μs(3)

RC 011 3-9 μs(1) 3-9 μs(1) 3-9 μs(1) 3-9 μs(1)

Legend: Shaded cells are outside of recommended range.
Note 1: The RC source has a typical TAD time of 6 μs.

2: These values violate the minimum required TAD time.
3: For faster conversion times, the selection of another clock source is recommended.
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NOTES:
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FIGURE 24-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT(1,2)       

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

CLKO(4)

INT pin

INTF Flag
(INTCON<1>)

GIEH bit
(INTCON<7>)

INSTRUCTION FLOW

PC

Instruction
Fetched

Instruction
Executed

PC PC + 2 PC + 4

Inst(PC) = Sleep

Inst(PC – 1)

Inst(PC + 2)

Sleep

Processor in
Sleep

Interrupt Latency(3)

Inst(PC + 4)

Inst(PC + 2)

Inst(0008h) Inst(000Ah)

Inst(0008h)Dummy Cycle

PC + 4 0008h 000Ah

Dummy Cycle

TOST(2)

PC + 4

Note 1: XT, HS or LP Oscillator mode assumed.
2: GIE = 1 assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = 0, execution will continue in-line.
3: TOST = 1024 TOSC (drawing not to scale). This delay will not occur for RC and EC Oscillator modes.
4: CLKO is not available in these oscillator modes but shown here for timing reference.
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FIGURE 24-5: EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED

FIGURE 24-6: EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED

000000h

0001FFh
000200h

001FFFh
002000h

003FFFh
004000h

005FFFh
006000h

007FFFh

WRTB, EBTRB = 11

WRT0, EBTR0 = 10

WRT1, EBTR1 = 11

WRT2, EBTR2 = 11

WRT3, EBTR3 = 11

TBLRD *

TBLPTR = 000FFF

PC = 002FFE

Results: All table reads from external blocks to Blockn are disabled whenever EBTRn = 0.
TABLAT register returns a value of ‘0’.

Register Values Program Memory Configuration Bit Settings

000000h

0001FFh
000200h

001FFFh
002000h

003FFFh
004000h

005FFFh
006000h

007FFFh

WRTB, EBTRB = 11

WRT0, EBTR0 = 10

WRT1, EBTR1 = 11

WRT2, EBTR2 = 11

WRT3, EBTR3 = 11

TBLRD *

TBLPTR = 000FFF

PC = 001FFE

Register Values Program Memory Configuration Bit Settings

Results: Table reads permitted within Blockn even when EBTRBn = 0.
TABLAT register returns the value of the data at the location TBLPTR.
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25.0 INSTRUCTION SET SUMMARY

The PIC18 instruction set adds many enhancements to
the previous PICmicro instruction sets, while maintaining
an easy migration from these PICmicro instruction sets.

Most instructions are a single program memory word
(16 bits) but there are three instructions that require two
program memory locations. 

Each single-word instruction is a 16-bit word divided
into an opcode, which specifies the instruction type and
one or more operands, which further specify the
operation of the instruction. 

The instruction set is highly orthogonal and is grouped
into four basic categories:

• Byte-oriented operations
• Bit-oriented operations

• Literal operations
• Control operations

The PIC18 instruction set summary in Table 25-2 lists
byte-oriented, bit-oriented, literal and control
operations. Table 25-1 shows the opcode field
descriptions.

Most byte-oriented instructions have three operands: 

1. The file register (specified by ‘f’) 
2. The destination of the result 

(specified by ‘d’) 
3. The accessed memory 

(specified by ‘a’) 

The file register designator ‘f’ specifies which file
register is to be used by the instruction. 

The destination designator ‘d’ specifies where the
result of the operation is to be placed. If ‘d’ is zero, the
result is placed in the WREG register. If ‘d’ is one, the
result is placed in the file register specified in the
instruction.

All bit-oriented instructions have three operands:

1. The file register (specified by ‘f’) 

2. The bit in the file register 
(specified by ‘b’) 

3. The accessed memory 
(specified by ‘a’) 

The bit field designator ‘b’ selects the number of the bit
affected by the operation, while the file register desig-
nator ‘f’ represents the number of the file in which the
bit is located.

The literal instructions may use some of the following
operands:

• A literal value to be loaded into a file register 
(specified by ‘k’) 

• The desired FSR register to load the literal value 
into (specified by ‘f’)

• No operand required 
(specified by ‘—’)

The control instructions may use some of the following
operands:

• A program memory address (specified by ‘n’)

• The mode of the CALL or RETURN instructions 
(specified by ‘s’)

• The mode of the table read and table write 
instructions (specified by ‘m’)

• No operand required 
(specified by ‘—’)

All instructions are a single word, except for three
double-word instructions. These three instructions
were made double-word instructions so that all the
required information is available in these 32 bits. In the
second word, the 4 MSbs are ‘1’s. If this second word
is executed as an instruction (by itself), it will execute
as a NOP. 

All single-word instructions are executed in a single
instruction cycle, unless a conditional test is true or the
program counter is changed as a result of the instruc-
tion. In these cases, the execution takes two instruction
cycles, with the additional instruction cycle(s) executed
as a NOP.

The double-word instructions execute in two instruction
cycles.

One instruction cycle consists of four oscillator periods.
Thus, for an oscillator frequency of 4 MHz, the normal
instruction execution time is 1 μs. If a conditional test is
true, or the program counter is changed as a result of
an instruction, the instruction execution time is 2 μs.
Two-word branch instructions (if true) would take 3 μs.

Figure 25-1 shows the general formats that the
instructions can have. 

All examples use the format ‘nnh’ to represent a hexa-
decimal number, where ‘h’ signifies a hexadecimal
digit. 

The Instruction Set Summary, shown in Table 25-2,
lists the instructions recognized by the Microchip
MPASMTM Assembler. 

Section 25.2 “Instruction Set” provides a description
of each instruction.

25.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of
the instruction performs a Read-Modify-Write (R-M-W)
operation. The register is read, the data is modified and
the result is stored according to either the instruction or
the destination designator ‘d’. A read operation is
performed on a register even if the instruction writes to
that register.

For example, a “CLRF PORTB” instruction will read
PORTB, clear all the data bits, then write the result
back to PORTB. This example would have the
unintended result that the condition that sets the RBIF
flag would be cleared.
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BRA Unconditional Branch

Syntax: [ label ]  BRA    n

Operands: -1024 ≤ n ≤ 1023

Operation: (PC) + 2 + 2n → PC

Status Affected: None

Encoding: 1101 0nnn nnnn nnnn

Description: Add the 2’s complement number ‘2n’ to 
the PC. Since the PC will have 
incremented to fetch the next 
instruction, the new address will be 
PC + 2 + 2n. This instruction is a 
two-cycle instruction.

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read literal 
‘n’

Process 
Data

Write to PC

No 
operation

No 
operation

No 
operation

No 
operation

Example: HERE BRA Jump

Before Instruction
PC = address (HERE)

After Instruction
PC = address (Jump)

BSF Bit Set f

Syntax: [ label ]  BSF    f,b[,a]

Operands: 0 ≤ f ≤ 255
0 ≤ b ≤ 7
a ∈ [0,1]

Operation: 1 → f<b>

Status Affected: None

Encoding: 1000 bbba ffff ffff

Description: Bit ‘b’ in register ‘f’ is set. If ‘a’ is ‘0’, the 
Access Bank will be selected, 
overriding the BSR value. If ‘a’ = 1, then 
the bank will be selected as per the 
BSR value.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write
register ‘f’

Example: BSF FLAG_REG, 7

Before Instruction
FLAG_REG = 0x0A

After Instruction
FLAG_REG = 0x8A
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NEGF Negate f

Syntax: [ label ]    NEGF     f [,a]

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: ( f ) + 1 → f

Status Affected: N, OV, C, DC, Z

Encoding: 0110 110a ffff ffff

Description: Location ‘f’ is negated using two’s 
complement. The result is placed in the 
data memory location ‘f’. If ‘a’ is ‘0’, the 
Access Bank will be selected, 
overriding the BSR value. If ‘a’ = 1, then 
the bank will be selected as per the 
BSR value.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write 
register ‘f’ 

Example: NEGF REG, 1

Before Instruction
REG = 0011 1010 [0x3A]

After Instruction
REG = 1100 0110  [0xC6]

NOP No Operation

Syntax: [ label ]    NOP

Operands: None

Operation: No operation

Status Affected: None

Encoding: 0000
1111

0000
xxxx

0000
xxxx

0000
xxxx

Description: No operation.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No 
operation

No 
operation

No 
operation

Example:

None.
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