

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f458-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

			IONS I ON ALL NEC		
Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Reset WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt
FSR1H	PIC18F2X8	PIC18F4X8	xxxx	uuuu	uuuu
FSR1L	PIC18F2X8	PIC18F4X8	XXXX XXXX	uuuu uuuu	uuuu uuuu
BSR	PIC18F2X8	PIC18F4X8	0000	0000	uuuu
INDF2	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A
POSTINC2	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A
POSTDEC2	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A
PREINC2	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A
PLUSW2	PIC18F2X8	PIC18F4X8	N/A	N/A	N/A
FSR2H	PIC18F2X8	PIC18F4X8	xxxx	uuuu	uuuu
FSR2L	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	սսսս սսսս
STATUS	PIC18F2X8	PIC18F4X8	x xxxx	u uuuu	u uuuu
TMR0H	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu
TMR0L	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu
T0CON	PIC18F2X8	PIC18F4X8	1111 1111	1111 1111	uuuu uuuu
OSCCON	PIC18F2X8	PIC18F4X8	0	0	u
LVDCON	PIC18F2X8	PIC18F4X8	00 0101	00 0101	uu uuuu
WDTCON	PIC18F2X8	PIC18F4X8	0	0	u
RCON ⁽⁴⁾	PIC18F2X8	PIC18F4X8	01 110q	00 011q	01 101q
TMR1H	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1L	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	PIC18F2X8	PIC18F4X8	0-00 0000	u-uu uuuu	u-uu uuuu
TMR2	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu
PR2	PIC18F2X8	PIC18F4X8	1111 1111	1111 1111	1111 1111
T2CON	PIC18F2X8	PIC18F4X8	-000 0000	-000 0000	-uuu uuuu
SSPBUF	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPADD	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu
SSPCON1	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu
SSPCON2	PIC18F2X8	PIC18F4X8	0000 0000	0000 0000	uuuu uuuu
ADRESH	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADRESL	PIC18F2X8	PIC18F4X8	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	PIC18F2X8	PIC18F4X8	0000 00-0	0000 00-0	uuuu uu-u

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for Reset value for specific condition.

5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other oscillator modes, they are disabled and read '0'.

6: Values for CANSTAT also apply to its other instances (CANSTATRO1 through CANSTATRO4).

EXAMPLE 4-2: INSTRUCTION PIPELINE FLOW

	TCY0	Tcy1	TCY2	TCY3	TCY4	TCY5	
1. MOVLW 55h	Fetch 1	Execute 1		_			
2. MOVWF PORTB		Fetch 2	Execute 2		_		
3. BRA SUB_1			Fetch 3	Execute 3			
4. BSF PORTA, BIT3 (Forced NOP) Fetch 4 Flush							
5. Instruction @ address SUB_1 Fetch SUB_1 Execute S							
Note: All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.							

EXAMPLE 4-3: INSTRUCTIONS IN PROGRAM MEMORY

Instruction	Opcode	Memory	Address
—			000007h
MOVLW 055h	0E55h	55h	000008h
		0Eh	000009h
GOTO 000006h	0EF03h, 0F000h	03h	00000Ah
		0EFh	00000Bh
		00h	00000Ch
		0F0h	00000Dh
MOVFF 123h, 456h	0C123h, 0F456h	23h	00000Eh
		0C1h	00000Fh
		56h	000010h
		0F4h	000011h
			000012h

4.13 Status Register

The Status register, shown in Register 4-2, contains the arithmetic status of the ALU. The Status register can be the destination for any instruction, as with any other register. If the Status register is the destination for an instruction that affects the Z, DC, C, OV or N bits, then the write to these five bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the Status register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the Status register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the Status register, because these instructions do not affect the Z, C, DC, OV or N bits from the Status register. For other instructions which do not affect the status bits, see Table 25-2.

Note:	The	C and	DC	bits	oper	ate as	a Borr	ow
	and	Digit	Borr	ΌW	bit	respec	ctively,	in
	subtraction.							

REGISTER 4-2: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	Ν	OV	Z	DC	С
bit 7							bit 0

- bit 7-5 Unimplemented: Read as '0'
- bit 4 N: Negative bit

This bit is used for signed arithmetic (2's complement). It indicates whether the result of the ALU operation was negative (ALU MSb = 1).

- 1 = Result was negative
- 0 = Result was positive
- bit 3 OV: Overflow bit

This bit is used for signed arithmetic (2's complement). It indicates an overflow of the 7-bit magnitude which causes the sign bit (bit 7) to change state.

- 1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
- 0 = No overflow occurred
- bit 2 Z: Zero bit
 - 1 = The result of an arithmetic or logic operation is zero
 - 0 = The result of an arithmetic or logic operation is not zero
- bit 1 DC: Digit Carry/Borrow bit
 - For ADDWF, ADDLW, SUBLW and SUBWF instructions:
 - 1 = A carry-out from the 4th low-order bit of the result occurred
 - 0 = No carry-out from the 4th low-order bit of the result
 - **Note:** For Borrow, the polarity is reversed. A subtraction is executed by adding the 2's complement of the second operand. For rotate (RRCF, RRNCF, RLCF and RLNCF) instructions, this bit is loaded with either bit 4 or bit 3 of the source register.

bit 0 C: Carry/Borrow bit

For ADDWF, ADDLW, SUBLW and SUBWF instructions:

- 1 = A carry-out from the Most Significant bit of the result occurred
- 0 = No carry-out from the Most Significant bit of the result occurred
- **Note:** For Borrow, the polarity is reversed. A subtraction is executed by adding the 2's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the source register.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

8.6 INT Interrupts

External interrupts on the RB0/INT0, RB1/INT1 and RB2/CANTX/INT2 pins are edge triggered: either rising if the corresponding INTEDGx bit is set in the INTCON2 register, or falling if the INTEDGx bit is clear. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit INTxIF is set. This interrupt can be disabled by clearing the corresponding enable bit INTxIE. Flag bit INTxIF must be cleared in software in the Interrupt Service Routine before re-enabling the interrupt. All external interrupts (INT0, INT1 and INT2) can wake-up the processor from Sleep if bit INTxIE was set prior to going into Sleep. If the Global Interrupt Enable bit, GIE, is set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1 and INT2 is determined by the value contained in the interrupt priority bits INT1IP (INTCON3<6>) and INT2IP (INTCON3<7>). There is no priority bit associated with INT0; it is always a high priority interrupt source.

8.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit TMR0IF. In 16-bit mode, an overflow (FFFFh \rightarrow 0000h) in the TMR0H:TMR0L registers will set flag bit TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit TMR0IE (INTCON register). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit TMR0IP (INTCON2 register). See Section 11.0 "Timer0 Module" for further details.

8.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit RBIF (INTCON register). The interrupt can be enabled/ disabled by setting/clearing enable bit RBIE (INTCON register). Interrupt priority for PORTB interrupt-onchange is determined by the value contained in the interrupt priority bit RBIP (INTCON2 register).

8.9 Context Saving During Interrupts

During an interrupt, the return PC value is saved on the stack. Additionally, the WREG, Status and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (see Section 4.3 "Fast **Register Stack**"), the user may need to save the WREG, Status and BSR registers in software. Depending on the user's application, other registers may also need to be saved. Example 8-1 saves and restores the WREG, Status and BSR registers during an Interrupt Service Routine.

	,	
MOVWF MOVFF MOVFF	W_TEMP STATUS, STATUS_TEMP BSR, BSR_TEMP	; W_TEMP is in Low Access bank ; STATUS_TEMP located anywhere ; BSR located anywhere
; ; USER ISR ;	CODE	
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS_TEMP, STATUS	; Restore STATUS

EXAMPLE 8-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM

9.0 I/O PORTS

Depending on the device selected, there are up to five general purpose I/O ports available on PIC18FXX8 devices. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation:

- TRIS register (Data Direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (output latch)

The data latch (LAT register) is useful for read-modify-write operations on the value that the I/O pins are driving.

9.1 PORTA, TRISA and LATA Registers

PORTA is a 7-bit wide, bidirectional port. The corresponding Data Direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). On a Power-on Reset, these pins are configured as inputs and read as '0'.

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch.

Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open-drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

The other PORTA pins are multiplexed with analog inputs and the analog VREF+ and VREF- inputs. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register 1). On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

Note:	On a Power-on Reset, RA5 and RA3:RA0
	are configured as analog inputs and read
	as '0'. RA6 and RA4 are configured as
	digital inputs.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set, when using them as analog inputs.

EXAMPLE 9-1: INITIALIZING PORTA

CLRF	PORTA	;	Initialize PORTA by
		;	clearing output data latches
CLRF	LATA	;	Alternate method to clear
		;	output data latches
MOVLW	07h	;	Configure A/D
MOVWF	ADCON1	;	for digital inputs
MOVLW	0CFh	;	Value used to initialize
		;	data direction
MOVWF	TRISA	;	Set RA3:RA0 as inputs,
		;	RA5:RA4 as outputs

PIC18FXX8

NOTES:

19.2.3 CAN RECEIVE BUFFER REGISTERS

This section shows the Receive Buffer registers with their associated control registers.

REGISTER 19-12:	RXB0CON	RXB0CON: RECEIVE BUFFER 0 CONTROL REGISTER							
	R/C-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R-0	R-0	
	RXFUL ⁽¹⁾	RXM1 ⁽¹⁾	RXM0 ⁽¹⁾	—	RXRTRRO	RXB0DBEN	JTOFF	FILHIT0	
	bit 7					·		bit 0	
bit 7	RXFUL: Re	eceive Full	Status bit ⁽¹⁾						
	1 = Receiv 0 = Receiv	 1 = Receive buffer contains a received message 0 = Receive buffer is open to receive a new message 							
	Note:	Note: This bit is set by the CAN module and must be cleared by software after the buffer is read.							
bit 6-5	RXM1:RXM	MO: Receive	e Buffer Mo	de bits ⁽¹⁾					
	 11 = Receive all messages (including those with errors) 10 = Receive only valid messages with extended identifier 01 = Receive only valid messages with standard identifier 00 = Receive all valid messages 								
bit 4	Unimplem	ented: Rea	ad as '0'						
bit 3	RXRTRRO	RXRTRRO: Receive Remote Transfer Request Read-Only bit							
	1 = Remote 0 = No rem	 1 = Remote transfer request 0 = No remote transfer request 							
bit 2	RXB0DBE	N: Receive	Buffer 0 Do	ouble-Buffer	Enable bit				
	 1 = Receive Buffer 0 overflow will write to Receive Buffer 1 0 = No Receive Buffer 0 overflow to Receive Buffer 1 								
bit 1	JTOFF: Ju	mp Table C	Offset bit (rea	ad-only cop	y of RXB0DB	EN)			
	1 = Allows 0 = Allows	jump table jump table	offset betwe offset betwe	een 6 and 7 een 1 and 0					
	Note:	This bit all	ows same f	ilter jump ta	ble for both F	XB0CON and	RXB1CO	Ν.	
bit 0	FILHITO: F	ilter Hit bit							
	This bit indicates which acceptance filter enabled the message reception into Receive Buffer 0. 1 = Acceptance Filter 1 (RXF1) 0 = Acceptance Filter 0 (RXF0)						ve Buffer 0.		
	Note 1:	Bits RXFU	IL, RXM1 ar	nd RXM0 of	RXB0CON a	are not mirrore	d in RXB10	CON.	
	Legend:								

Legend:			
R = Readable bit	W = Writable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	Bridoonz.	DAODIN										
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0				
	bit 7							bit 0				
bit 7	SEG2PHTS:	Phase Se	gment 2 Tim	e Select bit								
	1 = Freely pro 0 = Maximum	ogrammab of PHEG	le 1 or Informa	tion Process	sing Time (IF	T), whichev	ver is greate	r				
bit 6	SAM: Sample	e of the CA	N bus Line	bit								
	1 = Bus line is 0 = Bus line is	s sampled s sampled	three times once at the	prior to the sample poir	sample poin nt	t						
bit 5-3	SEG1PH2:SE	EG1PH0: F	Phase Segm	ent 1 bits								
	111 = Phase Segment 1 Time = $8 \times TQ$ 110 = Phase Segment 1 Time = $7 \times TQ$ 101 = Phase Segment 1 Time = $6 \times TQ$ 100 = Phase Segment 1 Time = $5 \times TQ$ 011 = Phase Segment 1 Time = $4 \times TQ$ 010 = Phase Segment 1 Time = $3 \times TQ$ 001 = Phase Segment 1 Time = $2 \times TQ$											
bit 2-0	PRSEG2:PR	SEG0: Pro	pagation Ti	ne Select bi	ts							
	111 = Propag	111 = Propagation Time = $8 \times T_Q$										
	$110 = \text{Propagation Time} = 7 \times 10$ 101 = Propagation Time = 6 × TO											
	$100 = \text{Propagation Time} = 5 \times TQ$											
	011 = Propag	gation Time	e = 4 x Tq									
	010 = Propage	gation Time	$e = 3 \times TQ$									
	001 = Propage	pation Time	$e = 2 \times TQ$ $e = 1 \times TQ$									
	Legend:											
	R = Readable	e bit	W = Writab	le bit	U = Unim	plemented I	oit, read as '	0'				
	-n = Value at	POR	'1' = Bit is s	set	'0' = Bit is	cleared	x = Bit is u	nknown				

REGISTER 19-30: BRGCON2: BAUD RATE CONTROL REGISTER 2

Note: This register is accessible in Configuration mode only.

PIC18FXX8

bit 7 bit 6

bit 5-3 bit 2-0

REGISTER 19-31: BRGCON3: BAUD RATE CONTROL REGISTER 3

••••	Diracon	IO. DAOD						
	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
		WAKFIL	—	—	_	SEG2PH2 ⁽¹⁾	SEG2PH1 ⁽¹⁾	SEG2PH0 ⁽¹⁾
	bit 7							bit 0
	Unimpler	nented: Re	ad as '0'					
	WAKFIL:	Selects CA	N bus Line	e Filter for V	Wake-up bi	it		
	1 = Use C	AN bus lin	e filter for v	vake-up				
	0 = CAN t	ous line filte	er is not us	ed for wake	e-up			
	Unimpler	nented: Re	ead as '0'					
	SEG2PH2	2:SEG2PH	0: Phase S	egment 2	Time Selec	t bits ⁽¹⁾		
	111 = Pha	ase Segme	nt 2 Time =	= 8 x Tq				

				_			
110 =	Phase	Segment 2	Time =	7	х	TQ	

- 101 = Phase Segment 2 Time = 6 x TQ
- 100 = Phase Segment 2 Time = 5 x TQ
- 011 = Phase Segment 2 Time = 4 x TQ
- 010 = Phase Segment 2 Time = 3 x TQ
- 001 = Phase Segment 2 Time = 2 x TQ
- 000 = Phase Segment 2 Time = 1 x TQ

Note 1: Ignored if SEG2PHTS bit (BRGCON2<7>) is clear.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

To calculate the minimum acquisition time, Equation 20-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 20-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following application system assumptions:

 CHOLD 	=	120 pF
---------------------------	---	--------

• Rs = $2.5 \text{ k}\Omega$

• Conversion Error \leq 1/2 LSb

• VDD = $5V \rightarrow Rss = 7 k\Omega$

- Temperature = 50° C (system max.)
- VHOLD = 0V @ time = 0

EQUATION 20-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 20-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{Tc/CHOLD}(\text{Ric} + \text{Rss} + \text{Rs}))})$
or		
Тс	=	$-(120 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/2047)$

EXAMPLE 20-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF								
Temperature coefficient is only required for temperatures $> 25^{\circ}C$										
TACQ	=	$2 \ \mu s + TC + [(Temp - 25^{\circ}C)(0.05 \ \mu s/^{\circ}C)]$								
ТС	=	-CHOLD (RIC + RSS + RS) $\ln(1/2047)$ -120 pF (1 k Ω + 7 k Ω + 2.5 k Ω) $\ln(0.0004885)$ -120 pF (10.5 k Ω) $\ln(0.0004885)$ -1.26 μ s (-7.6241) 9.61 μ s								
TACQ	=	2 μs + 9.61 μs + [(50°C – 25°C)(0.05 μs/°C)] 11.61 μs + 1.25 μs 12.86 μs								

Note: When using external voltage references with the A/D converter, the source impedance of the external voltage references must be less than 20Ω to obtain the specified A/D resolution. Higher reference source impedances will increase both offset and gain errors. Resistive voltage dividers will not provide a sufficiently low source impedance.

To maintain the best possible performance in A/D conversions, external VREF inputs should be buffered with an operational amplifier or other low output impedance circuit.

PIC18FXX8

FIGURE 23-2: LOW-VOLTAGE DETECT (LVD) BLOCK DIAGRAM

The LVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits LVDL3:LVDL0 are set to '1111'. In this state, the comparator input is multiplexed from the external input pin LVDIN to one input of the comparator (Figure 23-3). The other input is connected to the internally generated voltage reference (parameter #D423 in **Section 27.2** "**DC Characteristics**"). This gives users flexibility, because it allows them to configure the Low-Voltage Detect interrupt to occur at any voltage in the valid operating range.

FIGURE 23-3: LOW-VOLTAGE DETECT (LVD) WITH EXTERNAL INPUT BLOCK DIAGRAM

REGISTER 24-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
_	—	_	—	WDTPS2	WDTPS1	WDTPS0	WDTEN
bit 7							bit 0

bit 7-4 Unimplemented: Read as '0'

bit 3-1 WDTPS2:WDTPS0: Watchdog Timer Postscale Select bits

- 111 **= 1:128**
- 110 **= 1:64**
- 101 **= 1:32**
- 100 = 1:16
- 011 **= 1:8**
- 010 = **1**:4
- 001 = 1:2
- 000 = 1:1
 - **Note:** The Watchdog Timer postscale select bits configuration used in the PIC18FXXX devices has changed from the configuration used in the PIC18CXXX devices.

bit 0 WDTEN: Watchdog Timer Enable bit

- 1 = WDT enabled
- 0 = WDT disabled (control is placed on the SWDTEN bit)

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device	is unprogrammed	u = Unchanged from programmed state

REGISTER 24-4: CONFIGUL: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

-n = Value when device is unprogrammed

	R/P-1	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1			
	DEBUG	_	_	_	_	LVP	_	STVREN			
	bit 7							bit 0			
bit 7	DEBUG: Background Debugger Enable bit 1 = Background Debugger disabled. RB6 and RB7 configured as general purpose I/O pins. 0 = Background Debugger enabled. RB6 and RB7 are dedicated to In-Circuit Debug.										
bit 6-3	Unimplemented: Read as '0'										
bit 2	LVP: Low-	Voltage ICSP	Enable bit								
	1 = Low-Vo 0 = Low-Vo	oltage ICSP e oltage ICSP c	enabled lisabled								
bit 1	Unimplem	ented: Read	as '0'								
bit 0	STVREN:	Stack Full/Un	derflow Re	set Enable b	bit						
	1 = Stack Full/Underflow will cause Reset 0 = Stack Full/Underflow will not cause Reset										
	Legend:										
	R = Reada	ble bit	C = Cleara	able bit	U = Unin	nplemented	d bit, read as	'0'			

u = Unchanged from programmed state

REGISTER 24-11: DEVID1: DEVICE ID REGISTER 1 FOR PIC18FXX8 DEVICES (BYTE ADDRESS 3FFFFEh)

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

bit 7-5 **DEV2:DEV0:** Device ID bits These bits are used with the DEV<10:3> bits in the Device ID Register 2 to identify the part number.

000 = PIC18F248

001 = PIC18F448

010 = PIC18F258

011 = PIC18F458

bit 4-0 REV4:REV0: Revision ID bits

These bits are used to indicate the device revision.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device	e is unprogrammed	u = Unchanged from programmed state

REGISTER 24-12: DEVID2: DEVICE ID REGISTER 2 FOR PIC18FXX8 DEVICES (BYTE ADDRESS 3FFFFFh)

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

bit 7-0 DEV10:DEV3: Device ID bits

These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number.

00001000 = PIC18FXX8

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device	e is unprogrammed	u = Unchanged from programmed state

27.1 DC Characteristics (Continued)

PIC18LI (Indus	FXX8 trial)	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC18F2 (Indus	XX8 trial, Exter	Stan Oper	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Symbol	Characteristic/ Device	Min	Min Typ Max Units Conditions						
	Idd	Supply Current ^(2,3,4)								
D010C		PIC18LFXX8	_	21	28	mA	EC, ECIO oscillator configurations VDD = 4.2V, -40°C to +85°C			
D010C		PIC18FXX8	_	21	30	mA	EC, ECIO oscillator configurations VDD = 4.2V, -40°C to +125°C, Fosc = 25 MHz			
D013		PIC18LFXX8		1.3 18 28	3 28 40	mA mA mA	HS oscillator configurations Fosc = 6 MHz, VDD = $2.0V$ Fosc = 25 MHz, VDD = $5.5V$ HS + PLL osc configuration Fosc = 10 MHz, VDD = $5.5V$			
D013		PIC18FXX8	_	18 28	28 40	mA mA	HS oscillator configurations Fosc = 25 MHz, $VDD = 5.5V$ HS + PLL osc configuration Fosc = 10 MHz, $VDD = 5.5V$			
D014		PIC18LFXX8		32	65	μA	Timer1 oscillator configuration Fosc = 32 kHz, VDD = 2.0V			
D014		PIC18FXX8		62 62	250 310	μΑ μΑ	Timer1 oscillator configuration Fosc = 32 kHz, VDD = $4.2V$, $-40^{\circ}C$ to $+85^{\circ}C$ Fosc = 32 kHz, VDD = $4.2V$, $-40^{\circ}C$ to $+125^{\circ}C$			
	IPD	Power-Down Current ⁽³⁾		-						
D020		PIC18LFXX8	—	0.3 2	4 10	μΑ μΑ	VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C			
D020 D021B		PIC18FXX8		2 6	10 40	μΑ μΑ	VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C			

Legend: Rows are shaded for improved readability.

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD \overline{MCLR} = VDD; WDT enabled/disabled as specified.

- **3:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).
- 4: For RC oscillator configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2 REXT (mA) with REXT in kOhm.
- 5: The LVD and BOR modules share a large portion of circuitry. The △IBOR and △ILVD currents are not additive. Once one of these modules is enabled, the other may also be enabled without further penalty.

Param No.	Symbol	Characteristic		Min	Тур	Max	Units	Conditions
A01	NR	Resolution	_		10	bit	$VREF = VDD \ge 3.0V$	
A03	EIL	Integral Linearity	Error	—	_	<±1	LSb	$VREF = VDD \ge 3.0V$
A04	Edl	Differential Linea	rity Error	_	_	<±1	LSb	$V\text{REF} = V\text{DD} \geq 3.0V$
A05	EFS	Full Scale Error		—	_	<±1	LSb	$VREF = VDD \ge 3.0V$
A06	EOFF	Offset Error		—	_	<±1.5	LSb	$VREF = VDD \ge 3.0V$
A10	—	Monotonicity ⁽³⁾		ç	guarante	ed		$VSS \le VAIN \le VREF$
A20	VREF	Reference Voltag	ge	0V	_	—	V	
A20A		(VREFH – VREFL)		3V	—	—	V	For 10-bit resolution
A21	VREFH	Reference Voltage High		Vss		VDD + 0.3V	V	
A22	VREFL	Reference Voltag	ge Low	Vss - 0.3V	_	Vdd	V	
A25	VAIN	Analog Input Vol	tage	Vss - 0.3V	_	VREF + 0.3V	V	
A30	ZAIN	Recommended I Analog Voltage S	mpedance of Source	—	_	10.0	kΩ	
A40	IAD	A/D Conversion	PIC18FXX8	—	180	—	μA	Average current
		Current (VDD)	PIC18LFXX8	—	90	—	μA	consumption when A/D is on (Note 1)
A50	50 IREF VREF Input Current (Note 2)		0	_	5	μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD. During A/D conversion	
					_	150	μΑ	cycle.

TABLE 27-23: A/D CONVERTER CHARACTERISTICS: PIC18FXX8 (INDUSTRIAL, EXTENDED) PIC18LFXX8 (INDUSTRIAL)

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current specification includes any such leakage from the A/D module. VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or VDD and VSS pins, whichever is selected as reference input.

2: VSS \leq VAIN \leq VREF

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*		MILLIMETERS			
Dimension	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		44			44		
Pitch	р		.050			1.27		
Pins per Side	n1		11			11		
Overall Height	Α	.165	.173	.180	4.19	4.39	4.57	
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06	
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89	
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86	
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27	
Corner Chamfer (others) CH2		.000	.005	.010	0.00	0.13	0.25	
Overall Width E		.685	.690	.695	17.40	17.53	17.65	
Overall Length	D	.685	.690	.695	17.40	17.53	17.65	
Molded Package Width	E1	.650	.653	.656	16.51	16.59	16.66	
Molded Package Length	D1	.650	.653	.656	16.51	16.59	16.66	
Footprint Width	E2	.590	.620	.630	14.99	15.75	16.00	
Footprint Length	D2	.590	.620	.630	14.99	15.75	16.00	
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33	
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81	
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53	
Mold Draft Angle Top	α	0	5	10	0	5	10	
Mold Draft Angle Bottom	β	0	5	10	0	5	10	

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-047

Drawing No. C04-048

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES			MILLIMETERS*			
Dimension Lim	its	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		44			44			
Pitch	р		.031			0.80			
Pins per Side	n1		11			11			
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20		
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05		
Standoff	A1	.002	.004	.006	0.05	0.10	0.15		
Foot Length	L	.018	.024	.030	0.45	0.60	0.75		
Footprint (Reference)	F		.039 REF.		1.00 REF.				
Foot Angle	¢	0	3.5	7	0	3.5	7		
Overall Width	E	.463	.472	.482	11.75	12.00	12.25		
Overall Length	D	.463	.472	.482	11.75	12.00	12.25		
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10		
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10		
Lead Thickness	с	.004	.006	.008	0.09	0.15	0.20		
Lead Width	В	.012	.015	.017	0.30	0.38	0.44		
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14		
Mold Draft Angle Top	α	5	10	15	5	10	15		
Mold Draft Angle Bottom	β	5	10	15	5	10	15		

* Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. REF: Reference Dimension, usually without tolerance, for information purposes only.

See ASME Y14.5M

JEDEC Equivalent: MS-026 Drawing No. C04-076

Revised 07-22-05

INDEX

Α
A/D
A/D Converter Flag (ADIF Bit)243
A/D Converter Interrupt, Configuring
Acquisition Requirements244
Acquisition Time245
ADCON0 Register241
ADCON1 Register241
ADRESH Register241
ADRESH/ADRESL Registers243
ADRESL Register241
Analog Port Pins, Configuring246
Associated Registers Summary248
Calculating the Minimum Required
Acquisition Time
Configuring the Module
Conversion Clock (TAD)
Conversion Status (GO/DONE Bit)
Conversion TAD Cycles
Conversions
Minimum Charging Time
Result Registers
Selecting the Conversion Clock
Special Event Trigger (CCP)
Special Event Trigger (ECCP) 133, 248
TAD vs. Device Operating Frequencies
(For Extended, LF Devices) (table)246
TAD vs. Device Operating
Frequencies (table)
Use of the ECCP Trigger
Absolute Maximum Ratings
AC (Timing) Characteristics
Parameter Symbology
ACCESS BANK
ACKSTAT Clock Flore 173
ACKSTAT Status Flag
GO/DONE DIL
Addressehle Liniversel Synchroneus Asynchroneus
Popoivor Transmitter See USAPT
ADDWFC 288
ADDWFC
ADRESIT REGISTER 241
ADRESI Register 241
Apalog-to-Digital Converter See A/D
ANDWF 289
Assembler
MPASM Assembler 323
Associated Begisters 192 197
-
В
Bank Select Register (BSR)54
Baud Rate Generator
BC

BF 173

BF Status Flag 173

Block Diagrams
A/D
Analog Input Model 244, 253
Baud Rate Generator 169
CAN Buffers and Protocol Engine 200
CAN Receive Buffer
CAN Transmit Buffer 227
Capture Mode Operation 125
Comparator I/O Operating Modes
Comparator Output
Comparator Voltage Reference
Output Buffer Example
Compare (CCP Module) Mode Operation
Enhanced PWM 134
Interrupt Logic
Low-Voltage Detect (LVD) 260
Low-Voltage Detect with External Input 260
MSSP (I ² C Master Mode) 167
MSSP (I ² C Mode) 152
MSSP (SPI Mode) 143
On-Chin Beset Circuit 25
DIC19E2/02/0258 Arebitecture
PIC19E449/258 Architecture
PLL
PORTO (Felipheral Output Overlide)
PORTD and FORTE (Faraner Slave Fort)
PURIE
PWWM (CCP MODULE)
RA4/TUCKI PIN
RBT:RBU PINS
RB2/CANTX/INT2 PIn
RB3/CANRX PIn
RB7:RB4 PINS
Reads from Flash Program Memory
Table Read Operation
Table Write Operation
Table Writes to Flash Program Memory
Timer0 in 16-bit Mode 110
Timer0 in 8-bit Mode
Limer1 114
Timer1 (16-bit Read/Write Mode) 114
Timer2 118
Timer3 120
Timer3 (16-bit Read/Write Mode) 120
USART Receive 191
USART Transmit 189
Voltage Reference 256
Watchdog Timer 273
BN
BNC
BNN
BNOV
BNZ
BOR. See Brown-out Reset.
BOV
BRA
BRG. See Baud Rate Generator.
Brown-out Reset (BOR) 26, 265

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com