

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f458-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 RESET

The PIC18FXX8 differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during Sleep
- d) Watchdog Timer (WDT) Reset during normal operation
- e) Programmable Brown-out Reset (PBOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset" state on Power-on Reset, MCLR, WDT Reset, Brownout Reset, MCLR Reset during Sleep and by the RESET instruction.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR are set or cleared differently in different Reset situations, as indicated in Table 3-2. These bits are used in software to determine the nature of the Reset. See Table 3-3 for a full description of the Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The Enhanced MCU devices have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

A WDT Reset does not drive MCLR pin low.

FIGURE 3-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

4.2 Return Address Stack

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC (Program Counter) is pushed onto the stack when a PUSH, CALL or RCALL instruction is executed, or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN instructions.

The stack operates as a 31-word by 21-bit stack memory and a 5-bit Stack Pointer register, with the Stack Pointer initialized to 00000b after all Resets. There is no RAM associated with Stack Pointer 00000b. This is only a Reset value. During a CALL type instruction, causing a push onto the stack, the Stack Pointer is first incremented and the RAM location pointed to by the Stack Pointer is written with the contents of the PC. During a RETURN type instruction, causing a pop from the stack, the contents of the RAM location indicated by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.

The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the data on the top of the stack is readable and writable through SFR registers. Status bits indicate if the stack pointer is at or beyond the 31 levels provided.

4.2.1 TOP-OF-STACK ACCESS

The top of the stack is readable and writable. Three register locations, TOSU, TOSH and TOSL allow access to the contents of the stack location indicated by the STKPTR register. This allows users to implement a software stack, if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU, TOSH and TOSL registers. These values can be placed on a user defined software stack. At return time, the software can replace the TOSU, TOSH and TOSL and do a return.

The user should disable the global interrupt enable bits during this time to prevent inadvertent stack operations.

4.2.2 RETURN STACK POINTER (STKPTR)

The STKPTR register contains the Stack Pointer value, the STKFUL (Stack Full) status bit and the STKUNF (Stack Underflow) status bits. Register 4-1 shows the STKPTR register. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments when values are pushed onto the stack and decrements when values are popped off the stack. At Reset, the Stack Pointer value will be '0'. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit can only be cleared in software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) configuration bit. Refer to **Section 21.0 "Comparator Module**" for a description of the device configuration bits. If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to '0'.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. The 32nd push will overwrite the 31st push (and so on), while STKPTR remains at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the stack pointer remains at '0'. The STKUNF bit will remain set until cleared in software or a POR occurs.

Note: Returning a value of zero to the PC on an underflow has the effect of vectoring the program to the Reset vector, where the stack conditions can be verified and appropriate actions can be taken.

TABLE 5-1:	REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
EEADR	EEPROM A		xxxx xxxx	uuuu uuuu						
EEDATA	EEPROM D		xxxx xxxx	uuuu uuuu						
EECON2	EEPROM C	Control Regi	ster 2 (not a	physical r	egister)				—	_
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000	uu-0 u000
IPR2	—	CMIP	—	EEIP	BCLIP	LVDIP	TMR3IP	ECCP1IP ⁽¹⁾	-1-1 1111	-1-1 1111
PIR2	_	CMIF	_	EEIF	BCLIF	LVDIF	TMR3IF	ECCP1IF ⁽¹⁾	-0-0 0000	-0-0 0000
PIE2	—	CMIE	—	EEIE	BCLIE	LVDIE	TMR3IE	ECCP1IE ⁽¹⁾	-0-0 0000	-0-0 0000

 $\label{eq:logend:loge$

Shaded cells are not used during Flash/EEPROM access.

Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's.

REGISTER 6-1: EECON1: EEPROM CONTROL REGISTER 1											
	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0			
	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD			
	bit 7							bit 0			
bit 7	bit 7 EEPGD: Flash Program or Data EEPROM Memory Select bit										
	1 = Access 0 = Access	program Fla data EEPR	ash memory OM memory	/ y							
bit 6	CFGS: Fla	sh Program/	/Data EE or	Configuratio	on Select bit						
	1 = Access 0 = Access	Configuration program Fla	on registers ash or data	EEPROM m	emory						
bit 5	Unimplem	ented: Read	d as '0'								
bit 4	FREE: Flas	sh Row Eras	se Enable bi	t							
	1 = Erase t (cleare 0 = Perforn	he program d by comple n write only	memory rov tion of erase	w addressed e operation)	by TBLPTF	on the nex	t WR comma	and			
bit 3	WRERR: Write Error Flag bit										
	1 = A write (any M 0 = The wr	operation is CLR or any ' ite operation	prematurel WDT Reset	y terminated during self-t	l limed progra	amming in n	ormal operat	ion)			
	Note:	When a WF tracing of th	RERR occur	rs, the EEPO dition.	D and CFG	iS bits are n	ot cleared. T	his allows			
bit 2	WREN: Wr	ite Enable b	it								
	1 = Allows	write cycles									
	0 = Inhibits	write to the	EEPROM of	or Flash men	nory						
bit 1	WR: Write Control bit										
 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or wri (The operation is self-timed and the bit is cleared by hardware once write is comple WR bit can only be set (not cleared) in software.) 0 = Write cycle to the EEPROM is complete 											
bit 0	RD: Read Control bit										
	1 = Initiates (Read t in softw 0 = Does n	s an EEPRC takes one cy vare. RD bit ot initiate an	OM read cle. RD is c cannot be s EEPROM	leared in har et when EEI read	dware. The PGD = 1.)	RD bit can c	only be set (n	ot cleared)			
	Legend:										

Legend:			
R = Readable bit	W = Writable bit	S = Settable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

NOTES:

14.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers: TMR3H and TMR3L)
- Readable and writable (both registers)
- · Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- Reset from CCP1/ECCP1 module trigger

Figure 14-1 is a simplified block diagram of the Timer3 module.

Register 14-1 shows the Timer3 Control register. This register controls the operating mode of the Timer3 module and sets the CCP1 and ECCP1 clock source.

Register 12-1 shows the Timer1 Control register. This register controls the operating mode of the Timer1 module, as well as contains the Timer1 Oscillator Enable bit (T1OSCEN) which can be a clock source for Timer3.

Timer3 is disabled on POR. Note:

REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3ECCP1	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

bit 7	RD16: 16-bit Read/Write 1 = Enables register read 0 = Enables register read	Mode Enable bit I/write of Timer3 in or I/write of Timer3 in tw	ne 16-bit operation vo 8-bit operations						
bit 6,3	 ,3 T3ECCP1:T3CCP1: Timer3 and Timer1 to CCP1/ECCP1 Enable bits 1x = Timer3 is the clock source for compare/capture CCP1 and ECCP1 modules 01 = Timer3 is the clock source for compare/capture of ECCP1, Timer1 is the clock source for compare/capture of CCP1 00 = Timer1 is the clock source for compare/capture CCP1 and ECCP1 modules 								
bit 5-4	T3CKPS1:T3CKPS0 : Tir 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value	ner3 Input Clock Pres	scale Select bits						
bit 2	T3SYNC: Timer3 Externa(Not usable if the systemWhen TMR3CS = 1:1 = Do not synchronize e0 = Synchronize externalWhen TMR3CS = 0:This bit is ignored. Timera	al Clock Input Synchr clock comes from Til xternal clock input clock input 3 uses the internal clo	onization Control bit mer1/Timer3.) ock when TMR3CS = 0.						
bit 1	TMR3CS: Timer3 Clock 3 1 = External clock input fro 0 = Internal clock (Fosc/-	Source Select bit m Timer1 oscillator or 4)	T1CKI (on the rising edge	after the first falling edge)					
bit 0	TMR3ON: Timer3 On bit 1 = Enables Timer3 0 = Stops Timer3								
	Legend:								
	R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'					
	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

NOTES:

17.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.

Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt if enabled):

- Start condition
- Stop condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

FIGURE 17-16: MSSP BLOCK DIAGRAM (I²C[™] MASTER MODE)

REGISTER 19-8: TXBnEIDL: TRANSMIT BUFFER n EXTENDED IDENTIFIER, LOW BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0

0 **EID7:EID0:** Extended Identifier bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown	

REGISTER 19-9: TXBnDm: TRANSMIT BUFFER n DATA FIELD BYTE m REGISTERS

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TXBnDm7 | TXBnDm6 | TXBnDm5 | TXBnDm4 | TXBnDm3 | TXBnDm2 | TXBnDm1 | TXBnDm0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 **TXBnDm7:TXBnDm0:** Transmit Buffer n Data Field Byte m bits (where $0 \le n < 3$ and 0 < m < 8) Each Transmit Buffer has an array of registers. For example, Transmit Buffer 0 has 7 registers: TXB0D0 to TXB0D7.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-19: RXBnDm: RECEIVE BUFFER n DATA FIELD BYTE m REGISTERS

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXBnDm7 | RXBnDm6 | RXBnDm5 | RXBnDm4 | RXBnDm3 | RXBnDm2 | RXBnDm1 | RXBnDm0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 **RXBnDm7:RXBnDm0:** Receive Buffer n Data Field Byte m bits (where $0 \le n < 1$ and 0 < m < 7) Each receive buffer has an array of registers. For example, Receive Buffer 0 has 8 registers: RXB0D0 to RXB0D7.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-20: RXERRCNT: RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0
bit 7							bit 0

bit 7-0 REC7:REC0: Receive Error Counter bits

This register contains the receive error value as defined by the CAN specifications. When RXERRCNT > 127, the module will go into an error passive state. RXERRCNT does not have the ability to put the module in "Bus-Off" state.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

					•			,
	U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
	—	—		_	CP3 ⁽¹⁾	CP2 ⁽¹⁾	CP1	CP0
	bit 7							bit 0
bit 7-4 bit 3	Unimpleme CP3: Code 1 = Block 3	nted: Read Protection b (006000-00	as '0' _{it} (1) 7FFFh) not c	code-protecte	ed			
bit 2	0 = Block 3 CP2: Code	(006000-00 Protection b	7FFFh) code it(1)	e-protected	_			
	1 = Block 2 0 = Block 2	(004000-00 (004000-00	5FFFh) not c 5FFFh) code	code-protecte e-protected	ed			
bit 1	CP1: Code 1 = Block 1 0 = Block 1	Protection b (002000-00 (002000-00	it 3FFFh) not c 3FFFh) code	code-protecte e-protected	ed			
bit 0	CP0: Code 1 = Block 0 0 = Block 0	Protection b (000200-00 (000200-00	it 1FFFh) not c 1FFFh) code	code-protecte e-protected	ed			
	Note 1:	Unimplemer	nted in PIC18	8FX48 device	es; maintair	n this bit set	t.	

REGISTER 24-5: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device	ce is unprogrammed	u = Unchanged from programmed state

REGISTER 24-6: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

	R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
	CPD	CPB		—	—	—	—	—
	bit 7							bit 0
bit 7	CPD: Data	EEPROM	Code Protec	tion bit				
	1 = Data E	EPROM no	t code-prote	cted				
	0 = Data E	EPROM co	de-protected	ł				
bit 6	CPB: Boot	Block Code	Protection	bit				
	1 = Boot B	lock (00000	0-0001FFh)	not code-pr	otected			
	0 = Boot B	lock (00000	0-0001FFh)	code-protect	cted			
bit 5-0	Unimplem	ented: Rea	d as '0'					
	Legend:							
	R = Reada	ble bit	C = Clear	able bit	U = Unin	nplemented	bit, read as	'0'

-n = Value when device is unprogrammed

u = Unchanged from programmed state

FIGURE 24-6: EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED

BTFSC Bit Test File, Skip if Clear									
Synta	ax: [label] BTFSC f,b[,a]								
Oper	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Oper	ation:	skip if (f) = 0							
Statu	s Affected:	None							
Enco	ding:	1011	bbba	fff	f	ffff			
Desc	ription:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be							
Word	s:	1							
Cycle	es:	1(2) Note: 3 c by	ycles if sk a 2-word	ip and instruc	l follo tion.	owed			
QU	Q1	02	Q	3		Q4			
	Decode	Read register 'f'	Proc	Process Data		No eration			
lf sk	ip:								
	Q1	Q2	Q	3	1	Q4			
	No	No	No) tion	00	No			
lf ski	in and followe	d by 2-word	instruction	1011 1	υþ	eration			
n on	Q1	Q2	Q	03		Q4			
	No	No	No)		No			
	operation	operation	opera	tion	ор	eration			
	No	No	No)		No			
	operation	operation	opera	tion	ор	eration			
<u>Exam</u>	nple:	HERE FALSE TRUE	BTFSC : :	FLAG	, 1				
	Before Instruc	tion	addrees (נבטבו					
	After Instructio	e a	1001855 (.	uere)					
	If FLAG<	:1> = ();						
	PC If FLAG< PC	:1> = a = a	address I; address	TRUE) E)				

BTFSS Bit Test File, Skip if Set								
Synta	ax:	[label] B	٢FS	SS f,b[,a	1]			
Oper	ands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$						
Oper	ation:	skip if (f) = 1						
Statu	s Affected:	None						
Enco	ding:	1010]	bbba	fff	f	ffff	
Desc	ription:	If bit 'b' in register 'f' is '1', then the next instruction is skipped. If bit 'b' is '1', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be						
Words: 1							(aoraan):	
Cycle	es:	1(2) Note: 3 b	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.					
QC	ycle Activity:	02	03	2		04		
	Decode	Read		Proce	Process		No	
		register 'f	' Dat		a	ор	peration	
lf sk	ip:							
	Q1	Q2		Q	3		Q4	
	No	No		No			No	
16 - 1	operation	operation		opera	lion	op	peration	
IT SK	ip and followe	a by 2-word	IIN	struction:			04	
		Q2)		Q4 No	
	operation	operation	1	operat	tion	or	peration	
	No	No		No		• •	No	
	operation	operation		opera	tion	ор	peration	
<u>Exan</u>	nple:	HERE FALSE TRUE	B': :	FFSS	FLAG	, 1		
Before Instruction								
	PC After Instruction	=	ad	dress (HERE))		
	After Instruction If FLAG< PC	200 21> = =	0; ad	dress (FALSI	E)		
	If FLAG< PC	<1> = 1; = address (TRUE)						

26.0 DEVELOPMENT SUPPORT

The PICmicro $^{\ensuremath{\mathbb{B}}}$ microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB C30 C Compiler
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
 - MPLAB dsPIC30 Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART® Plus Development Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration Boards
 - PICDEM[™] 1 Demonstration Board
 - PICDEM.net[™] Demonstration Board
 - PICDEM 2 Plus Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 4 Demonstration Board
 - PICDEM 17 Demonstration Board
 - PICDEM 18R Demonstration Board
 - PICDEM LIN Demonstration Board
 - PICDEM USB Demonstration Board
- Evaluation Kits
 - KEELOQ[®] Evaluation and Programming Tools
 - PICDEM MSC
 - microID[®] Developer Kits
 - CAN
 - PowerSmart® Developer Kits
 - Analog

26.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor with color coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Extensive on-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files (assembly or C)
 - mixed assembly and C
 - machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increasing flexibility and power.

26.2 MPASM Assembler

The MPASM assembler is a full-featured, universal macro assembler for all PICmicro MCUs.

The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects
- User defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

27.1 DC Characteristics (Continued)

PIC18LI (Indus	FXX8 trial)		Stand Opera	lard O ating te	peratir mpera	n g Con ture	ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial		
PIC18F2 (Indus	XX8 trial, Exter	nded)	Stan Oper	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic/ Device	Min	Тур	Max	Units	Conditions		
	Idd	Supply Current ^(2,3,4)							
D010C		PIC18LFXX8	_	21	28	mA	EC, ECIO oscillator configurations VDD = 4.2V, -40°C to +85°C		
D010C		PIC18FXX8	_	21	30	mA	EC, ECIO oscillator configurations VDD = 4.2V, -40°C to +125°C, Fosc = 25 MHz		
D013		PIC18LFXX8		1.3 18 28	3 28 40	mA mA mA	HS oscillator configurations Fosc = 6 MHz, VDD = $2.0V$ Fosc = 25 MHz, VDD = $5.5V$ HS + PLL osc configuration Fosc = 10 MHz, VDD = $5.5V$		
D013		PIC18FXX8	_	18 28	28 40	mA mA	HS oscillator configurations Fosc = 25 MHz, $VDD = 5.5V$ HS + PLL osc configuration Fosc = 10 MHz, $VDD = 5.5V$		
D014		PIC18LFXX8		32	65	μA	Timer1 oscillator configuration Fosc = 32 kHz, VDD = 2.0V		
D014		PIC18FXX8		62 62	250 310	μΑ μΑ	Timer1 oscillator configuration Fosc = 32 kHz, VDD = $4.2V$, $-40^{\circ}C$ to $+85^{\circ}C$ Fosc = 32 kHz, VDD = $4.2V$, $-40^{\circ}C$ to $+125^{\circ}C$		
	IPD	Power-Down Current ⁽³⁾		-					
D020		PIC18LFXX8		0.3 2	4 10	μΑ μΑ	VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C		
D020 D021B		PIC18FXX8		2 6	10 40	μΑ μΑ	VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C		

Legend: Rows are shaded for improved readability.

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.

- **3:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).
- 4: For RC oscillator configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2 REXT (mA) with REXT in kOhm.
- 5: The LVD and BOR modules share a large portion of circuitry. The △IBOR and △ILVD currents are not additive. Once one of these modules is enabled, the other may also be enabled without further penalty.

FIGURE 28-17: TYPICAL AND MAXIMUM \triangle ITMR1 vs. VDD OVER TEMPERATURE (-10°C TO +70°C, TIMER1 WITH OSCILLATOR, XTAL = 32 kHz, C1 AND C2 = 47 pF)

© 2006 Microchip Technology Inc.

29.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil Body (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		MILLIMETERS		
Dimension L	imits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing §	eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Significant Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070

44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		44			44	
Pitch	р		.050			1.27	
Pins per Side	n1		11			11	
Overall Height	Α	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	Е	.685	.690	.695	17.40	17.53	17.65
Overall Length	D	.685	.690	.695	17.40	17.53	17.65
Molded Package Width	E1	.650	.653	.656	16.51	16.59	16.66
Molded Package Length	D1	.650	.653	.656	16.51	16.59	16.66
Footprint Width	E2	.590	.620	.630	14.99	15.75	16.00
Footprint Length	D2	.590	.620	.630	14.99	15.75	16.00
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-047

Drawing No. C04-048