

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f458t-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number					Buffer	
Pin Name	PIC18F248/258 PIC18F448/458			Pin Type	Туре	Description	
	SPDIP, SOIC	PDIP	TQFP	PLCC			
		10		01			PORTD is a bidirectional I/O por These pins have TTL input buffe when external memory is enable
RD0/PSP0/C1IN+ RD0 PSP0 C1IN+	_	19	38	21	I/O I/O I	ST TTL Analog	Digital I/O. Parallel Slave Port data. Comparator 1 input.
RD1/PSP1/C1IN- RD1 PSP1 C1IN-	_	20	39	22	I/O I/O I	ST TTL Analog	Digital I/O. Parallel Slave Port data. Comparator 1 input.
RD2/PSP2/C2IN+ RD2 PSP2 C2IN+	_	21	40	23	I/O I/O I	ST TTL Analog	Digital I/O. Parallel Slave Port data. Comparator 2 input.
RD3/PSP3/C2IN- RD3 PSP3 C2IN-	_	22	41	24	I/O I/O I	ST TTL Analog	Digital I/O. Parallel Slave Port data. Comparator 2 input.
RD4/PSP4/ECCP1/ P1A RD4 PSP4 ECCP1 P1A	_	27	2	30	I/O I/O I/O O	ST TTL ST —	Digital I/O. Parallel Slave Port data. ECCP1 capture/compare. ECCP1 PWM output A.
RD5/PSP5/P1B RD5 PSP5 P1B	_	28	3	31	I/O I/O O	ST TTL —	Digital I/O. Parallel Slave Port data. ECCP1 PWM output B.
RD6/PSP6/P1C RD6 PSP6 P1C	_	29	4	32	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. ECCP1 PWM output C.
RD7/PSP7/P1D RD7 PSP7 P1D	_	30	5	33	I/O I/O O	ST TTL	Digital I/O. Parallel Slave Port data. ECCP1 PWM output D.

TABLE 1-2: PIC18FXX8 PINOUT I/O DESCRIPTIONS (CONTINUED)

OD = Open-Drain (no P diode to VDD)

3.7 Time-out Sequence

On power-up, the time-out sequence is as follows: First, PWRT time-out is invoked after the POR time delay has expired, then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and Figure 3-7 depict time-out sequences on power-up. Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Bringing MCLR high will begin execution immediately (Figure 3-5). This is useful for testing purposes or to synchronize more than one PIC18FXX8 device operating in parallel.

Table 3-2 shows the Reset conditions for some Special Function Registers, while Table 3-3 shows the Reset conditions for all registers.

TABLE 3-1: TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-up	(2)	5 (2)	Wake-up from
Configuration	PWRTEN = 0	PWRTEN = 1	Brown-out ⁽²⁾	Sleep or Oscillator Switch
HS with PLL enabled ⁽¹⁾	72 ms + 1024 Tosc + 2 ms	1024 Tosc + 2 ms	72 ms + 1024 Tosc + 2 ms	1024 Tosc + 2 ms
HS, XT, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc
EC	72 ms	—	72 ms	—
External RC	72 ms		72 ms	_

Note 1: 2 ms = Nominal time required for the 4x PLL to lock.

2: 72 ms is the nominal Power-up Timer delay.

REGISTER 3-1: RCON REGISTER BITS AND POSITIONS

R/W-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1
IPEN	—	—	RI	TO	PD	POR	BOR
bit 7							bit 0

TABLE 3-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	01 110q	1	1	1	0	0	u	u
MCLR Reset during normal operation	0000h	00 011q	u	u	u	u	u	u	u
Software Reset during normal operation	0000h	00 011q	0	u	u	u	u	u	u
Stack Full Reset during normal operation	0000h	00 011q	u	u	u	1	1	u	1
Stack Underflow Reset during normal operation	0000h	00 011q	u	u	u	1	1	1	u
MCLR Reset during Sleep	0000h	00 011q	u	1	0	u	u	u	u
WDT Reset	0000h	00 011q	u	0	1	u	u	u	u
WDT Wake-up	PC + 2	01 101q	u	0	0	u	u	u	u
Brown-out Reset	0000h	01 110q	1	1	1	u	0	u	u
Interrupt wake-up from Sleep	PC + 2 ⁽¹⁾	01 101q	u	1	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (000008h or 000018h).

4.10 Access Bank

The Access Bank is an architectural enhancement that is very useful for C compiler code optimization. The techniques used by the C compiler are also useful for programs written in assembly.

This data memory region can be used for:

- · Intermediate computational values
- · Local variables of subroutines
- · Faster context saving/switching of variables
- · Common variables
- Faster evaluation/control of SFRs (no banking)

The Access Bank is comprised of the upper 160 bytes in Bank 15 (SFRs) and the lower 96 bytes in Bank 0. These two sections will be referred to as Access Bank High and Access Bank Low, respectively. Figure 4-6 indicates the Access Bank areas.

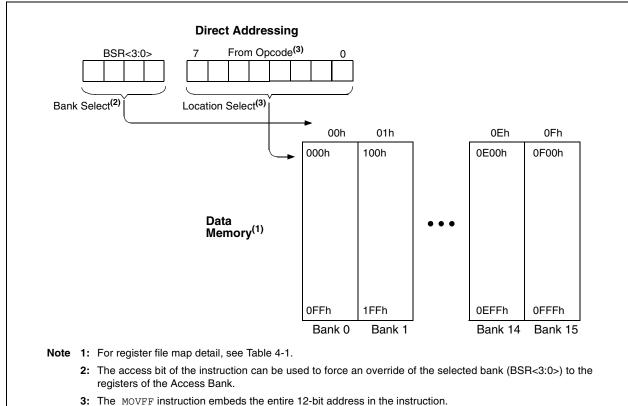
A bit in the instruction word specifies if the operation is to occur in the bank specified by the BSR register or in the Access Bank.

When forced in the Access Bank (a = 0), the last address in Access Bank Low is followed by the first address in Access Bank High. Access Bank High maps most of the Special Function Registers so that these registers can be accessed without any software overhead.

4.11 Bank Select Register (BSR)

The need for a large general purpose memory space dictates a RAM banking scheme. The data memory is partitioned into sixteen banks. When using direct addressing, the BSR should be configured for the desired bank.

BSR<3:0> holds the upper 4 bits of the 12-bit RAM address. The BSR<7:4> bits will always read '0's and writes will have no effect.


A MOVLB instruction has been provided in the instruction set to assist in selecting banks.

If the currently selected bank is not implemented, any read will return all '0's and all writes are ignored. The Status register bits will be set/cleared as appropriate for the instruction performed.

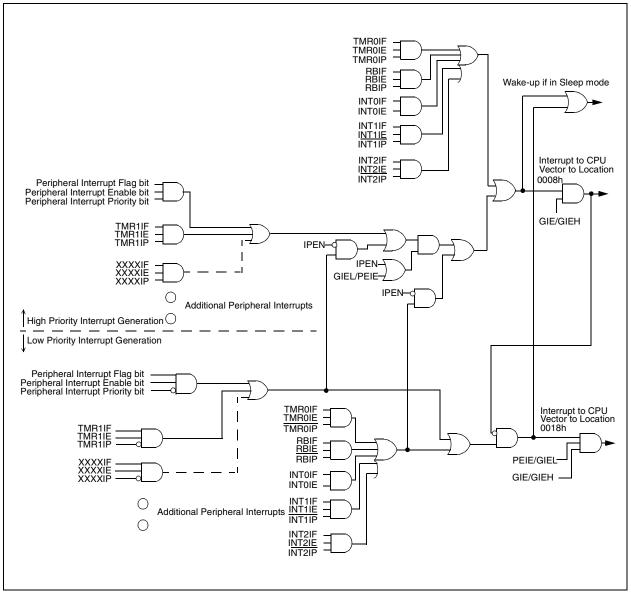
Each Bank extends up to FFh (256 bytes). All data memory is implemented as static RAM.

A MOVFF instruction ignores the BSR since the 12-bit addresses are embedded into the instruction word.

Section 4.12 "Indirect Addressing, INDF and FSR Registers" provides a description of indirect addressing, which allows linear addressing of the entire RAM space.

FIGURE 4-7: DIRECT ADDRESSING

TER 5-1:	EECON1:	EEPROM	CONTROL	. REGISTE	R 1			
	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD
	bit 7							bit 0
bit 7		-			mory Select	bit		
			ash memory OM memory					
bit 6	CFGS: Fla:	sh Program/	Data EE or	Configuratio	on Select bit			
		•	on registers ash or data		nemory			
bit 5	Unimplem	ented: Read	d as '0'					
bit 4	FREE: Flas	sh Row Eras	e Enable bi	t				
	(reset b	y hardware	•	v addressed	by TBLPTR	on the next	WR comm	and
bit 3	0 = Perforn	Vrite Error F	log bit					
DIL 3			prematurel	v torminator	4			
	(any M		WDT Reset		timed progra	mming in no	ormal operat	tion)
	Note:	When a W	•		GD or FRE	E bits are n	ot cleared.	This allows
bit 2	WREN: Wr	ite Enable b	it					
		write cycles write to the	EEPROM o	or Flash mer	nory			
bit 1	WR: Write	Control bit						
	<u>(Th</u> e op	peration is s		d the bit is c	or a program leared by ha ware.)			
	$0 = Write c_1$	ycle is comp	lete					
bit 0	RD: Read							
	(Read t				rdware. The PGD = 1.)	RD bit can o	nly be set (r	not cleared)
	0 = Does n	ot initiate ar	EEPROM	read				
	Logond]
	Legend:				Hable bit			


Legend:			
R = Readable bit	W = Writable bit	S = Settable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 5-1: EECON1: EEPROM CONTROL REGISTER 1

EXAMPLE 6-3: WRITING TO FLASH PROGRAM MEMORY

EXAMPLE 6-3:	WRI	TING TO FLASH PROG	
	MOVLW	D'64	; number of bytes in erase block
	MOVWF	COUNTER	
	MOVLW	high (BUFFER_ADDR)	; point to buffer
	MOVWF	FSROH	
	MOVLW	low (BUFFER_ADDR)	
	MOVWF	FSROL	
	MOVLW	upper (CODE_ADDR)	; Load TBLPTR with the base
	MOVWF MOVLW	TBLPTRU	; address of the memory block
	MOVUW MOVWF	high (CODE_ADDR) TBLPTRH	
	MOVLW	low (CODE ADDR)	
	MOVWF	TBLPTRL	
READ BLOCK			
—	TBLRD*+		; read into TABLAT, and inc
	MOVF	TABLAT, W	; get data
	MOVWF	POSTINCO	; store data
	DECFSZ	COUNTER	; done?
	BRA	READ_BLOCK	; repeat
MODIFY_WORD			
	MOVLW	DATA_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW	DATA_ADDR_LOW	
	MOVWF MOVLW	FSROL NEW DATA LOW	; update buffer word
	MOVUW MOVWF	NEW_DATA_LOW POSTINC0	; update buller word
	MOVLW	NEW DATA HIGH	
	MOVWF	INDF0	
ERASE BLOCK			
_	MOVLW	upper (CODE ADDR)	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	high (CODE_ADDR)	
	MOVWF	TBLPTRH	
	MOVLW	low (CODE_ADDR)	
	MOVWF	TBLPTRL	
	BSF	EECON1, EEPGD	; point to FLASH program memory
	BCF	EECON1, CFGS	; access FLASH program memory
	BSF BSF	EECON1, WREN EECON1, FREE	; enable write to memory ; enable Row Erase operation
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	, disable incertapes
Required	MOVWF	EECON2	; write 55H
Sequence	MOVLW	0AAh	,
-	MOVWF	EECON2	; write AAH
	BSF	EECON1, WR	; start erase (CPU stall)
	NOP		
	BSF	INTCON, GIE	; re-enable interrupts
	TBLRD*-		; dummy read decrement
WRITE_BUFFER_			
	MOVLW	8	; number of write buffer groups of 8 bytes
	MOVWF	COUNTER_HI	
	MOVLW	high (BUFFER_ADDR)	; point to buffer
	MOVWF MOVLW	FSR0H low (BUFFER ADDR)	
	MOVLW	FSROL	
PROGRAM LOOP	110 4 111		
	MOVLW	8	; number of bytes in holding register
	MOVWF	COUNTER	
WRITE_WORD_TO	HREGS		
	MOVFW	POSTINCO, W	; get low byte of buffer data
	MOVWF	TABLAT	; present data to table latch
	TBLWT+*		; write data, perform a short write
			; to internal TBLWT holding register.
	DECFSZ BRA	COUNTER WRITE WORD TO HREGS	; loop until buffers are full

8.1 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits. Because of the number of interrupts to be controlled, PIC18FXX8 devices have three INTCON registers. They are detailed in Register 8-1 through Register 8-3.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows software polling.

REGISTER 8-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEF	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF
bit 7	·						bit 0
	: Global Interr	-	oit				
1 = Enable	<u>N (RCON<7>)</u> es all unmaske es all interrupt	ed interrupts	i				
1 = Enabl	<u>N (RCON<7>)</u> es all high prio es all priority i	rity interrup	ts				
PEIE/GIE	-: Peripheral I	nterrupt Ena	able bit				
1 = Enable	<u>N (RCON<7>)</u> es all unmaske es all peripher	ed periphera					
1 = Enable	<u>N (RCON<7>)</u> es all low prior es all low prior	ity periphera					
TMR0IE:	TMR0 Overflov	w Interrupt E	Enable bit				
	es the TMR0 c es the TMR0 o		•				
INTOIE: IN	IT0 External Ir	nterrupt Ena	ble bit				
	es the INT0 ex es the INT0 ex		•				
RBIE: RB	Port Change	Interrupt En	able bit				
	es the RB port es the RB por						
TMR0IF:	MR0 Overflov	v Interrupt F	lag bit				
	register has o register did no		must be clea	ared in softv	vare)		
INTOIF: IN	IT0 External Ir	nterrupt Flag	ı bit				
	IT0 external in IT0 external in			be cleared i	n software b	by reading P	ORTB)
RBIF: RB	Port Change I	nterrupt Fla	g bit				
	st one of the R of the RB7:RB				be cleared i	n software)	
Note:	A mismatch mismatch co					g PORTB v	will end the

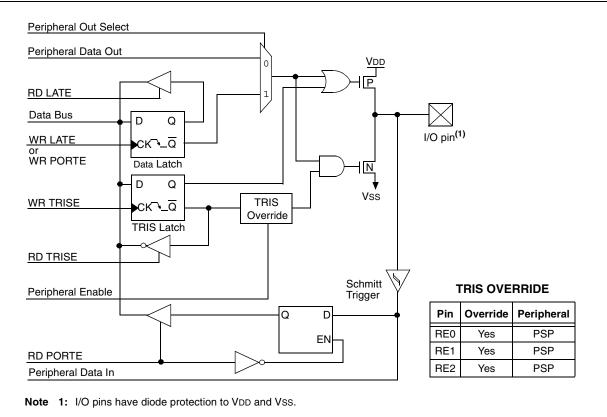
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

9.5 PORTE, TRISE and LATE Registers

Note:	This	port	is	only	available	on	the
	PIC1	8F448	and	PIC1	8F458.		

PORTE is a 3-bit wide, bidirectional port. PORTE has three pins (RE0/AN5/RD, RE1/AN6/WR/C10UT and RE2/AN7/CS/C20UT) which are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers.

Read-modify-write operations on the LATE register, read and write the latched output value for PORTE.


The corresponding Data Direction register for the port is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., put the contents of the output latch on the selected pin).

The TRISE register also controls the operation of the Parallel Slave Port through the control bits in the upper half of the register. These are shown in Register 9-1.

When the Parallel Slave Port is active, the PORTE pins function as its control inputs. For additional details, refer to **Section 10.0 "Parallel Slave Port**".

PORTE pins are also multiplexed with inputs for the A/D converter and outputs for the analog comparators. When selected as an analog input, these pins will read as '0's. Direction bits TRISE<2:0> control the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

EXAMP	LE 9-5:	INITIALIZING PORTE
CLRF	PORTE	; Initialize PORTE by
		; clearing output
		; data latches
CLRF	LATE	; Alternate method
		; to clear output
		; data latches
MOVLW	03h	; Value used to
		; initialize data
		; direction
MOVWF	TRISE	; Set RE1:RE0 as inputs
		; RE2 as an output
		; (RE4=0 - PSPMODE Off)

FIGURE 9-10: PORTE BLOCK DIAGRAM

13.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit timer (TMR2 register)
- 8-bit period register (PR2)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match of PR2

 SSP module optional use of TMR2 output to generate clock shift

Register 13-1 shows the Timer2 Control register. Timer2 can be shut-off by clearing control bit TMR2ON (T2CON register) to minimize power consumption. Figure 13-1 is a simplified block diagram of the Timer2 module. The prescaler and postscaler selection of Timer2 are controlled by this register.

13.1 **Timer2 Operation**

Timer2 can be used as the PWM time base for the PWM mode of the CCP module. The TMR2 register is readable and writable and is cleared on any device Reset. The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON register). The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, PIR registers).

The prescaler and postscaler counters are cleared when any of the following occurs:

- · A write to the TMR2 register
- · A write to the T2CON register
- Any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

Timer2 is disabled on POR. Note:

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ſ	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
	bit 7							bit 0

bit

bit 7	Unimplemented: Read as '0'
bit 6-3	TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits
	0000 = 1:1 Postscale
	0001 = 1:2 Postscale
	•
	1111 = 1:16 Postscale
bit 2	TMR2ON: Timer2 On bit
	1 = Timer2 is on
	0 = Timer2 is off
bit 1-0	T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits
	00 = Prescaler is 1
	01 = Prescaler is 4
	1x = Prescaler is 16
	Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

15.1 CCP1 Module

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

Table 15-1 shows the timer resources of the CCP module modes.

TABLE 15-1: CCP1 MODE – TIMER RESOURCE

CCP1 Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

15.2 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16bit value of the TMR1 or TMR3 register when an event occurs on pin RC2/CCP1. An event is defined as:

- · every falling edge
- · every rising edge
- every 4th rising edge
- every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit, CCP1IF (PIR registers), is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

15.2.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 is configured as an out-
	put, a write to the port can cause a capture
	condition.

15.2.2 TIMER1/TIMER3 MODE SELECTION

The timers used with the capture feature (either Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work. The timer used with each CCP module is selected in the T3CON register.

CCP1 Mode	ECCP1 Mode	Interaction	
Capture	Capture	TMR1 or TMR3 time base. Time base can be different for each CCP.	
Capture	Compare	The compare could be configured for the special event trigger which clears either TMR1 or TMR3, depending upon which time base is used.	
Compare	Compare	The compare(s) could be configured for the special event trigger which clears TMR1 or TMR3, depending upon which time base is used.	
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).	
PWM	Capture	None.	
PWM	Compare	None.	

TABLE 15-2: INTERACTION OF CCP1 AND ECCP1 MODULES

17.3.6 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

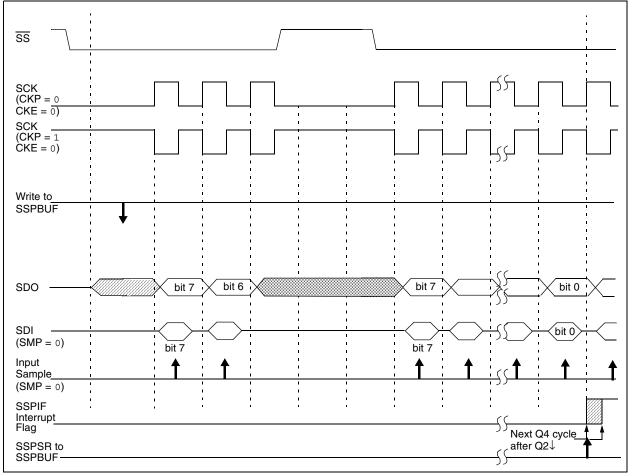
While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep. Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit (SSPCON1<4>).

17.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). The pin must not be driven low for the \overline{SS} pin to function as an input. The data latch

must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.


Note 1:	When the SPI is in Slave mode with \overline{SS} pin
	control enabled (SSPCON1<3:0> = 0100),
	the SPI module will reset if the \overline{SS} pin is set
	to VDD.

2: If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

17.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit BF and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter #106). SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter #107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an \overline{ACK} bit during the ninth bit time, if an address match occurred, or if data was received properly. The status of \overline{ACK} is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 17-21).

After the write to the SSPBUF, each bit of address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF bit is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

17.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

17.4.10.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

17.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call) or when the slave has properly received its data.

17.4.11 I²C MASTER MODE RECEPTION

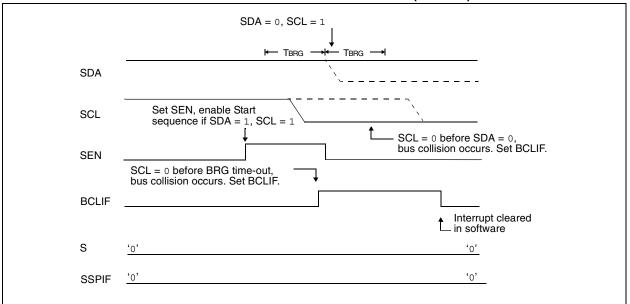
Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPCON2<3>).

Note:	The RCEN bit should be set after the \overline{ACK}
	sequence is complete or the RCEN bit will
	be disregarded.

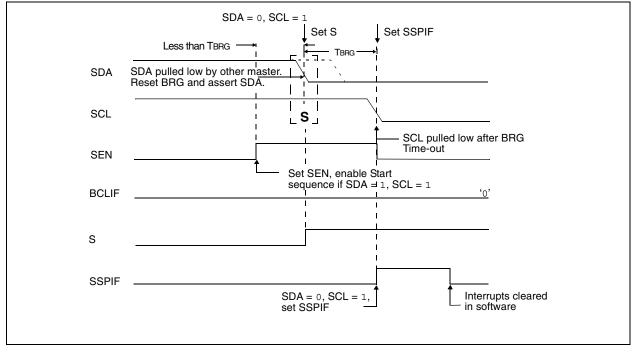
The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/ low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN (SSPCON2<4>).

17.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.


17.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.


17.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

TBL	RD	Table Read					
Synta	ax:	[label]	TBL	.RD (*	; *+; *	-; +*)	
Oper	ands:	None					
Oper	ation:	if TBLRD *, (Prog Mem TBLPTR - N if TBLRD *+ (Prog Mem (TBLPTR) + if TBLRD *-, (Prog Mem (TBLPTR) - if TBLRD + (TBLPTR) + (Prog Mem	No C (TBI 1 − (TBI 1 −	Change _PTR) → TBLI _PTR) → TBLI → TBLI) → T, PTR;) → T, PTR; PTR;	ABLA ABLA	Т; Т;
Statu	s Affected:	None					
Enco	oding:			nn=0 * =1 *+ =2 *-			
Desc	ription:	of Program Me Pointer (TBL The TBLPTF byte in the p 2-Mbyte add TBLPT TBLPT	Merr morr PTF R (a 2 rogr Iress R[0] R[0] R[0] instr as fc e emer eme	nory (F y, a por R) is us 21-bit am me s range = 0: = 1: uction blows: nt	2.M.). iinter o sed. pointe emory e. Leas Byte Mem Mosi of Pr Word	inter) points to each ory. TBLPTR has a east Significant tyte of Program femory Word fost Significant Byte f Program Memory	
Words:		1					
Cycle	es:	2					
	ycle Activity	<i>'</i> :					
	Q1	Q2		Q	3		Q4
	Decode	No		N			No
	No	operation No operatio	n	opera No			eration operation
	operation	(Read Progra Memory)		opera		(Write ABLAT)
<u>Exar</u>	nple 1:	TBLRD	*+	;			
	Before Insti TABL/ TBLP MEMO After Instruc TABL/ TBLP	AT FR DRY(0x00A3 Ction AT	56)	= = =	0x34)A356 1	
Exan	nple 2:	TBLRD	+*	;			
	Before Instr TABL/ TBLP ⁻ MEMC MEMC After Instruct	AT FR DRY(0x01A39 DRY(0x01A39 ction AT		= = =	0x12 0x34 0x34	1 A357 2 1	
	TBLP	IK		=	0x01	IA358	3

© 2006 Microchip Technology Inc.

TBLWT	Table Write				
Syntax:	[<i>label</i>] TBLWT (*; *+; *-; +*)				
Operands:	None				
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register; TBLPTR – No Change; if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR; (TABLAT) \rightarrow Holding Register;				
Status Affected:	None				
Encoding:	0000	0000	0000	11nn nn=0 * =1 *+ =2 *- =3 +*	
Description:	determine wh TABLAT is wr used to progr Memory (P.M Program Me The TBLPTR byte in the pro 2-Mbyte addr TBLPTR sele memory locat TBLPTF	hich of the a itten to. The am the con- am the con- mory" for (a 21-bit p ogram meness range, bots which f tion to acco R[0] = 0: R[0] = 1: nstruction s follows:	 the 3 LSBs of TBLPTR to he 8 holding registers the . The holding registers are contents of Program er to Section 6.0 "Flash for additional details.) bit pointer) points to each memory. TBLPTR has a nge. The LSb of the ch byte of the program access. Least Significant Byte of Program Memory Word Most Significant Byte of Program Memory Word 		

- post-increment
 post-decrement
 pre-increment

TBLWT Table Write (Continued)

W	0	d	s:	1

Cycles: 2

Q Cycle Activity:

Q1 0

Decode	No operation	No operation	No operation
No operation	No operation (Read TABLAT)		No operation (Write to Holding Register)

Q3

Q4

Example 1: TBLWT *+;

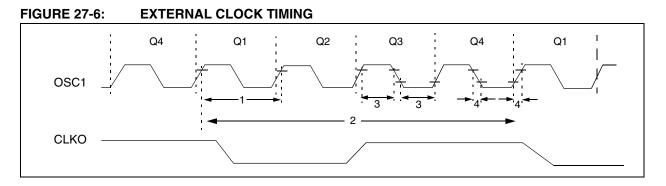
Before Instruction		
TABLAT	=	0x55
TBLPTR	=	0x00A356
HOLDING REGISTER		
(0x00A356)	=	0xFF
After Instructions (table write	com	oletion)
TABLAT	= .	0x55
TBLPTR	=	0x00A357
HOLDING REGISTER		
(0x00A356)	=	0x55
Example 2: TBLWT +	*;	
Before Instruction		
		004
	=	0x34
TBLPTR	= =	0x34 0x01389A
TBLPTR HOLDING REGISTER	=	0x01389A
TBLPTR HOLDING REGISTER (0x01389A)		••••
TBLPTR HOLDING REGISTER	=	0x01389A
TBLPTR HOLDING REGISTER (0x01389A) HOLDING REGISTER (0x01389B)	= = =	0x01389A 0xFF 0xFF
TBLPTR HOLDING REGISTER (0x01389A) HOLDING REGISTER (0x01389B) After Instruction (table write o	= = = compl	0x01389A 0xFF 0xFF etion)
TBLPTR HOLDING REGISTER (0x01389A) HOLDING REGISTER (0x01389B)	= = =	0x01389A 0xFF 0xFF etion) 0x34
TBLPTR HOLDING REGISTER (0x01389A) HOLDING REGISTER (0x01389B) After Instruction (table write of TABLAT TBLPTR	= = compl =	0x01389A 0xFF 0xFF etion)
TBLPTR HOLDING REGISTER (0x01389A) HOLDING REGISTER (0x01389B) After Instruction (table write of TABLAT	= = compl =	0x01389A 0xFF 0xFF etion) 0x34
TBLPTR HOLDING REGISTER (0x01389A) HOLDING REGISTER (0x01389B) After Instruction (table write of TABLAT TBLPTR HOLDING REGISTER	= = compl = =	0x01389A 0xFF 0xFF etion) 0x34 0x01389B
TBLPTR HOLDING REGISTER (0x01389A) HOLDING REGISTER (0x01389B) After Instruction (table write of TABLAT TBLPTR HOLDING REGISTER (0x01389A)	= = compl = =	0x01389A 0xFF 0xFF etion) 0x34 0x01389B

27.1 DC Characteristics (Continued)

PIC18LI (Indus				lard O ating te			ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial
PIC18FXX8 (Industrial, Extended)				dard O ating te		ture -	aditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended
Param No.	Symbol	Characteristic/ Device	Min	Тур	Max	Units	Conditions
	ΔIWDT	Module Differential Cur	rent				
D022		Watchdog Timer PIC18LFXX8		0.75 0.8 7	1.5 8 25	μΑ μΑ μΑ	VDD = 2.5V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C
D022		Watchdog Timer PIC18FXX8		7 7 7	25 25 45	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C
D022A	ΔIBOR	Brown-out Reset ⁽⁵⁾ PIC18LFXX8		38 42 49	50 55 65	μΑ μΑ μΑ	VDD = 2.0V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C
D022A		Brown-out Reset ⁽⁵⁾ PIC18FXX8		46 49 50	65 65 75	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C
D022B	ΔILVD	Low-Voltage Detect ⁽⁵⁾ PIC18LFXX8		36 40 47	50 55 65	μΑ μΑ μΑ	VDD = 2.0V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C
D022B		Low-Voltage Detect ⁽⁵⁾ PIC18FXX8		44 47 47	65 65 75	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C
D025	∆ITMR1	Timer1 Oscillator PIC18LFXX8		6.2 6.2 7.5	40 45 55	μΑ μΑ μΑ	VDD = 2.0V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C
D025		Timer1 Oscillator PIC18FXX8		7.5 7.5 7.5	55 55 65	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C

Legend: Rows are shaded for improved readability.

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.


2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are: $\frac{OSC1}{MCLR} = \text{external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD}$ $\frac{MCLR}{MCLR} = \text{VDD; WDT enabled/disabled as specified.}$

3: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).

- 4: For RC oscillator configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2 REXT (mA) with REXT in kOhm.
- **5:** The LVD and BOR modules share a large portion of circuitry. The △IBOR and △ILVD currents are not additive. Once one of these modules is enabled, the other may also be enabled without further penalty.

27.3.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 27-6: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
1A	Fosc	External CLKI Frequency ⁽¹⁾	DC	40	MHz	EC, ECIO oscillator, -40°C to +85°C
		Oscillator Frequency ⁽¹⁾	DC	25	MHz	EC, ECIO oscillator, +85°C to +125°C
			DC	4	MHz	RC oscillator
			0.1	4	MHz	XT oscillator
			4	25	MHz	HS oscillator, -40°C to +85°C
			4	25	MHz	HS oscillator, +85°C to +125°C
			4	10	MHz	HS + PLL oscillator, -40°C to +85°C
			4	6.25	MHz	HS + PLL oscillator, +85°C to +125°C
			DC	200	kHz	LP oscillator
1	Tosc	External CLKI Period ⁽¹⁾	25	—	ns	EC, ECIO oscillator, -40°C to +85°C
		Oscillator Period ⁽¹⁾	40	—	ns	EC, ECIO oscillator, +85°C to +125°C
			250	—	ns	RC oscillator
			250	10,000	ns	XT oscillator
			40	—	ns	HS oscillator, -40°C to +85°C
			40	—	ns	HS oscillator, +85°C to +125°C
			100	250	ns	HS + PLL oscillator, -40°C to +85°C
			160	250	ns	HS + PLL oscillator, +85°C to +125°C
			5	200	μs	LP oscillator
2	Тсү	Instruction Cycle Time ⁽¹⁾	100 160	_	ns ns	Tcy = 4/Fosc, -40°C to +85°C Tcy = 4/Fosc, +85°C to +125°C
3	TosL,	External Clock in (OSC1)	30	_	ns	XT oscillator
	TosH	High or Low Time	2.5	—	ns	LP oscillator
			10	—	μs	HS oscillator
4	TosR,	External Clock in (OSC1)		20	ns	XT oscillator
	TosF	Rise or Fall Time	_	50	ns	LP oscillator
				7.5	ns	HS oscillator

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

© 2006 Microchip Technology Inc.

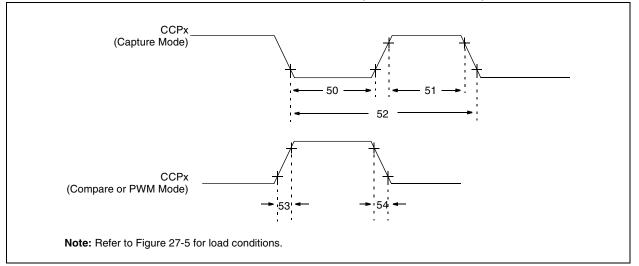
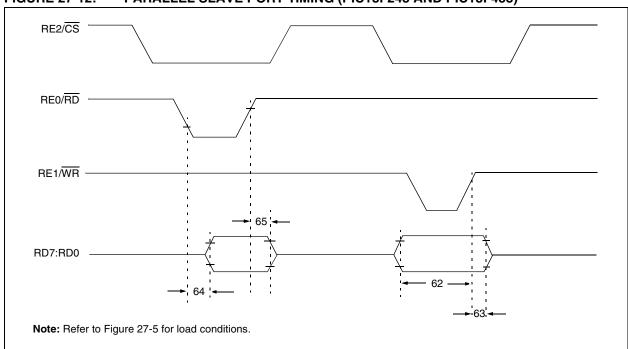



TABLE 27-11: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND ECCP1)

Param No.	Symbol	Chara	acteristic		Min	Max	Units	Conditions
50	TccL	CCPx Input Low Time	No prescal	er	0.5 TCY + 20	_	ns	
			With	PIC18FXX8	10	_	ns	
			prescaler	PIC18LFXX8	20	_	ns	
51	TccH	CCPx Input High Time	No prescal	er	0.5 TCY + 20	_	ns	
			With	PIC18FXX8	10	—	ns	
			prescaler	PIC18LFXX8	20	_	ns	
52	TccP	CCPx Input Period			<u>3 Tcy + 40</u> N	_	ns	N = prescale value (1, 4 or 16)
53	TccR	CCPx Output Fall Time	Э	PIC18FXX8	—	25	ns	
				PIC18LFXX8	—	45	ns	
54	TccF	CCPx Output Fall Time	э	PIC18FXX8	—	25	ns	
				PIC18LFXX8	—	45	ns	

FIGURE 27-12:	PARALLEL SLAVE PORT	TIMING (PIC18F248 AND PIC18F458)
	FANALLL SLAVE FUNI	

TABLE 27-12: PARALLEL SLAVE PORT REQUIREMENTS (PIC18F248 AND PIC18F458)

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
62	TdtV2wrH	Data-In Valid before $\overline{WR} \uparrow$ or \overline{CS} (setup time)	Ŝ↑	20 25		ns ns	Extended Temp. range
63	TwrH2dtl	\overline{WR} \uparrow or \overline{CS} \uparrow to Data-In Invalid	PIC18FXX8	20	_	ns	
		(hold time) PIC18LF		35	_	ns	
64	TrdL2dtV	$\overline{RD} \downarrow and \ \overline{CS} \downarrow to \ Data-Out \ Valid$		_	80 90	ns ns	Extended Temp. range
65	TrdH2dtl	\overline{RD} \uparrow or \overline{CS} \downarrow to Data-Out Invali	id	10	30	ns	
66	TibfINH	Inhibit the IBF flag bit being cleat WR \uparrow or CS \uparrow	ared from	_	3 TCY	ns	

Prescaler, Timer2128
PRO MATE II Universal Device
Programmer
Program Counter
PCL Register
•
PCLATH Register 40
PCLATU Register 40
Program Memory
Fast Register Stack
Instructions
Two-Word43
Map and Stack for PIC18F248/448
Map and Stack for PIC18F258/458
PUSH and POP Instructions
Return Address Stack
Return Stack Pointer (STKPTR)
Stack Full/Underflow Resets
Top-of-Stack Access
Program Verification and
Code Protection
Associated Registers Summary 276
Configuration Register Protection
Data EEPROM Code Protection
Program Memory Code Protection
Programming, Device Instructions
PUSH
PWM (CCP Module) 128
CCPR1H:CCPR1L Registers 128
Duty Cycle
Example Frequencies/Resolutions
Period128
Registers Associated with
PWM and Timer2129
Setup for PWM Operation 129
TMR2 to PR2 Match 117, 128
PWM (ECCP Module) 134
Full-Bridge Application Example 138
Full-Bridge Mode137
Direction Change 138
Half-Bridge Mode
Half-Bridge Output Mode
Applications Example136
Output Configurations134
Output Polarity Configuration
Output Relationships Diagram
Programmable Dead-Band Delay
Registers Associated with Enhanced PWM
and Timer2141
Setup for PWM Operation 141
Standard Mode
Start-up Considerations
System Implementation140
Q
Q
Q Clock
R
PAM See Data Momony
RAM. See Data Memory.
RCALL
RCON Register

RCALL	
RCON Register	
Significance of Status Bits vs.	
Initialization Condition	
RCSTA Register	
SPEN Bit	
Receiver Warning	
Register File	

Registers	49
ADCON0 (A/D Control 0)	
ADCON1 (A/D Control 1)	
BRGCON1 (Baud Rate Control 1)	
BRGCON2 (Baud Rate Control 2)	219
BRGCON3 (Baud Rate Control 3)	220
CANCON (CAN Control)	201
CANSTAT (CAN Status)	
CCP1CON (CCP1 Control)	
CIOCON (CAN I/O Control)	
CMCON (Comparator Control)	
COMSTAT (CAN	
Communication Status)	205
CONFIG1H (Configuration 1 High)	
CONFIG2H (Configuration 2 High)	
CONFIG2L (Configuration 2 Low)	
CONFIG4L (Configuration 4 Low)	
CONFIG5H (Configuration 5 High)	
CONFIG5L (Configuration 5 Low)	
CONFIG6H (Configuration 6 High)	
CONFIG6L (Configuration 6 Low)	
CONFIG7H (Configuration 7 High)	
CONFIG7L (Configuration 7 Low)	270
CVRCON (Comparator Voltage	
Reference Control)	
DEVID1 (Device ID 1)	271
DEVID2 (Device ID 2)	271
ECCP1CON (ECCP1 Control)	131
ECCP1DEL (PWM Delay)	140
ECCPAS (Enhanced Capture/Compare/PWM	
Auto-Shutdown Control)	142
EECON1 (EEPROM Control 1)	
INTCON (Interrupt Control)	
INTCON2 (Interrupt Control 2)	80
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3)	80 81
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1)	80 81 88
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2)	80 81 88 89
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3)	80 81 88 89 . 90, 224
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control)	
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control)	
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1)	80 81 88 89 . 90, 224 261 20 85
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2)	80 81 88 89 . 90, 224 261 85 86
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3)	80 81 88 89 . 90, 224 261 85 86
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request	80 81 88 89 . 90, 224 261 85 86 . 87, 223
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1)	80 81 88 89 . 90, 224 261 85 86 . 87, 223
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request	80 81 88 90, 224 261 20 85 85 86 87, 223 82
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2)	80 81 88 90, 224 261 20 85 85 86 87, 223 82
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request	80 81 88 90, 224 90, 224 261 20 85 85 86 87, 223 82 82 83
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3)	80 81 88 90, 224 90, 224 261 20 85 85 86 87, 223 82 87, 223 82 83 . 84, 222
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request	80 81 88 90, 224 90, 224 261 20 85 85 86 87, 223 82 87, 223 82 83 . 84, 222
 INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) 	80 81 88 90, 224 90, 224 261 20 85 85 86 87, 223 87, 223 82 83 . 84, 222
 INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) 	80 81 88 90, 224 90, 224 261 20 85 85 86 87, 223 87, 223 82 83 . 84, 222
 INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) 	80 81 88 89 90, 224 261 20 85 85 86 87, 223 87, 223 82 83 . 84, 222
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control)	80 81 88 89 90, 224 261 20 85 85 86 87, 223 87, 223 82 83 . 84, 222
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control) RXB1CON (Receive Buffer 1 Control)	80 81 88 89 90, 224 261 20 85 85 86 87, 223 82 83 . 84, 222
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control)	80 81 88 89 90, 224 261 20 85 85 86 87, 223 82 83 . 84, 222
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control) RXB1CON (Receive Buffer 1 Control) RXBnDLC (Receive Buffer n Data Length Code) RXBnDm (Receive Buffer n	80 81 88 89 90, 224 261 20 85 85 86 87, 223 83 . 84, 222
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control) RXB1CON (Receive Buffer 1 Control) RXBnDLC (Receive Buffer n Data Length Code)	80 81 88 89 90, 224 261 20 85 85 86 87, 223 83 . 84, 222
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control) RXB1CON (Receive Buffer 1 Control) RXBDLC (Receive Buffer n Data Length Code) RXBnDm (Receive Buffer n Data Field Byte m) RXBnEIDH (Receive Buffer n	80 81 88 89 90, 224 261 20 85 86 87, 223 83 84, 222 58, 91 84, 222 184 210 211 213 214
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Buffer 0 Control) RXB0CON (Receive Buffer 1 Control) RXB1CON (Receive Buffer n Data Length Code) RXBnDM (Receive Buffer n Data Field Byte m) RXBnEIDH (Receive Buffer n Extended Identifier, High Byte)	80 81 88 89 90, 224 261 20 85 86 87, 223 83 84, 222 58, 91 84, 222 184 210 211 213 214
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control) RXB1CON (Receive Buffer n Data Length Code) RXBnDLC (Receive Buffer n Data Field Byte m) RXBnEIDH (Receive Buffer n Extended Identifier, High Byte) RXBnEIDL (Receive Buffer n	80 81 88 89 90, 224 261 20 85 85 86 87, 223 87, 223 87, 223 87, 223 87, 223 83 84, 222 58, 91 211 211 213 214 212
 INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) LVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Buffer 0 Control) RXB0CON (Receive Buffer n Data Length Code) RXBnDm (Receive Buffer n Extended Identifier, High Byte) RXBnEIDL (Receive Buffer n Extended Identifier, Low Byte) 	80 81 88 89 90, 224 261 20 85 85 86 87, 223 87, 223 87, 223 87, 223 87, 223 83 84, 222 58, 91 211 211 213 214 212
INTCON2 (Interrupt Control 2) INTCON3 (Interrupt Control 3) IPR1 (Peripheral Interrupt Priority 1) IPR2 (Peripheral Interrupt Priority 2) IPR3 (Peripheral Interrupt Priority 3) UVDCON (LVD Control) OSCCON (Oscillator Control) PIE1 (Peripheral Interrupt Enable 1) PIE2 (Peripheral Interrupt Enable 2) PIE3 (Peripheral Interrupt Enable 3) PIR1 (Peripheral Interrupt Request (Flag) 1) PIR2 (Peripheral Interrupt Request (Flag) 2) PIR3 (Peripheral Interrupt Request (Flag) 3) RCON (Reset Control) RCSTA (Receive Status and Control) RXB0CON (Receive Buffer 0 Control) RXB1CON (Receive Buffer n Data Length Code) RXBnDLC (Receive Buffer n Data Field Byte m) RXBnEIDH (Receive Buffer n Extended Identifier, High Byte) RXBnEIDL (Receive Buffer n	80 81 81 88 90, 224 261 20 85 85 86 87, 223 87, 223 87, 223 87, 223 83 84, 222 58, 91 211 213 214 214 212 213