
Microchip Technology - PIC18LF248-I/SP Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity CANbus, I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, POR, PWM, WDT

Number of I/O 22

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 768 x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 5.5V

Data Converters A/D 5x10b

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Through Hole

Package / Case 28-DIP (0.300", 7.62mm)

Supplier Device Package 28-SPDIP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf248-i-sp

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf248-i-sp-4413400
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18FXX8
If the main oscillator is configured for HS4 (PLL) mode,
an oscillator start-up time (TOST) plus an additional PLL
time-out (TPLL) will occur. The PLL time-out is typically
2 ms and allows the PLL to lock to the main oscillator
frequency. A timing diagram indicating the transition
from the Timer1 oscillator to the main oscillator for HS4
mode is shown in Figure 2-9.

If the main oscillator is configured in the RC, RCIO, EC
or ECIO modes, there is no oscillator start-up time-out.
Operation will resume after eight cycles of the main
oscillator have been counted. A timing diagram indicat-
ing the transition from the Timer1 oscillator to the main
oscillator for RC, RCIO, EC and ECIO modes is shown
in Figure 2-10.

FIGURE 2-9: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS WITH PLL)

FIGURE 2-10: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (RC, EC)

Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2

OSC1

Internal System

SCS
(OSCCON<0>)

Program PC PC + 2

Note 1: TOST = 1024 TOSC (drawing not to scale).

T1OSI

Clock

TOST

Q3

PC + 4

TPLL

TOSC

TT1P

TSCS

Q4

OSC2

PLL Clock
Input 1 2 3 4 5 6 7 8

Counter

Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3

OSC1

Internal System

SCS
(OSCCON<0>)

Program PC PC + 2

Note 1: RC Oscillator mode assumed.

PC + 4

T1OSI

Clock

OSC2

Q4TT1P

TOSC

TSCS

1 2 3 4 5 6 7 8

Counter
DS41159E-page 22 © 2006 Microchip Technology Inc.

PIC18FXX8
4.2.3 PUSH AND POP INSTRUCTIONS

Since the Top-of-Stack (TOS) is readable and writable,
the ability to push values onto the stack and pull values
off the stack, without disturbing normal program execu-
tion, is a desirable option. To push the current PC value
onto the stack, a PUSH instruction can be executed.
This will increment the Stack Pointer and load the
current PC value onto the stack. TOSU, TOSH and
TOSL can then be modified to place a return address
on the stack.

The POP instruction discards the current TOS by decre-
menting the Stack Pointer. The previous value pushed
onto the stack then becomes the TOS value.

4.2.4 STACK FULL/UNDERFLOW RESETS

These Resets are enabled by programming the
STVREN configuration bit. When the STVREN bit is
disabled, a full or underflow condition will set the appro-
priate STKFUL or STKUNF bit, but not cause a device
Reset. When the STVREN bit is enabled, a full or
underflow condition will set the appropriate STKFUL or
STKUNF bit and then cause a device Reset. The
STKFUL or STKUNF bits are only cleared by the user
software or a POR.

4.3 Fast Register Stack

A “fast return” option is available for interrupts and
calls. A fast register stack is provided for the Status,
WREG and BSR registers and is only one layer in
depth. The stack is not readable or writable and is
loaded with the current value of the corresponding
register when the processor vectors for an interrupt.
The values in the fast register stack are then loaded
back into the working registers if the FAST RETURN
instruction is used to return from the interrupt.

A low or high priority interrupt source will push values
into the stack registers. If both low and high priority
interrupts are enabled, the stack registers cannot be
used reliably for low priority interrupts. If a high priority
interrupt occurs while servicing a low priority interrupt,
the stack register values stored by the low priority
interrupt will be overwritten.

If high priority interrupts are not disabled during low
priority interrupts, users must save the key registers in
software during a low priority interrupt.

If no interrupts are used, the fast register stack can be
used to restore the Status, WREG and BSR registers at
the end of a subroutine call. To use the fast register
stack for a subroutine call, a FAST CALL instruction
must be executed.

Example 4-1 shows a source code example that uses
the fast register stack.

EXAMPLE 4-1: FAST REGISTER STACK
CODE EXAMPLE

4.4 PCL, PCLATH and PCLATU

The Program Counter (PC) specifies the address of the
instruction to fetch for execution. The PC is 21 bits
wide. The low byte is called the PCL register. This reg-
ister is readable and writable. The high byte is called
the PCH register. This register contains the PC<15:8>
bits and is not directly readable or writable. Updates to
the PCH register may be performed through the
PCLATH register. The upper byte is called PCU. This
register contains the PC<20:16> bits and is not directly
readable or writable. Updates to the PCU register may
be performed through the PCLATU register.

The PC addresses bytes in the program memory. To
prevent the PC from becoming misaligned with word
instructions, the LSb of PCL is fixed to a value of ‘0’.
The PC increments by 2 to address sequential
instructions in the program memory.

The CALL, RCALL, GOTO and program branch
instructions write to the program counter directly. For
these instructions, the contents of PCLATH and
PCLATU are not transferred to the program counter.

The contents of PCLATH and PCLATU will be
transferred to the program counter by an operation that
writes PCL. Similarly, the upper two bytes of the
program counter will be transferred to PCLATH and
PCLATU by an operation that reads PCL. This is useful
for computed offsets to the PC (see Section 4.8.1
“Computed GOTO”).

CALL SUB1, FAST ;STATUS, WREG, BSR
;SAVED IN FAST REGISTER
;STACK

•
•

SUB1 •
•
•

RETURN FAST ;RESTORE VALUES SAVED
;IN FAST REGISTER STACK
DS41159E-page 40 © 2006 Microchip Technology Inc.

PIC18FXX8

TABLE 4-2: REGISTER FILE SUMMARY

File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR

Details on
Page:

TOSU — — — Top-of-Stack Upper Byte (TOS<20:16>) ---0 0000 30, 38

TOSH Top-of-Stack High Byte (TOS<15:8>) 0000 0000 30, 38

TOSL Top-of-Stack Low Byte (TOS<7:0>) 0000 0000 30, 38

STKPTR STKFUL STKUNF — Return Stack Pointer 00-0 0000 30, 39

PCLATU — — bit 21(2) Holding Register for PC<20:16> ---0 0000 30, 40

PCLATH Holding Register for PC<15:8> 0000 0000 30, 40

PCL PC Low Byte (PC<7:0>) 0000 0000 30, 40

TBLPTRU — — bit 21(2) Program Memory Table Pointer Upper Byte (TBLPTR<20:16>) --00 0000 30, 68

TBLPTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>) 0000 0000 30, 68

TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR<7:0>) 0000 0000 30, 68

TABLAT Program Memory Table Latch 0000 0000 30, 68

PRODH Product Register High Byte xxxx xxxx 30, 75

PRODL Product Register Low Byte xxxx xxxx 30, 75

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 30, 79

INTCON2 RBPU INTEDG0 INTEDG1 — — TMR0IP — RBIP 111- -1-1 30, 80

INTCON3 INT2IP INT1IP — INT2IE INT1IE — INT2IF INT1IF 11-0 0-00 30, 81

INDF0 Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register) N/A 30, 55

POSTINC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 30, 55

POSTDEC0 Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register) N/A 30, 55

PREINC0 Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) N/A 30, 55

PLUSW0 Uses contents of FSR0 to address data memory – value of FSR0 offset by W (not a physical register) N/A 30, 55

FSR0H — — — — Indirect Data Memory Address Pointer 0 High ---- xxxx 30, 55

FSR0L Indirect Data Memory Address Pointer 0 Low Byte xxxx xxxx 30, 55

WREG Working Register xxxx xxxx 30, 55

INDF1 Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register) N/A 30, 55

POSTINC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 30, 55

POSTDEC1 Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) N/A 30, 55

PREINC1 Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) N/A 30, 55

PLUSW1 Uses contents of FSR1 to address data memory – value of FSR1 offset by W (not a physical register) N/A 30, 55

FSR1H — — — — Indirect Data Memory Address Pointer 1 High ---- xxxx 31, 55

FSR1L Indirect Data Memory Address Pointer 1 Low Byte xxxx xxxx 31, 55

BSR — — — — Bank Select Register ---- 0000 31, 54

INDF2 Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register) N/A 31, 55

POSTINC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 31, 55

POSTDEC2 Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) N/A 31, 55

PREINC2 Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) N/A 31, 55

PLUSW2 Uses contents of FSR2 to address data memory – value of FSR2 offset by W (not a physical register) N/A 31, 55

FSR2H — — — — Indirect Data Memory Address Pointer 2 High ---- xxxx 31, 55

FSR2L Indirect Data Memory Address Pointer 2 Low Byte xxxx xxxx 31, 55

STATUS — — — N OV Z DC C ---x xxxx 31, 57

TMR0H Timer0 Register High Byte 0000 0000 31, 111

TMR0L Timer0 Register Low Byte xxxx xxxx 31, 111

T0CON TMR0ON T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0 1111 1111 31, 109

OSCCON — — — — — — — SCS ---- ---0 31, 20

LVDCON — — IRVST LVDEN LVDL3 LVDL2 LVDL1 LVDL0 --00 0101 31, 261

WDTCON — — — — — — — SWDTEN ---- ---0 31, 272

RCON IPEN — — RI TO PD POR BOR 0--1 110q 31, 58, 91

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.

2: Bit 21 of the TBLPTRU allows access to the device configuration bits.
3: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator modes.
© 2006 Microchip Technology Inc. DS41159E-page 49

PIC18FXX8
CANSTATRO1 OPMODE2 OPMODE1 OPMODE0 — ICODE2 ICODE1 ICODE0 — xxx- xxx- 33, 202

RXB1D7 RXB1D77 RXB1D76 RXB1D75 RXB1D74 RXB1D73 RXB1D72 RXB1D71 RXB1D70 xxxx xxxx 34, 214

RXB1D6 RXB1D67 RXB1D66 RXB1D65 RXB1D64 RXB1D63 RXB1D62 RXB1D61 RXB1D60 xxxx xxxx 34, 214

RXB1D5 RXB1D57 RXB1D56 RXB1D55 RXB1D54 RXB1D53 RXB1D52 RXB1D51 RXB1D50 xxxx xxxx 34, 214

RXB1D4 RXB1D47 RXB1D46 RXB1D45 RXB1D44 RXB1D43 RXB1D42 RXB1D41 RXB1D40 xxxx xxxx 34, 214

RXB1D3 RXB1D37 RXB1D36 RXB1D35 RXB1D34 RXB1D33 RXB1D32 RXB1D31 RXB1D30 xxxx xxxx 34, 214

RXB1D2 RXB1D27 RXB1D26 RXB1D25 RXB1D24 RXB1D23 RXB1D22 RXB1D21 RXB1D20 xxxx xxxx 34, 214

RXB1D1 RXB1D17 RXB1D16 RXB1D15 RXB1D14 RXB1D13 RXB1D12 RXB1D11 RXB1D10 xxxx xxxx 34, 214

RXB1D0 RXB1D07 RXB1D06 RXB1D05 RXB1D04 RXB1D03 RXB1D02 RXB1D01 RXB1D00 xxxx xxxx 34, 214

RXB1DLC — RXRTR RB1 RB0 DLC3 DLC2 DLC1 DLC0 -xxx xxxx 34, 213

RXB1EIDL EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0 xxxx xxxx 34, 213

RXB1EIDH EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8 xxxx xxxx 34, 212

RXB1SIDL SID2 SID1 SID0 SRR EXID — EID17 EID16 xxxx x-xx 34, 212

RXB1SIDH SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 xxxx xxxx 34, 212

RXB1CON RXFUL RXM1 RXM0 — RXRTRRO FILHIT2 FILHIT1 FILHIT0 000- 0000 34, 211

CANSTATRO2 OPMODE2 OPMODE1 OPMODE0 — ICODE2 ICODE1 ICODE0 — xxx- xxx- 33, 202

TXB0D7 TXB0D77 TXB0D76 TXB0D75 TXB0D74 TXB0D73 TXB0D72 TXB0D71 TXB0D70 xxxx xxxx 34, 208

TXB0D6 TXB0D67 TXB0D66 TXB0D65 TXB0D64 TXB0D63 TXB0D62 TXB0D61 TXB0D60 xxxx xxxx 34, 208

TXB0D5 TXB0D57 TXB0D56 TXB0D55 TXB0D54 TXB0D53 TXB0D52 TXB0D51 TXB0D50 xxxx xxxx 34, 208

TXB0D4 TXB0D47 TXB0D46 TXB0D45 TXB0D44 TXB0D43 TXB0D42 TXB0D41 TXB0D40 xxxx xxxx 34, 208

TXB0D3 TXB0D37 TXB0D36 TXB0D35 TXB0D34 TXB0D33 TXB0D32 TXB0D31 TXB0D30 xxxx xxxx 34, 208

TXB0D2 TXB0D27 TXB0D26 TXB0D25 TXB0D24 TXB0D23 TXB0D22 TXB0D21 TXB0D20 xxxx xxxx 34, 208

TXB0D1 TXB0D17 TXB0D16 TXB0D15 TXB0D14 TXB0D13 TXB0D12 TXB0D11 TXB0D10 xxxx xxxx 34, 208

TXB0D0 TXB0D07 TXB0D06 TXB0D05 TXB0D04 TXB0D03 TXB0D02 TXB0D01 TXB0D00 xxxx xxxx 34, 208

TXB0DLC — TXRTR — — DLC3 DLC2 DLC1 DLC0 -x-- xxxx 34, 209

TXB0EIDL EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0 xxxx xxxx 34, 208

TXB0EIDH EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8 xxxx xxxx 34, 207

TXB0SIDL SID2 SID1 SID0 — EXIDE — EID17 EID16 xxx- x-xx 34, 207

TXB0SIDH SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 xxxx xxxx 35, 207

TXB0CON — TXABT TXLARB TXERR TXREQ — TXPRI1 TXPRI0 -000 0-00 35, 206

CANSTATRO3 OPMODE2 OPMODE1 OPMODE0 — ICODE2 ICODE1 ICODE0 — xxx- xxx- 33, 202

TXB1D7 TXB1D77 TXB1D76 TXB1D75 TXB1D74 TXB1D73 TXB1D72 TXB1D71 TXB1D70 xxxx xxxx 35, 208

TXB1D6 TXB1D67 TXB1D66 TXB1D65 TXB1D64 TXB1D63 TXB1D62 TXB1D61 TXB1D60 xxxx xxxx 35, 208

TXB1D5 TXB1D57 TXB1D56 TXB1D55 TXB1D54 TXB1D53 TXB1D52 TXB1D51 TXB1D50 xxxx xxxx 35, 208

TXB1D4 TXB1D47 TXB1D46 TXB1D45 TXB1D44 TXB1D43 TXB1D42 TXB1D41 TXB1D40 xxxx xxxx 35, 208

TXB1D3 TXB1D37 TXB1D36 TXB1D35 TXB1D34 TXB1D33 TXB1D32 TXB1D31 TXB1D30 xxxx xxxx 35, 208

TXB1D2 TXB1D27 TXB1D26 TXB1D25 TXB1D24 TXB1D23 TXB1D22 TXB1D21 TXB1D20 xxxx xxxx 35, 208

TXB1D1 TXB1D17 TXB1D16 TXB1D15 TXB1D14 TXB1D13 TXB1D12 TXB1D11 TXB1D10 xxxx xxxx 35, 208

TXB1D0 TXB1D07 TXB1D06 TXB1D05 TXB1D04 TXB1D03 TXB1D02 TXB1D01 TXB1D00 xxxx xxxx 35, 208

TXB1DLC — TXRTR — — DLC3 DLC2 DLC1 DLC0 -x-- xxxx 35, 209

TXB1EIDL EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0 xxxx xxxx 35, 208

TXB1EIDH EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8 xxxx xxxx 35, 207

TXB1SIDL SID2 SID1 SID0 — EXIDE — EID17 EID16 xxx- x-xx 35, 207

TXB1SIDH SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 xxxx xxxx 35, 207

TXB1CON — TXABT TXLARB TXERR TXREQ — TXPRI1 TXPRI0 0000 0000 35, 206

TABLE 4-2: REGISTER FILE SUMMARY (CONTINUED)

File Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR

Details on
Page:

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.

2: Bit 21 of the TBLPTRU allows access to the device configuration bits.
3: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator modes.
DS41159E-page 52 © 2006 Microchip Technology Inc.

PIC18FXX8
4.12 Indirect Addressing, INDF and
FSR Registers

Indirect addressing is a mode of addressing data mem-
ory where the data memory address in the instruction
is not fixed. A SFR register is used as a pointer to the
data memory location that is to be read or written. Since
this pointer is in RAM, the contents can be modified by
the program. This can be useful for data tables in the
data memory and for software stacks. Figure 4-8
shows the operation of indirect addressing. This shows
the moving of the value to the data memory address
specified by the value of the FSR register.

Indirect addressing is possible by using one of the INDF
registers. Any instruction using the INDF register actually
accesses the register indicated by the File Select Regis-
ter, FSR. Reading the INDF register itself, indirectly
(FSR = 0), will read 00h. Writing to the INDF register
indirectly, results in a no operation. The FSR register
contains a 12-bit address which is shown in Figure 4-8.

The INDFn (0 ≤ n ≤ 2) register is not a physical register.
Addressing INDFn actually addresses the register
whose address is contained in the FSRn register
(FSRn is a pointer). This is indirect addressing.

Example 4-5 shows a simple use of indirect addressing
to clear the RAM in Bank 1 (locations 100h-1FFh) in a
minimum number of instructions.

EXAMPLE 4-5: HOW TO CLEAR RAM
(BANK 1) USING
INDIRECT ADDRESSING

There are three indirect addressing registers. To
address the entire data memory space (4096 bytes),
these registers are 12 bits wide. To store the 12 bits of
addressing information, two 8-bit registers are
required. These indirect addressing registers are:

1. FSR0: composed of FSR0H:FSR0L
2. FSR1: composed of FSR1H:FSR1L
3. FSR2: composed of FSR2H:FSR2L

In addition, there are registers INDF0, INDF1 and
INDF2, which are not physically implemented. Reading
or writing to these registers activates indirect address-
ing, with the value in the corresponding FSR register
being the address of the data.

If an instruction writes a value to INDF0, the value will
be written to the address indicated by FSR0H:FSR0L.
A read from INDF1 reads the data from the address
indicated by FSR1H:FSR1L. INDFn can be used in
code anywhere an operand can be used.

If INDF0, INDF1 or INDF2 are read indirectly via an
FSR, all ‘0’s are read (zero bit is set). Similarly, if
INDF0, INDF1 or INDF2 are written to indirectly, the
operation will be equivalent to a NOP instruction and the
Status bits are not affected.

4.12.1 INDIRECT ADDRESSING
OPERATION

Each FSR register has an INDF register associated with
it, plus four additional register addresses. Performing an
operation on one of these five registers determines how
the FSR will be modified during indirect addressing.

• When data access is done to one of the five
INDFn locations, the address selected will
configure the FSRn register to:
- Do nothing to FSRn after an indirect access

(no change) – INDFn
- Auto-decrement FSRn after an indirect

access (post-decrement) – POSTDECn
- Auto-increment FSRn after an indirect

access (post-increment) – POSTINCn
- Auto-increment FSRn before an indirect

access (pre-increment) – PREINCn
- Use the value in the WREG register as an

offset to FSRn. Do not modify the value of the
WREG or the FSRn register after an indirect
access (no change) – PLUSWn

When using the auto-increment or auto-decrement
features, the effect on the FSR is not reflected in the
Status register. For example, if the indirect address
causes the FSR to equal ‘0’, the Z bit will not be set.

Incrementing or decrementing an FSR affects all
12 bits. That is, when FSRnL overflows from an
increment, FSRnH will be incremented automatically.

Adding these features allows the FSRn to be used as a
software stack pointer in addition to its uses for table
operations in data memory.

Each FSR has an address associated with it that
performs an indexed indirect access. When a data
access to this INDFn location (PLUSWn) occurs, the
FSRn is configured to add the 2’s complement value in
the WREG register and the value in FSR to form the
address before an indirect access. The FSR value is not
changed.

If an FSR register contains a value that indicates one of
the INDFn, an indirect read will read 00h (zero bit is
set), while an indirect write will be equivalent to a NOP
(Status bits are not affected).

If an indirect addressing operation is done where the
target address is an FSRnH or FSRnL register, the
write operation will dominate over the pre- or
post-increment/decrement functions.

LFSR FSR0, 100h ;
NEXT CLRF POSTINC0 ; Clear INDF

; register
; & inc pointer

BTFSS FSR0H, 1 ; All done
; w/ Bank1?

BRA NEXT ; NO, clear next
CONTINUE ;

: ; YES, continue
© 2006 Microchip Technology Inc. DS41159E-page 55

PIC18FXX8
EXAMPLE 6-3: WRITING TO FLASH PROGRAM MEMORY
MOVLW D'64 ; number of bytes in erase block
MOVWF COUNTER
MOVLW high (BUFFER_ADDR) ; point to buffer
MOVWF FSR0H
MOVLW low (BUFFER_ADDR)
MOVWF FSR0L
MOVLW upper (CODE_ADDR) ; Load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW high (CODE_ADDR)
MOVWF TBLPTRH
MOVLW low (CODE_ADDR)
MOVWF TBLPTRL

READ_BLOCK
TBLRD*+ ; read into TABLAT, and inc
MOVF TABLAT, W ; get data
MOVWF POSTINC0 ; store data
DECFSZ COUNTER ; done?
BRA READ_BLOCK ; repeat

MODIFY_WORD
MOVLW DATA_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW DATA_ADDR_LOW
MOVWF FSR0L
MOVLW NEW_DATA_LOW ; update buffer word
MOVWF POSTINC0
MOVLW NEW_DATA_HIGH
MOVWF INDF0

ERASE_BLOCK
MOVLW upper (CODE_ADDR) ; load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW high (CODE_ADDR)
MOVWF TBLPTRH
MOVLW low (CODE_ADDR)
MOVWF TBLPTRL
BSF EECON1, EEPGD ; point to FLASH program memory
BCF EECON1, CFGS ; access FLASH program memory
BSF EECON1, WREN ; enable write to memory
BSF EECON1, FREE ; enable Row Erase operation
BCF INTCON, GIE ; disable interrupts
MOVLW 55h

Required MOVWF EECON2 ; write 55H
Sequence MOVLW 0AAh

MOVWF EECON2 ; write AAH
BSF EECON1, WR ; start erase (CPU stall)
NOP
BSF INTCON, GIE ; re-enable interrupts
TBLRD*- ; dummy read decrement

WRITE_BUFFER_BACK
MOVLW 8 ; number of write buffer groups of 8 bytes
MOVWF COUNTER_HI
MOVLW high (BUFFER_ADDR) ; point to buffer
MOVWF FSR0H
MOVLW low (BUFFER_ADDR)
MOVWF FSR0L

PROGRAM_LOOP
MOVLW 8 ; number of bytes in holding register
MOVWF COUNTER

WRITE_WORD_TO_HREGS
MOVFW POSTINC0, W ; get low byte of buffer data
MOVWF TABLAT ; present data to table latch
TBLWT+* ; write data, perform a short write

; to internal TBLWT holding register.
DECFSZ COUNTER ; loop until buffers are full
BRA WRITE_WORD_TO_HREGS
DS41159E-page 72 © 2006 Microchip Technology Inc.

PIC18FXX8
8.0 INTERRUPTS

The PIC18FXX8 devices have multiple interrupt
sources and an interrupt priority feature that allows
each interrupt source to be assigned a high priority
level or a low priority level. The high priority interrupt
vector is at 000008h and the low priority interrupt vector
is at 000018h. High priority interrupt events will
override any low priority interrupts that may be in
progress.

There are 13 registers that are used to control interrupt
operation. These registers are:

• RCON
• INTCON
• INTCON2

• INTCON3
• PIR1, PIR2, PIR3
• PIE1, PIE2, PIE3

• IPR1, IPR2, IPR3

It is recommended that the Microchip header files,
supplied with MPLAB® IDE, be used for the symbolic bit
names in these registers. This allows the assembler/
compiler to automatically take care of the placement of
these bits within the specified register.

Each interrupt source has three bits to control its
operation. The functions of these bits are:

• Flag bit to indicate that an interrupt event
occurred

• Enable bit that allows program execution to
branch to the interrupt vector address when the
flag bit is set

• Priority bit to select high priority or low priority

The interrupt priority feature is enabled by setting the
IPEN bit (RCON register). When interrupt priority is
enabled, there are two bits that enable interrupts
globally. Setting the GIEH bit (INTCON<7>) enables all
interrupts. Setting the GIEL bit (INTCON register)
enables all interrupts that have the priority bit cleared.
When the interrupt flag, enable bit and appropriate
global interrupt enable bit are set, the interrupt will vec-
tor immediately to address 000008h or 000018h,
depending on the priority level. Individual interrupts can
be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the
interrupt priority feature is disabled and interrupts are
compatible with PICmicro® mid-range devices. In
Compatibility mode, the interrupt priority bits for each
source have no effect. The PEIE bit (INTCON register)
enables/disables all peripheral interrupt sources. The
GIE bit (INTCON register) enables/disables all interrupt
sources. All interrupts branch to address 000008h in
Compatibility mode.

When an interrupt is responded to, the global interrupt
enable bit is cleared to disable further interrupts. If the
IPEN bit is cleared, this is the GIE bit. If interrupt priority
levels are used, this will be either the GIEH or GIEL bit.
High priority interrupt sources can interrupt a low
priority interrupt.

The return address is pushed onto the stack and the
PC is loaded with the interrupt vector address
(000008h or 000018h). Once in the Interrupt Service
Routine, the source(s) of the interrupt can be deter-
mined by polling the interrupt flag bits. The interrupt
flag bits must be cleared in software before re-enabling
interrupts to avoid recursive interrupts.

The “return from interrupt” instruction, RETFIE, exits
the interrupt routine and sets the GIE bit (GIEH or GIEL
if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INT pins or
the PORTB input change interrupt, the interrupt latency
will be three to four instruction cycles. The exact
latency is the same for one or two-cycle instructions.
Individual interrupt flag bits are set regardless of the
status of their corresponding enable bit or the GIE bit.

Note: Do not use the MOVFF instruction to modify
any of the interrupt control registers while
any interrupt is enabled. Doing so may
cause erratic microcontroller behavior.
© 2006 Microchip Technology Inc. DS41159E-page 77

PIC18FXX8
FIGURE 8-1: INTERRUPT LOGIC

TMR0IE

GIE/GIEH

GIEL/PEIE

Wake-up if in Sleep mode

Interrupt to CPU
Vector to Location
0008h

INT1IF
INT1IE
INT1IP

TMR0IF
TMR0IE
TMR0IP

INT0IF
INT0IE

RBIF
RBIE
RBIP

TMR0IF

TMR0IP

INT1IF
INT1IE
INT1IP

RBIF
RBIE
RBIP

INT0IF
INT0IE

PEIE/GIEL

Interrupt to CPU
Vector to Location

IPEN

0018h

Peripheral Interrupt Flag bit
Peripheral Interrupt Enable bit
Peripheral Interrupt Priority bit

Peripheral Interrupt Flag bit
Peripheral Interrupt Enable bit
Peripheral Interrupt Priority bit

TMR1IF
TMR1IE
TMR1IP

XXXXIF
XXXXIE
XXXXIP

Additional Peripheral Interrupts

TMR1IF
TMR1IE
TMR1IP

High Priority Interrupt Generation

Low Priority Interrupt Generation

XXXXIF
XXXXIE
XXXXIP

Additional Peripheral Interrupts

IPEN

IPEN

GIE/GIEH

INT2IF
INT2IE
INT2IP

INT2IF
INT2IE
INT2IP
DS41159E-page 78 © 2006 Microchip Technology Inc.

PIC18FXX8
9.3 PORTC, TRISC and LATC
Registers

PORTC is an 8-bit wide, bidirectional port. The corre-
sponding Data Direction register is TRISC. Setting a
TRISC bit (= 1) will make the corresponding PORTC
pin an input (i.e., put the corresponding output driver in
a high-impedance mode). Clearing a TRISC bit (= 0)
will make the corresponding PORTC pin an output (i.e.,
put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATC register,
read and write the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions
(Table 9-5). PORTC pins have Schmitt Trigger input
buffers.

When enabling peripheral functions, care should be
taken in defining TRIS bits for each PORTC pin. Some
peripherals override the TRIS bit to make a pin an output,

while other peripherals override the TRIS bit to make a
pin an input. The user should refer to the corresponding
peripheral section for the correct TRIS bit settings.

The pin override value is not loaded into the TRIS
register. This allows read-modify-write of the TRIS
register, without concern due to peripheral overrides.

EXAMPLE 9-3: INITIALIZING PORTC

FIGURE 9-8: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

CLRF PORTC ; Initialize PORTC by
; clearing output
; data latches

CLRF LATC ; Alternate method
; to clear output
; data latches

MOVLW 0CFh ; Value used to
; initialize data
; direction

MOVWF TRISC ; Set RC3:RC0 as inputs
; RC5:RC4 as outputs
; RC7:RC6 as inputs

Peripheral Out Select

Data Bus

WR LATC

WR TRISC

Data Latch

TRIS Latch

RD TRISC

QD

QCK

Q D

EN

Peripheral Data Out
0

1

QD

QCK

P

N

VDD

VSS

RD PORTC

Peripheral Data In

I/O pin(1)
or
WR PORTC

RD LATC

Schmitt
Trigger

Note 1: I/O pins have diode protection to VDD and VSS.

TRIS
Override

Peripheral Enable

 TRIS OVERRIDE

Pin Override Peripheral

RC0 Yes Timer1 Oscillator
for Timer1/Timer3

RC1 Yes Timer1 Oscillator
for Timer1/Timer3

RC2 No —

RC3 Yes SPI™/I2C™
Master Clock

RC4 Yes I2C Data Out

RC5 Yes SPI Data Out

RC6 Yes USART Async
Xmit, Sync Clock

RC7 Yes USART Sync Data
Out
DS41159E-page 100 © 2006 Microchip Technology Inc.

PIC18FXX8
15.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture
interrupt may be generated. The user should keep bit
CCP1IE (PIE registers) clear to avoid false interrupts
and should clear the flag bit CCP1IF, following any
such change in operating mode.

15.2.4 CCP1 PRESCALER

There are four prescaler settings specified by bits
CCP1M3:CCP1M0. Whenever the CCP1 module is
turned off, or the CCP1 module is not in Capture mode,
the prescaler counter is cleared. This means that any
Reset will clear the prescaler counter.

Switching from one capture prescaler to another may
generate an interrupt. Also, the prescaler counter will
not be cleared; therefore, the first capture may be from
a non-zero prescaler. Example 15-1 shows the recom-
mended method for switching between capture
prescalers. This example also clears the prescaler
counter and will not generate the “false” interrupt.

15.2.5 CAN MESSAGE TIME-STAMP

The CAN capture event occurs when a message is
received in either of the receive buffers. The CAN
module provides a rising edge to the CCP1 module to
cause a capture event. This feature is provided to
time-stamp the received CAN messages.

This feature is enabled by setting the CANCAP bit of
the CAN I/O control register (CIOCON<4>). The
message receive signal from the CAN module then
takes the place of the events on RC2/CCP1.

EXAMPLE 15-1: CHANGING BETWEEN
CAPTURE PRESCALERS

FIGURE 15-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

CLRF CCP1CON, F ; Turn CCP module off
MOVLW NEW_CAPT_PS ; Load WREG with the

; new prescaler mode
; value and CCP ON

MOVWF CCP1CON ; Load CCP1CON with
; this value

Note: I/O pins have diode protection to VDD and VSS.

CCPR1H CCPR1L

TMR1H TMR1L

Set Flag bit CCP1IF
(PIR1<2>)

TMR3
Enable

Qs
CCP1CON<3:0>

CCP1 pin

Prescaler
÷ 1, 4, 16

and
Edge Detect

TMR3H TMR3L

TMR1
Enable

T3ECCP1
T3CCP1

T3ECCP1
T3CCP1
© 2006 Microchip Technology Inc. DS41159E-page 125

PIC18FXX8
TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on

POR, BOR

Value on
all other
Resets

INTCON GIE/
GIEH

PEIE/
GIEL

TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 0000 000u

PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000

PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000

IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111

TRISD PORTD Data Direction Register 1111 1111 1111 1111

TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu

TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register xxxx xxxx uuuu uuuu

T1CON RD16 — T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu

CCPR1L Capture/Compare/PWM Register 1 (LSB) xxxx xxxx uuuu uuuu

CCPR1H Capture/Compare/PWM Register 1 (MSB) xxxx xxxx uuuu uuuu

CCP1CON — — DC1B1 DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000

PIR2 — CMIF — EEIF BCLIF LVDIF TMR3IF ECCP1IF -0-0 0000 -0-0 0000

PIE2 — CMIE — EEIE BCLIE LVDIE TMR3IE ECCP1IE -0-0 0000 -0-0 0000

IPR2 — CMIP — EEIP BCLIP LVDIP TMR3IP ECCP1IP -1-1 1111 -1-1 1111

TMR3L Holding Register for the Least Significant Byte of the 16-bit TMR3 Register xxxx xxxx uuuu uuuu

TMR3H Holding Register for the Most Significant Byte of the 16-bit TMR3 Register xxxx xxxx uuuu uuuu

T3CON RD16 T3ECCP1 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used by Capture and Timer1.
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.
© 2006 Microchip Technology Inc. DS41159E-page 127

PIC18FXX8
16.0 ENHANCED CAPTURE/
COMPARE/PWM (ECCP)
MODULE

This module contains a 16-bit register which can oper-
ate as a 16-bit Capture register, a 16-bit Compare
register or a PWM Master/Slave Duty Cycle register.

The operation of the ECCP module differs from the
CCP (discussed in detail in Section 15.0 “Capture/
Compare/PWM (CCP) Modules”) with the addition of
an Enhanced PWM module which allows for up to 4
output channels and user selectable polarity. These
features are discussed in detail in Section 16.5
“Enhanced PWM Mode”. The module can also be
programmed for automatic shutdown in response to
various analog or digital events.

The control register for ECCP1 is shown in
Register 16-1.

REGISTER 16-1: ECCP1CON: ECCP1 CONTROL REGISTER

Note: The ECCP (Enhanced Capture/Compare/
PWM) module is only available on
PIC18F448 and PIC18F458 devices.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
EPWM1M1 EPWM1M0 EDC1B1 EDC1B0 ECCP1M3 ECCP1M2 ECCP1M1 ECCP1M0

bit 7 bit 0

bit 7-6 EPWM1M<1:0>: PWM Output Configuration bits
If ECCP1M<3:2> = 00, 01, 10:
xx = P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins
If ECCP1M<3:2> = 11:
00 = Single output; P1A modulated; P1B, P1C, P1D assigned as port pins
01 = Full-bridge output forward; P1D modulated; P1A active; P1B, P1C inactive
10 = Half-bridge output; P1A, P1B modulated with deadband control; P1C, P1D assigned as

port pins
11 = Full-bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive

bit 5-4 EDC1B<1:0>: PWM Duty Cycle Least Significant bits

Capture mode:
Unused.
Compare mode:
Unused.
PWM mode:
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in ECCPR1L.

bit 3-0 ECCP1M<3:0>: ECCP1 Mode Select bits
0000 = Capture/Compare/PWM off (resets ECCP module)
0001 = Unused (reserved)
0010 = Compare mode, toggle output on match (ECCP1IF bit is set)
0011 = Unused (reserved)
0100 = Capture mode, every falling edge
0101 = Capture mode, every rising edge
0110 = Capture mode, every 4th rising edge
0111 = Capture mode, every 16th rising edge
1000 = Compare mode, set output on match (ECCP1IF bit is set)
1001 = Compare mode, clear output on match (ECCP1IF bit is set)
1010 = Compare mode, ECCP1 pin is unaffected (ECCP1IF bit is set)
1011 = Compare mode, trigger special event (ECCP1IF bit is set; ECCP resets TMR1or TMR3

and starts an A/D conversion if the A/D module is enabled)
1100 = PWM mode; P1A, P1C active-high; P1B, P1D active-high
1101 = PWM mode; P1A, P1C active-high; P1B, P1D active-low
1110 = PWM mode; P1A, P1C active-low; P1B, P1D active-high
1111 = PWM mode; P1A, P1C active-low; P1B, P1D active-low

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
© 2006 Microchip Technology Inc. DS41159E-page 131

PIC18FXX8
17.3.8 SLEEP OPERATION

In Master mode, all module clocks are halted and the
transmission/reception will remain in that state until the
device wakes from Sleep. After the device returns to
normal mode, the module will continue to transmit/
receive data.

In Slave mode, the SPI Transmit/Receive Shift register
operates asynchronously to the device. This allows the
device to be placed in Sleep mode and data to be
shifted into the SPI Transmit/Receive Shift register.
When all 8 bits have been received, the MSSP interrupt
flag bit will be set and if enabled, will wake the device
from Sleep.

17.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the
current transfer.

17.3.10 BUS MODE COMPATIBILITY

Table 17-1 shows the compatibility between the
standard SPI modes and the states of the CKP and
CKE control bits.

TABLE 17-1: SPI™ BUS MODES

There is also an SMP bit which controls when the data
is sampled.

TABLE 17-2: REGISTERS ASSOCIATED WITH SPI™ OPERATION

Standard SPI Mode
Terminology

Control Bits State

CKP CKE

0, 0 0 1

0, 1 0 0

1, 0 1 1

1, 1 1 0

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on

POR, BOR

Value on
all other
Resets

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 0000 000u

PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000

PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000

IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111

TRISC PORTC Data Direction Register 1111 1111 1111 1111

TRISA — TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 -111 1111 -111 1111

SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register xxxx xxxx uuuu uuuu

SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000

SSPSTAT SMP CKE D/A P S R/W UA BF 0000 0000 0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP in SPI™ mode.
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.
© 2006 Microchip Technology Inc. DS41159E-page 151

PIC18FXX8
17.4.3.2 Reception

When the R/W bit of the address byte is clear and an
address match occurs, the R/W bit of the SSPSTAT
register is cleared. The received address is loaded into
the SSPBUF register and the SDA line is held low
(ACK).

When the address byte overflow condition exists, then
the no Acknowledge (ACK) pulse is given. An overflow
condition is defined as either bit BF (SSPSTAT<0>) is
set or bit SSPOV (SSPCON1<6>) is set.

An MSSP interrupt is generated for each data transfer
byte. Flag bit SSPIF (PIR1<3>) must be cleared in
software. The SSPSTAT register is used to determine
the status of the byte.

If SEN is enabled (SSPCON2<0> = 1), RC3/SCK/SCL
will be held low (clock stretch) following each data
transfer. The clock must be released by setting bit
CKP (SSPCON1<4>). See Section 17.4.4 “Clock
Stretching” for more detail.

17.4.3.3 Transmission

When the R/W bit of the incoming address byte is set
and an address match occurs, the R/W bit of the
SSPSTAT register is set. The received address is
loaded into the SSPBUF register. The ACK pulse will
be sent on the ninth bit and pin RC3/SCK/SCL is held
low regardless of SEN (see Section 17.4.4 “Clock
Stretching” for more detail). By stretching the clock,
the master will be unable to assert another clock pulse
until the slave is done preparing the transmit data. The
transmit data must be loaded into the SSPBUF register,
which also loads the SSPSR register. Then, pin RC3/
SCK/SCL should be enabled by setting bit CKP
(SSPCON1<4>). The eight data bits are shifted out on
the falling edge of the SCL input. This ensures that the
SDA signal is valid during the SCL high time
(Figure 17-9).

The ACK pulse from the master-receiver is latched on
the rising edge of the ninth SCL input pulse. If the SDA
line is high (not ACK), then the data transfer is
complete. In this case, when the ACK is latched by the
slave, the slave logic is reset (resets SSPSTAT regis-
ter) and the slave monitors for another occurrence of
the Start bit. If the SDA line was low (ACK), the next
transmit data must be loaded into the SSPBUF register.
Again, pin RC3/SCK/SCL must be enabled by setting
bit CKP.

An MSSP interrupt is generated for each data transfer
byte. The SSPIF bit must be cleared in software and
the SSPSTAT register is used to determine the status
of the byte. The SSPIF bit is set on the falling edge of
the ninth clock pulse.
© 2006 Microchip Technology Inc. DS41159E-page 157

PIC18FXX8
REGISTER 19-35: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

IRXIP WAKIP ERRIP TXB2IP TXB1IP TXB0IP RXB1IP RXB0IP

bit 7 bit 0

bit 7 IRXIP: CAN Invalid Received Message Interrupt Priority bit
1 = High priority
0 = Low priority

bit 6 WAKIP: CAN bus Activity Wake-up Interrupt Priority bit

1 = High priority
0 = Low priority

bit 5 ERRIP: CAN bus Error Interrupt Priority bit
1 = High priority
0 = Low priority

bit 4 TXB2IP: CAN Transmit Buffer 2 Interrupt Priority bit
1 = High priority
0 = Low priority

bit 3 TXB1IP: CAN Transmit Buffer 1 Interrupt Priority bit

1 = High priority
0 = Low priority

bit 2 TXB0IP: CAN Transmit Buffer 0 Interrupt Priority bit
1 = High priority
0 = Low priority

bit 1 RXB1IP: CAN Receive Buffer 1 Interrupt Priority bit
1 = High priority
0 = Low priority

bit 0 RXB0IP: CAN Receive Buffer 0 Interrupt Priority bit

1 = High priority
0 = Low priority

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
DS41159E-page 224 © 2006 Microchip Technology Inc.

PIC18FXX8

RETFIE Return from Interrupt

Syntax: [label] RETFIE [s]

Operands: s ∈ [0,1]

Operation: (TOS) → PC,
1 → GIE/GIEH or PEIE/GIEL,
if s = 1
(WS) → W,
(STATUSS) → Status,
(BSRS) → BSR,
PCLATU, PCLATH are unchanged.

Status Affected: GIE/GIEH, PEIE/GIEL.

Encoding: 0000 0000 0001 000s

Description: Return from interrupt. Stack is popped
and Top-of-Stack (TOS) is loaded into
the PC. Interrupts are enabled by
setting either the high or low priority
global interrupt enable bit. If ‘s’ = 1, the
contents of the shadow registers WS,
STATUSS and BSRS are loaded into
their corresponding registers W, Status
and BSR. If ‘s’ = 0, no update of these
registers occurs (default).

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No
operation

No
operation

Pop PC from
stack

Set GIEH or
GIEL

No
operation

No
operation

No
operation

No
operation

Example: RETFIE 1

After Interrupt
PC = TOS
W = WS
BSR = BSRS
Status = STATUSS
GIE/GIEH, PEIE/GIEL = 1

RETLW Return Literal to W

Syntax: [label] RETLW k

Operands: 0 ≤ k ≤ 255

Operation: k → W,
(TOS) → PC,
PCLATU, PCLATH are unchanged

Status Affected: None

Encoding: 0000 1100 kkkk kkkk

Description: W is loaded with the eight-bit literal ‘k’.
The program counter is loaded from the
top of the stack (the return address).
The high address latch (PCLATH)
remains unchanged.

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Pop PC
from stack,
Write to W

No
operation

No
operation

No
operation

No
operation

Example:

 CALL TABLE ; W contains table
 ; offset value
 ; W now has
 ; table value
 :
TABLE

ADDWF PCL ; W = offset
RETLW k0 ; Begin table
RETLW k1 ;

 :
 :

RETLW kn ; End of table

Before Instruction
W = 0x07

After Instruction
W = value of kn
DS41159E-page 312 © 2006 Microchip Technology Inc.

PIC18FXX8

TSTFSZ Test f, Skip if 0

Syntax: [label] TSTFSZ f [,a]

Operands: 0 ≤ f ≤ 255
a ∈ [0,1]

Operation: skip if f = 0

Status Affected: None

Encoding: 0110 011a ffff ffff

Description: If ‘f’ = 0, the next instruction fetched
during the current instruction execution
is discarded and a NOP is executed,
making this a two-cycle instruction. If ‘a’
is ‘0’, the Access Bank will be selected,
overriding the BSR value. If ‘a’ is ‘1’,
then the bank will be selected as per
the BSR value (default).

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE TSTFSZ CNT
NZERO :
ZERO :

Before Instruction
PC = Address (HERE)

After Instruction
If CNT = 0x00,
PC = Address (ZERO)
If CNT ≠ 0x00,
PC = Address (NZERO)

XORLW Exclusive OR Literal with W

Syntax: [label] XORLW k

Operands: 0 ≤ k ≤ 255

Operation: (W) .XOR. k → W

Status Affected: N, Z

Encoding: 0000 1010 kkkk kkkk

Description: The contents of W are XORed with
the 8-bit literal ‘k’. The result is placed
in W.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to
W

Example: XORLW 0xAF

Before Instruction
W = 0xB5

After Instruction
W = 0x1A
© 2006 Microchip Technology Inc. DS41159E-page 321

PIC18FXX8
FIGURE 28-29: A/D NONLINEARITY vs. VREFH (VDD = 5V, -40°C TO +125°C)

0

0.5

1

1.5

2

2.5

3

2 2.5 3 3.5 4 4.5 5 5.5

VREFH (V)

D
if

fe
re

n
ti

al
 o

r
In

te
g

ra
l N

o
n

lin
ea

ri
lt

y
(L

S
B

)

Max (-40C to 125C)

Typ (25C)Typ (+25°C)

Max (-40°C to +125°C)
© 2006 Microchip Technology Inc. DS41159E-page 375

PIC18FXX8
APPENDIX C: DEVICE MIGRATIONS

This section is intended to describe the functional and
electrical specification differences when migrating
between functionally similar devices (such as from a
PIC16C74A to a PIC16C74B).

Not Applicable

APPENDIX D: MIGRATING FROM
OTHER PICmicro®
DEVICES

This discusses some of the issues in migrating from
other PICmicro devices to the PIC18FXX8 family of
devices.

D.1 PIC16CXXX to PIC18FXX8

See Application Note AN716 “Migrating Designs from
PIC16C74A/74B to PIC18C442” (DS00716).

D.2 PIC17CXXX to PIC18FXX8

See Application Note AN726 “PIC17CXXX to
PIC18CXXX Migration” (DS00726).
DS41159E-page 386 © 2006 Microchip Technology Inc.

PIC18FXX8
Prescaler, Timer2.. 128
PRO MATE II Universal Device

Programmer .. 325
Program Counter

PCL Register... 40
PCLATH Register ... 40
PCLATU Register ... 40

Program Memory .. 37
Fast Register Stack... 40
Instructions.. 41

Two-Word ... 43
Map and Stack for PIC18F248/448............................. 37
Map and Stack for PIC18F258/458............................. 37
PUSH and POP Instructions 40
Return Address Stack ... 38
Return Stack Pointer (STKPTR) 38
Stack Full/Underflow Resets....................................... 40
Top-of-Stack Access... 38

Program Verification and
Code Protection .. 276
Associated Registers Summary................................ 276
Configuration Register Protection 279
Data EEPROM Code Protection 279
Program Memory Code Protection 277

Programming, Device Instructions 281
PUSH .. 310
PWM (CCP Module) ... 128

CCPR1H:CCPR1L Registers.................................... 128
Duty Cycle... 128
Example Frequencies/Resolutions 129
Period.. 128
Registers Associated with

PWM and Timer2.. 129
Setup for PWM Operation... 129
TMR2 to PR2 Match ... 117, 128

PWM (ECCP Module) ... 134
Full-Bridge Application Example 138
Full-Bridge Mode... 137

Direction Change .. 138
Half-Bridge Mode .. 136
Half-Bridge Output Mode

Applications Example 136
Output Configurations ... 134
Output Polarity Configuration.................................... 140
Output Relationships Diagram 135
Programmable Dead-Band Delay 140
Registers Associated with Enhanced PWM

and Timer2.. 141
Setup for PWM Operation... 141
Standard Mode ... 134
Start-up Considerations .. 140
System Implementation .. 140

Q
Q Clock ... 128

R
RAM. See Data Memory.
RCALL .. 311
RCON Register

Significance of Status Bits vs.
Initialization Condition... 27

RCSTA Register ... 183
SPEN Bit ... 183

Receiver Warning ... 239
Register File .. 44

Register File Summary ... 49
Registers

ADCON0 (A/D Control 0).. 241
ADCON1 (A/D Control 1).. 242
BRGCON1 (Baud Rate Control 1)............................ 218
BRGCON2 (Baud Rate Control 2)............................ 219
BRGCON3 (Baud Rate Control 3)............................ 220
CANCON (CAN Control) .. 201
CANSTAT (CAN Status)... 202
CCP1CON (CCP1 Control) 123
CIOCON (CAN I/O Control) 221
CMCON (Comparator Control) 249
COMSTAT (CAN

Communication Status) 205
CONFIG1H (Configuration 1 High)........................... 266
CONFIG2H (Configuration 2 High)........................... 267
CONFIG2L (Configuration 2 Low) 266
CONFIG4L (Configuration 4 Low) 267
CONFIG5H (Configuration 5 High)........................... 268
CONFIG5L (Configuration 5 Low) 268
CONFIG6H (Configuration 6 High)........................... 269
CONFIG6L (Configuration 6 Low) 269
CONFIG7H (Configuration 7 High)........................... 270
CONFIG7L (Configuration 7 Low) 270
CVRCON (Comparator Voltage

Reference Control) ... 255
DEVID1 (Device ID 1)... 271
DEVID2 (Device ID 2)... 271
ECCP1CON (ECCP1 Control).................................. 131
ECCP1DEL (PWM Delay) .. 140
ECCPAS (Enhanced Capture/Compare/PWM

Auto-Shutdown Control) 142
EECON1 (EEPROM Control 1) 60, 67
INTCON (Interrupt Control) .. 79
INTCON2 (Interrupt Control 2) 80
INTCON3 (Interrupt Control 3) 81
IPR1 (Peripheral Interrupt Priority 1) 88
IPR2 (Peripheral Interrupt Priority 2) 89
IPR3 (Peripheral Interrupt Priority 3) 90, 224
LVDCON (LVD Control).. 261
OSCCON (Oscillator Control)..................................... 20
PIE1 (Peripheral Interrupt Enable 1) 85
PIE2 (Peripheral Interrupt Enable 2) 86
PIE3 (Peripheral Interrupt Enable 3) 87, 223
PIR1 (Peripheral Interrupt Request

(Flag) 1) .. 82
PIR2 (Peripheral Interrupt Request

(Flag) 2) .. 83
PIR3 (Peripheral Interrupt Request

(Flag) 3) .. 84, 222
RCON (Reset Control).. 58, 91
RCSTA (Receive Status and Control) 184
RXB0CON (Receive Buffer 0 Control)...................... 210
RXB1CON (Receive Buffer 1 Control)...................... 211
RXBnDLC (Receive Buffer n

Data Length Code) ... 213
RXBnDm (Receive Buffer n

Data Field Byte m).. 214
RXBnEIDH (Receive Buffer n

Extended Identifier, High Byte)......................... 212
RXBnEIDL (Receive Buffer n

Extended Identifier, Low Byte).......................... 213
RXBnSIDH (Receive Buffer n

Standard Identifier, High Byte) 212
© 2006 Microchip Technology Inc. DS41159E-page 393

