

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf248t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and erasable during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 8 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A bulk erase operation may not be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

6.1 **Table Reads and Table Writes**

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide, while the data RAM space is 8 bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).

Table read operations retrieve data from program memory and place it into the data RAM space. Figure 6-1 shows the operation of a table read with program memory and data RAM.

Table write operations store data from the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in Section 6.5 "Writing to Flash Program Memory". Figure 6-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word aligned. Therefore, a table block can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word aligned.

Instruction: TBLRD* Program Memory Table Pointer⁽¹⁾ Table Latch (8-bit) TBLPTRH TBLPTRU TBLPTRL TABLAT Program Memory (TBLPTR) Note 1: Table Pointer points to a byte in program memory.

FIGURE 6-1: **TABLE READ OPERATION**

REGISTER 8-5:	PIR2: PE	RIPHERAL	INTERRU	JPT REQU	EST (FLA	G) REGIS	TER 2	
	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		CMIF ⁽¹⁾	—	EEIF	BCLIF	LVDIF	TMR3IF	ECCP1IF ⁽¹⁾
	bit 7							bit 0
bit 7		nented: Rea		(1)				
bit 6		mparator Inte						
		arator input l arator input l						
bit 5	Unimplen	nented: Rea	d as '0'					
bit 4	EEIF: EEF	PROM Write	Operation	Interrupt Fla	g bit			
		operation is operation is			red in softw	are)		
bit 3	BCLIF: B	us Collision I	nterrupt Fla	ag bit				
		collision occ s collision oc	•	t be cleared	in software)		
bit 2	LVDIF: Lo	w-Voltage D	etect Interr	upt Flag bit				
	 1 = A low-voltage condition occurred (must be cleared in software) 0 = The device voltage is above the Low-Voltage Detect trip point 							
bit 1	TMR3IF:	TMR3 Overfl	ow Interrup	t Flag bit				
	 1 = TMR3 register overflowed (must be cleared in software) 0 = TMR3 register did not overflow 							
bit 0	ECCP1IF:	ECCP1 Inte	errupt Flag	bit ⁽¹⁾				
	<u>Capture mode:</u> 1 = A TMR1 (TMR3) register capture occurred (must be cleared in software) 0 = No TMR1 (TMR3) register capture occurred							
		<u>mode:</u> R1 register c /R1 register				leared in sc	oftware)	
	<u>PWM moo</u> Unused in	<u>de:</u> ı this mode.						
	Note 1:	This bit is	only availal	ble on PIC1	8F4X8 devi	ces. For PI	C18F2X8 de	evices, this bit

Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit is unimplemented and reads as '0'.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit	is unknown

	U-0	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	CMIP ⁽¹⁾	_	EEIP	BCLIP	LVDIP	TMR3IP	ECCP1IP ⁽¹⁾
	bit 7	· · · · · · · · · · · · · · · · · · ·						bit 0
bit 7	Unimplem	nented: Rea	d as '0'					
bit 6	CMIP: Cor	mparator Inte	errupt Priori	ty bit ⁽¹⁾				
	1 = High p 0 = Low pr							
bit 5	Unimplem	nented: Rea	d as '0'					
bit 4	EEIP: EEF	PROM Write	Interrupt Pr	iority bit				
	1 = High p 0 = Low pr	,						
bit 3	BCLIP: Bu	us Collision I	nterrupt Prie	ority bit				
	1 = High p 0 = Low pr	•						
bit 2	LVDIP: Lo	w-Voltage D	etect Interru	upt Priority b	bit			
	1 = High p 0 = Low pr	,						
bit 1	TMR3IP: 1	MR3 Overflo	ow Interrup	t Priority bit				
	1 = High p 0 = Low pr	•						
bit 0	ECCP1IP:	ECCP1 Inte	rrupt Priorit	y bit ⁽¹⁾				
	1 = High p 0 = Low pr							

REGISTER 8-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

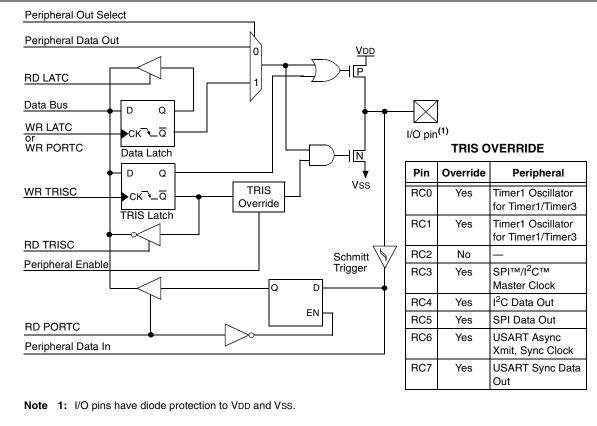
Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit is unimplemented and reads as '0'.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

9.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATC register, read and write the latched output value for PORTC.


PORTC is multiplexed with several peripheral functions (Table 9-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register, without concern due to peripheral overrides.

Ε	ХАМР	LE 9-3:	INITIALIZING PORTC
(CLRF	PORTC	; Initialize PORTC by
			; clearing output
			; data latches
(CLRF	LATC	; Alternate method
			; to clear output
			; data latches
ľ	MOVLW	0CFh	; Value used to
			; initialize data
			; direction
ľ	MOVWF	TRISC	; Set RC3:RC0 as inputs
			; RC5:RC4 as outputs
			; RC7:RC6 as inputs

FIGURE 9-8: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

PIC18FXX8

NOTES:

15.0 CAPTURE/COMPARE/PWM (CCP) MODULES

The CCP (Capture/Compare/PWM) module contains a 16-bit register that can operate as a 16-bit Capture register, as a 16-bit Compare register or as a PWM Duty Cycle register.

The operation of the CCP module is identical to that of the ECCP module (discussed in detail in Section 16.0 "Enhanced Capture/Compare/PWM (ECCP) Module") with two exceptions. The CCP module has a Capture special event trigger that can be used as a message received time-stamp for the CAN module (refer to **Section 19.0 "CAN Module**" for CAN operation) which the ECCP module does not. The ECCP module, on the other hand, has Enhanced PWM functionality and auto-shutdown capability. Aside from these, the operation of the module described in this section is the same as the ECCP.

The control register for the CCP module is shown in Register 15-1. Table 15-2 (following page) details the interactions of the CCP and ECCP modules.

REGISTER 15-1: CCP1CON: CCP1 CONTROL REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 DCxB1:DCxB0: PWM Duty Cycle bit 1 and bit 0

Capture mode:
Unused.
Compare mode:
Unused.

PWM mode:

These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The upper eight bits (DCx9:DCx2) of the duty cycle are found in CCPRxL.

bit 3-0 CCPxM3:CCPxM0: CCPx Mode Select bits

- 0000 = Capture/Compare/PWM off (resets CCPx module)
- 0001 = Reserved
- 0010 = Compare mode, toggle output on match (CCPxIF bit is set)
- 0011 = Capture mode, CAN message received (CCP1 only)
- 0100 = Capture mode, every falling edge
- 0101 = Capture mode, every rising edge
- 0110 = Capture mode, every 4th rising edge
- 0111 = Capture mode, every 16th rising edge
- 1000 = Compare mode, initialize CCP pin low, on compare match force CCP pin high (CCPIF bit is set)
- 1001 = Compare mode, initialize CCP pin high, on compare match force CCP pin low (CCPIF bit is set)
- 1010 = Compare mode, CCP pin is unaffected (CCPIF bit is set)
- 1011 = Compare mode, trigger special event (CCP1IF bit is set; CCP resets TMR1 or TMR3 and starts an A/D conversion if the A/D module is enabled)
- 11xx = PWM mode

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

16.2 **Capture Mode**

The Capture mode of the ECCP module is virtually identical in operation to that of the standard CCP module as discussed in Section 15.1 "CCP1 Module". The differences are in the registers and port pins involved:

- The 16-bit Capture register is ECCPR1 (ECCPR1H and ECCPR1L);
- The capture event is selected by control bits ECCP1M3:ECCP1M0 (ECCP1CON<3:0>);
- The interrupt bits are ECCP1IE (PIE2<0>) and ECCP1IF (PIR2<0>); and
- The capture input pin is RD4 and its corresponding direction control bit is TRISD<4>.

Other operational details, including timer selection, output pin configuration and software interrupts, are exactly the same as the standard CCP module.

16.2.1 CAN MESSAGE TIME-STAMP

TABLE 16-4:

The special capture event for the reception of CAN messages (Section 15.2.5 "CAN Message Time-Stamp") is not available with the ECCP module.

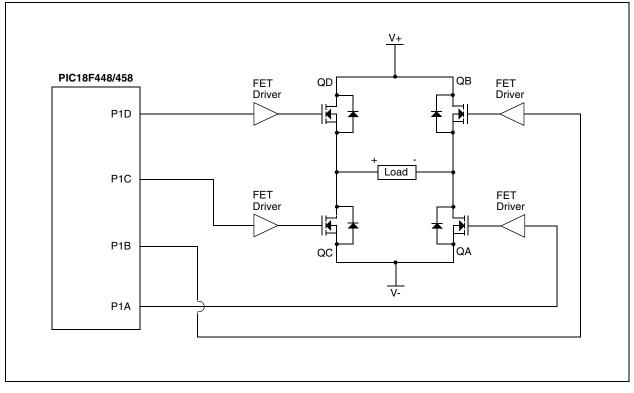
TIMER1 AND TIMER3

16.3 **Compare Mode**

The Compare mode of the ECCP module is virtually identical in operation to that of the standard CCP module as discussed in Section 15.2 "Capture Mode". The differences are in the registers and port pins as described in Section 16.2 "Capture Mode". All other details are exactly the same.

16.3.1 SPECIAL EVENT TRIGGER

Except as noted below, the special event trigger output of ECCP1 functions identically to that of the standard CCP module. It may be used to start an A/D conversion if the A/D module is enabled.


The special event trigger from the ECCP1 Note: module will not set the Timer1 or Timer3 interrupt flag bits.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOI	allo	ie on other sets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000	x 0000	000u
PIR2	_	CMIF	_	EEIF	BCLIF	LVDIF	TMR3IF	ECCP1IF	-0-0 000	0 - 0 - 0	0000
PIE2	_	CMIE	—	EEIE	BCLIE	LVDIE	TMR3IE	ECCP1IE	-0-0 000	0 - 0 - 0	0000
IPR2	_	CMIP	—	EEIP	BCLIP	LVDIP	TMR3IP	ECCP1IP	-1-1 111	1 -1-1	1111
TMR1L	Holding Reg	gister for the l	Least Signi	ficant Byte o	of the 16-bit	TMR1 Regi	ster		XXXX XXX	x uuuu	uuuu
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register						XXXX XXX	x uuuu	uuuu		
T1CON	RD16	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 000	0 u-uu	uuuu
TMR3L	Holding Register for the Least Significant Byte of the 16-bit TMR3 Register								XXXX XXX	x uuuu	uuuu
TMR3H	Holding Register for the Most Significant Byte of the 16-bit TMR3 Register							XXXX XXX	x uuuu	uuuu	
T3CON	RD16	T3ECCP1	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 000	0 uuuu	uuuu
TRISD	SD PORTD Data Direction Register							1111 111	1 1111	1111	
ECCPR1L	CPR1L Capture/Compare/PWM Register1 (LSB)						XXXX XXX	x uuuu	uuuu		
ECCPR1H	CPR1H Capture/Compare/PWM Register1 (MSB)							XXXX XXX	x uuuu	uuuu	
ECCP1CON	EPWM1M1	EPWM1M0	EDC1B1	EDC1B0	ECCP1M3	ECCP1M2	ECCP1M1	ECCP1M0	0000 000	0 0000	0000

REGISTERS ASSOCIATED WITH ENHANCED CAPTURE, COMPARE,

x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the ECCP module and Timer1. Leaend:

16.5.3.1 Direction Change in Full-Bridge Mode

In the Full-Bridge Output mode, the EPWM1M1 bit in the ECCP1CON register allows the user to control the forward/reverse direction. When the application firmware changes this direction control bit, the ECCP1 module will assume the new direction on the next PWM cycle. The current PWM cycle still continues, however, the non-modulated outputs, P1A and P1C signals, will transition to the new direction Tosc, 4 Tosc or 16 Tosc earlier (for T2CKRS<1:0> = 00, 01 or 1x, respectively) before the end of the period. During this transition cycle, the modulated outputs, P1B and P1D, will go to the inactive state (Figure 16-7).

Note that in the Full-Bridge Output mode, the ECCP module does not provide any dead-band delay. In general, since only one output is modulated at all times, dead-band delay is not required. However, there is a situation where a dead-band delay might be required. This situation occurs when all of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than turn-on time.

Figure 16-8 shows an example where the PWM direction changes from forward to reverse at a near 100% duty cycle. At time t1, the outputs P1A and P1D become inactive, while output P1C becomes active. In this example, since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current flows through power devices QB and QD (see Figure 16-6) for the duration of 't'. The same phenomenon will occur to power devices QA and QC for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, one of the following requirements must be met:

- 1. Avoid changing PWM output direction at or near 100% duty cycle.
- 2. Use switch drivers that compensate the slow turn off of the power devices. The total turn-off time (t_{off}) of the power device and the driver must be less than the turn-on time (t_{on}) .

17.3.8 SLEEP OPERATION

In Master mode, all module clocks are halted and the transmission/reception will remain in that state until the device wakes from Sleep. After the device returns to normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all 8 bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device from Sleep.

17.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

17.3.10 BUS MODE COMPATIBILITY

Table 17-1 shows the compatibility between the standard SPI modes and the states of the CKP and CKE control bits.

Standard SPI Mode	Control Bits State				
Terminology	СКР	CKE			
0, 0	0	1			
0, 1	0	0			
1, 0	1	1			
1, 1	1	0			

There is also an SMP bit which controls when the data is sampled.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	1111 1111
TRISC	PORTC Da	ta Direction F	Register						1111 1111	1111 1111
TRISA	—	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	-111 1111	-111 1111
SSPBUF	SPBUF Synchronous Serial Port Receive Buffer/Transmit Register							xxxx xxxx	uuuu uuuu	
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

TABLE 17-2: REGISTERS ASSOCIATED WITH SPI™ OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the MSSP in SPITM mode.**Note 1:**These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's.

17.4.3.2 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and the SDA line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON1<6>) is set.

An MSSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

If SEN is enabled (SSPCON2<0> = 1), RC3/SCK/SCL will be held low (clock stretch) following each data transfer. The clock must be released by setting bit CKP (SSPCON1<4>). See **Section 17.4.4** "**Clock Stretching**" for more detail.

17.4.3.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RC3/SCK/SCL is held low regardless of SEN (see Section 17.4.4 "Clock Stretching" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, pin RC3/ SCK/SCL should be enabled by setting bit CKP (SSPCON1<4>). The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 17-9).

The \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not \overline{ACK}), then the data transfer is complete. In this case, when the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave monitors for another occurrence of the Start bit. If the SDA line was low (\overline{ACK}), the next transmit data must be loaded into the SSPBUF register. Again, pin RC3/SCK/SCL must be enabled by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

PIC18FXX8

REGISTER 19-23: RXFnEIDH: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER, HIGH BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

bit 7-0

EID15:EID8: Extended Identifier Filter bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-24: RXFnEIDL: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER, LOW BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 EID7:EID0: Extended Identifier Filter bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-25: RXMnSIDH: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK, HIGH BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 SID10:SID3: Standard Identifier Mask bits or Extended Identifier Mask bits EID28:EID21

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

19.7.1 TIME QUANTA

As already mentioned, the time quanta is a fixed unit derived from the oscillator period and baud rate prescaler. Its relationship to TBIT and the nominal bit rate is shown in Example 19-2.

EXAMPLE 19-2: CALCULATING TQ, NOMINAL BIT RATE AND NOMINAL BIT TIME

 $TQ (\mu s) = (2 * (BRP + 1))/FOSC (MHz)$

TBIT (μ s) = TQ (μ s) * number of TQ per bit interval Nominal Bit Rate (bits/s) = 1/TBIT

CASE 1:

For Fosc = 16 MHz, BRP<5:0> = 00h and Nominal Bit Time = 8 Tq:

 $TQ = (2 * 1)/16 = 0.125 \,\mu s \,(125 \,ns)$

TBIT = $8 * 0.125 = 1 \ \mu s \ (10^{-6} s)$

Nominal Bit Rate = $1/10^{-6} = 10^{6}$ bits/s (1 Mb/s)

CASE 2:

For Fosc = 20 MHz, BRP<5:0> = 01h and Nominal Bit Time = 8 Tq:

 $Tq = (2 * 2)/20 = 0.2 \ \mu s \ (200 \ ns)$

TBIT = $8 * 0.2 = 1.6 \,\mu s \,(1.6 * 10^{-6} s)$

Nominal Bit Rate = $1/1.6 * 10^{-6}$ s = 625,000 bits/s (625 Kb/s)

CASE 3:

For FOSC = 25 MHz, BRP<5:0> = 3Fh and Nominal Bit Time = 25 TQ: $TQ = (2 * 64)/25 = 5.12 \ \mu s$ TBIT = 25 * 5.12 = 128 \ \mu s (1.28 * 10⁻⁴s) Nominal Bit Rate = 1/1.28 * 10⁻⁴ = 7813 bits/s (7.8 Kb/s)

The frequencies of the oscillators in the different nodes must be coordinated in order to provide a system wide specified nominal bit time. This means that all oscillators must have a Tosc that is an integral divisor of TQ. It should also be noted that although the number of TQ is programmable from 4 to 25, the usable minimum is 8 TQ. A bit time of less than 8 TQ in length is not ensured to operate correctly.

19.7.2 SYNCHRONIZATION SEGMENT

This part of the bit time is used to synchronize the various CAN nodes on the bus. The edge of the input signal is expected to occur during the sync segment. The duration is 1 Tq.

19.7.3 PROPAGATION SEGMENT

This part of the bit time is used to compensate for physical delay times within the network. These delay times consist of the signal propagation time on the bus line and the internal delay time of the nodes. The length of the Propagation Segment can be programmed from 1 TQ to 8 TQ by setting the PRSEG2:PRSEG0 bits.

19.7.4 PHASE BUFFER SEGMENTS

The phase buffer segments are used to optimally locate the sampling point of the received bit within the nominal bit time. The sampling point occurs between Phase Segment 1 and Phase Segment 2. These segments can be lengthened or shortened by the resynchronization process. The end of Phase Segment 1 determines the sampling point within a bit time. Phase Segment 1 is programmable from 1 Tq to 8 Tq in duration. Phase Segment 2 provides delay before the next transmitted data transition and is also programmable from 1 Tq to 8 Tq in duration. However, due to IPT requirements, the actual minimum length of Phase Segment 2 is 2 Tq or it may be defined to be equal to the greater of Phase Segment 1 or the Information Processing Time (IPT).

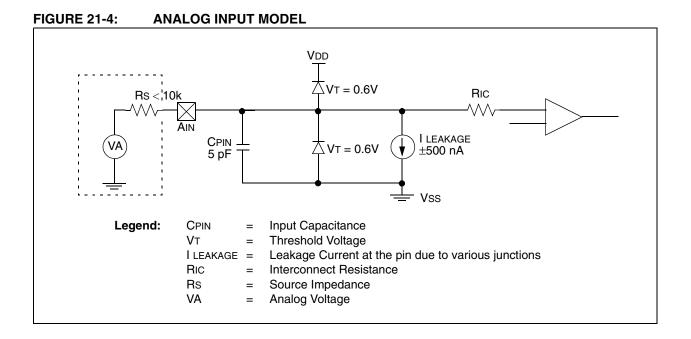
19.7.5 SAMPLE POINT

The sample point is the point of time at which the bus level is read and the value of the received bit is determined. The sampling point occurs at the end of Phase Segment 1. If the bit timing is slow and contains many TQ, it is possible to specify multiple sampling of the bus line at the sample point. The value of the received bit is determined to be the value of the majority decision of three values. The three samples are taken at the sample point and twice before, with a time of TQ/2 between each sample.

19.7.6 INFORMATION PROCESSING TIME

The Information Processing Time (IPT) is the time segment, starting at the sample point, that is reserved for calculation of the subsequent bit level. The CAN specification defines this time to be less than or equal to 2 Tq. The PIC18FXX8 defines this time to be 2 Tq. Thus, Phase Segment 2 must be at least 2 Tq long.

21.7 Comparator Operation During Sleep


When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode when enabled. While the comparator is powered up, higher Sleep currents than shown in the power-down current specification will occur. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators, CM<2:0> = 111, before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

21.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator module to be in the Comparator Reset mode, CM<2:0> = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at Reset time. The comparators will be powered down during the Reset interval.

21.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 21-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		alue on All other POR Reset		ther
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000	0000	0000	0000
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000	0000	0000	0000
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000	000x	0000	000u
PIR2	_	CMIF ⁽¹⁾	_	EEIF	BCLIF	LVDIF	TMR3IF	ECCP1IF ⁽¹⁾	- 0 - 0	0000	- 0 - 0	0000
PIE2	_	CMIE ⁽¹⁾	_	EEIE	BCLIE	LVDIE	TMR3IE	ECCP1IE ⁽¹⁾	- 0 - 0	0000	- 0 - 0	0000
IPR2	Ι	CMIP ⁽¹⁾	_	EEIP	BCLIP	LVDIP	TMR3IP	ECCP1IP ⁽¹⁾	-1-1	1111	-1-1	1111
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx	xxxx	uuuu	uuuu
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx	xxxx	uuuu	uuuu
TRISD	PORTD	Data Dire	ection Reg	gister					1111	1111	1111	1111
PORTE	—	—	—		_	RE2	RE1	RE0		-xxx		-000
LATE	_	_	—		_	LATE2	LATE1	LATE0		-xxx		-uuu
TRISE	IBF ⁽¹⁾	OBF ⁽¹⁾	IBOV ⁽¹⁾	PSPMODE ⁽¹⁾	_	TRISE2	TRISE1	TRISE0	0000	-111	0000	-111

TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'

Note 1: These bits are reserved on PIC18F2X8 devices; always maintain these bits clear.

TABLE 25-2: PIC18FXXX INSTRUCTION SET

Mnemo	onic,	Description	Cycles	16-E	Bit Instr	uction W	/ord	Status	Notes
Opera	nds	Description	Cycles	MSb			LSb	Affected	notes
BYTE-OR	IENTED	FILE REGISTER OPERATIONS	6						
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1 .	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)		11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1 ΄	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ		Increment f, Skip if 0	1 (2 or 3)		11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)		10da	ffff	ffff	None	1,2
IORWF	f, d, a	Inclusive OR WREG with f	1		00da	ffff	ffff		1, 2
MOVF	f, d, a	Move f	1		00da	ffff		Z, N	1
MOVFF	f _s , f _d		2		ffff	ffff		None	•
movi i	's, 'a	f _d (destination) 2nd word	-		ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1		111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1		001a	ffff		None	
NEGF	f, a	Negate f	1		110a	ffff	ffff	C, DC, Z, OV, N	12
RLCF	f, d, a	Rotate Left f through Carry	1		01da	ffff	ffff	C, Z, N	1, 2
RLNCF		Rotate Left f (No Carry)	1		01da 01da	ffff	ffff		1, 2
RRCF	f, d, a	Rotate Right f through Carry	1		01da 00da	ffff	ffff	C, Z, N	1, 2
RRNCF	f, d, a	Rotate Right f (No Carry)	1		00da 00da	ffff	ffff		
SETF	f, a	Set f	1		100a	ffff		None	
SUBFWB		Subtract f from WREG with	1			ffff	ffff	C, DC, Z, OV, N	1 0
SUBEWB	f, d, a	borrow	1	0101	01da	LLLL	LLLL	C, DC, Z, OV, N	1, 2
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	
	f, d, a	Subtract WREG from f with	1		10da	ffff	ffff	C, DC, Z, OV, N	12
0001110	i, a, a	borrow		0101	Toda			0, 20, 2, 01, 11	•, –
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)		100a 011a	ffff		None	4 1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1		10da	ffff		Z, N	1, 2
-			1	0001	IUda	LLLL	LLLL	Ζ, Ν	
			4	1005				Nere	1.0
BCF	f, b, a	Bit Clear f	1		bbba	ffff	ffff	None	1,2
BSF	, .,	Bit Set f	1		bbba	ffff	ffff	None	1,2
BTFSC		Bit Test f, Skip if Clear	1 (2 or 3)		bbba	ffff		None	3, 4
BTFSS		Bit Test f, Skip if Set	1 (2 or 3)		bbba	ffff	ffff	None	3, 4
BTG	f, d, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2

Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

PIC18FXX8

TSTR	sz	Test f, Skij	o if O					
Synta	ax:	[label]	ISTFSZ	f [,a]				
Oper	ands:	$0 \le f \le 255$						
		a ∈ [0,1]						
Oper	ation:	skip if f = 0						
Statu	s Affected:	None						
Enco	ding:	0110	0110 011a fff					
Desc	ription:	during the is discarde making this is '0', the A overriding t	If 'f' = 0, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per					
Word	ls:	1						
Cycle	es:	1(2)						
-)		Note: 3 c	Note: 3 cycles if skip and followed					
by a 2-word instruction.								
QC	ycle Activity:							
	Q1 Decode	Q2 Read	Q3 Proce		Q4 No			
	Decode	register 'f'	Data		peration			
lf sk	ip:							
	Q1	Q2	Q	3	Q4			
	No	No	No		No			
	operation	operation	operat		peration			
IT SK	ip and followe Q1	a by 2-wora ir Q2	Istruction Q3		Q4			
	No	No	No		No No			
	operation	operation	operat		peration			
	No	No	No		No			
	operation	operation	operat	tion o	peration			
<u>Exan</u>	<u>nple:</u>	HERE NZERO ZERO :	NZERO :					
	Before Instruc PC		ddress (HERE)				
	After Instruction If CNT PC If CNT PC	on = 0> = Ao ≠ 0>	:00,	ZERO)				

XORLW	Exclusiv	Exclusive OR Literal with W						
Syntax:	[label]	[<i>label</i>] XORLW k						
Operands:	$0 \le k \le 25$	5						
Operation:	(W) .XOF	$k \to W$						
Status Affected:	N, Z							
Encoding:	0000	1010	kkkk	kkkk				
Description:		ents of W iteral 'k'. T						
Words:	1							
Cycles:	1	1						
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read literal 'k'	Proces Data		Vrite to W				
Example:	XORLW	0xAF						
Before Instruc W	tion = 0xB5							

After Instruction W =

= 0x1A

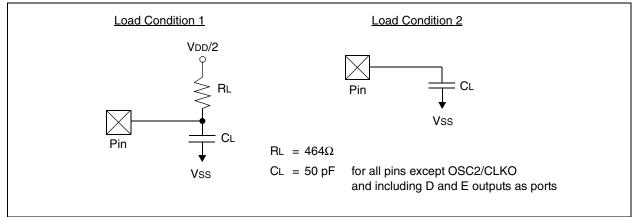
27.2 DC Characteristics: PIC18FXX8 (Industrial, Extended) PIC18LFXX8 (Industrial)

DC CH	ARACTE	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic/ Device	Min	Мах	Units	Conditions		
	VIL	Input Low Voltage						
		I/O ports:						
D030		with TTL buffer	Vss	0.15 Vdd	V	VDD < 4.5V		
D030A			—	0.8	V	$4.5V \le VDD \le 5.5V$		
D031		with Schmitt Trigger buffer RC3 and RC4	Vss Vss	0.2 Vdd 0.3 Vdd	V V			
D032		MCLR	Vss	0.2 Vdd	V			
D032A		OSC1 (in XT, HS and LP modes) and T1OSI	Vss	0.3 Vdd	V			
D033		OSC1 (in RC mode) ⁽¹⁾	Vss	0.2 Vdd	v			
	Viн	Input High Voltage						
		I/O ports:						
D040		with TTL buffer	0.25 VDD + 0.8V	Vdd	V	VDD < 4.5V		
D040A			2.0	Vdd	V	$4.5V \le V$ DD $\le 5.5V$		
D041		with Schmitt Trigger buffer RC3 and RC4	0.8 Vdd 0.7 Vdd	Vdd Vdd	V V			
D042		MCLR	0.8 Vdd	Vdd	V			
D042A		OSC1 (in XT, HS and LP modes) and T1OSI	0.7 Vdd	Vdd	V			
D043		OSC1 (RC mode) ⁽¹⁾	0.9 Vdd	Vdd	v			
	lı∟	Input Leakage Current ^(2,3)						
D060		I/O ports	—	±1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance		
D061		MCLR	—	±5	μA	$Vss \le VPIN \le VDD$		
D063		OSC1	—	±5	μΑ	$Vss \le VPIN \le VDD$		
	IPU	Weak Pull-up Current						
D070	IPURB	PORTB weak pull-up current	50	450	μA	VDD = 5V, VPIN = VSS		

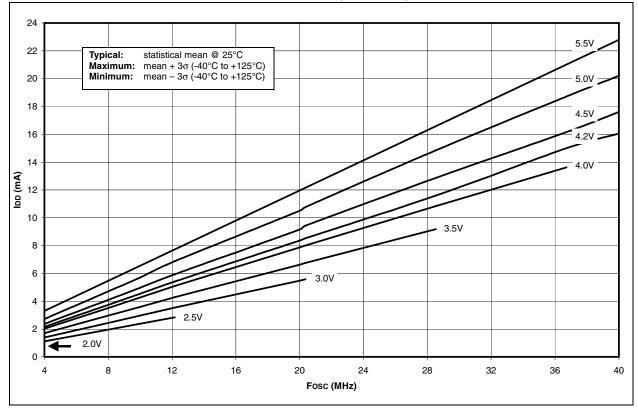
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PICmicro[®] device be driven with an external clock while in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

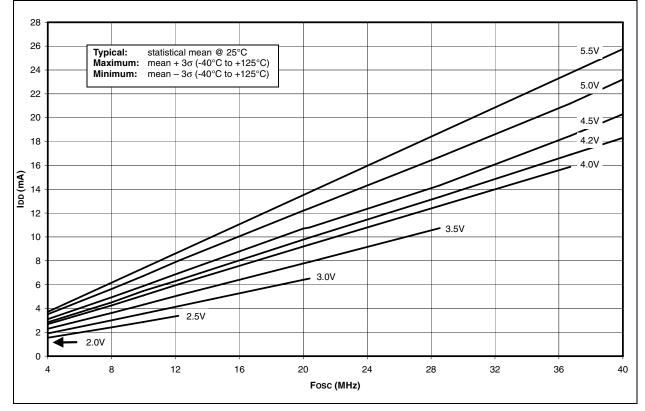
3: Negative current is defined as current sourced by the pin.


27.3.2 TIMING CONDITIONS

The temperature and voltages specified in Table 27-5 apply to all timing specifications unless otherwise noted. Figure 27-5 specifies the load conditions for the timing specifications.


TABLE 27-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended
	Operating voltage VDD range as described in DC specification, Section 27.1 "DC Characteristics". LF parts operate for industrial temperatures only.


FIGURE 27-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

INDEX

Α
A/D241
A/D Converter Flag (ADIF Bit)243
A/D Converter Interrupt, Configuring
Acquisition Requirements244
Acquisition Time245
ADCON0 Register241
ADCON1 Register241
ADRESH Register241
ADRESH/ADRESL Registers243
ADRESL Register241
Analog Port Pins, Configuring246
Associated Registers Summary248
Calculating the Minimum Required
Acquisition Time
Configuring the Module
Conversion Clock (TAD)
Conversion Status (GO/DONE Bit)
Conversion TAD Cycles
Conversions
Minimum Charging Time
Result Registers
Selecting the Conversion Clock
Special Event Trigger (CCP)
Special Event Trigger (ECCP) 133, 248
TAD vs. Device Operating Frequencies
(For Extended, LF Devices) (table)246
TAD vs. Device Operating
Frequencies (table)
Use of the ECCP Trigger
Absolute Maximum Ratings
AC (Timing) Characteristics
Parameter Symbology
Access Bank
ACKSTAT
ACKSTAT Status Flag
ADCON0 Register
ADCON1 Register
ADDLW
Receiver Transmitter. See USART.
ADDWF
ADDWF
ADRESH Register
ADRESH ADRESL Registers
ADRESL Register
Analog-to-Digital Converter. See A/D.
ANDLW
ANDWF
Assembler
MPASM Assembler
Associated Registers
_
В
Bank Select Register (BSR)54
Baud Rate Generator
BC

BF 173

BF Status Flag 173

Block Diagrams	
A/D	
Analog Input Model 244, 253	
Baud Rate Generator 169	
CAN Buffers and Protocol Engine 200	
CAN Receive Buffer	
CAN Transmit Buffer 227	
Capture Mode Operation 125	
Comparator I/O Operating Modes	
Comparator Output	
Comparator Voltage Reference	
Output Buffer Example 257	
Compare (CCP Module) Mode Operation 126	
Enhanced PWM	
Interrupt Logic	
Low-Voltage Detect (LVD)	
Low-Voltage Detect with External Input	
MSSP (I ² C Master Mode)	
MSSP (I ² C Mode)	
MSSP (SPI Mode)	
On-Chip Reset Circuit	
OSC2/CLKO/RA6 Pin	
PIC18F248/258 Architecture	
PIC18F448/458 Architecture	
PLL	
PORTC (Peripheral Output Override)	
PORTD and PORTE (Parallel Slave Port)	
PORTD and PORTE (Parallel Slave Port)	
PORTE	
PWM (CCP Module) 128 RA3:RA0 and RA5 Pins	
RA4/T0CKI Pin	
RB1:RB0 Pins	
RB2/CANTX/INT2 Pin	
RB3/CANRX Pin	
RB7:RB4 Pins	
Reads from Flash Program Memory	
Table Read Operation	
Table Write Operation	
Table Writes to Flash Program Memory	
Timer0 in 16-bit Mode	
Timer0 in 8-bit Mode	
Timer1 114	
Timer1 (16-bit Read/Write Mode) 114	
Timer2 118	
Timer3 120	
Timer3 (16-bit Read/Write Mode) 120	
USART Receive 191	
USART Transmit 189	
Voltage Reference	
Watchdog Timer 273	
BN	
BNC	
BNN	
BNOV	
BNZ	
BOR. See Brown-out Reset.	
BOV	
BRA	
BRG. See Baud Rate Generator.	
Brown-out Reset (BOR)	