

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf258-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pi	in Numb	er				
Pin Name	PIC18F248/258	PIC	18F448/	458	Pin Type	Buffer Type	Description
	SPDIP, SOIC	PDIP	TQFP	PLCC	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
MCLR/Vpp MCLR	1	1	18	2	I	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active low Reset to the device
VPP					Р	—	Programming voltage input.
NC	_		12, 13, 33, 34	1, 17, 28, 40	—	—	These pins should be left unconnected.
OSC1/CLKI OSC1 CLKI	9	13	30	14	1	CMOS/ST CMOS	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; otherwise, CMOS. External clock source input. Always associated with pin function OSC1 (see OSC1/ CLKI, OSC2/CLKO pins).
OSC2/CLKO/RA6 OSC2 CLKO	10	14	31	15	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6					I/O	TTL	General purpose I/O pin.
Legend: TTL = TT ST = Scl	L compatible inpu nmitt Trigger inpu	it t with CN	MOS leve	els	CMO Analo	S = CMOS og = Analo	5 compatible input or output a input
I = Inp	ut				0	= Outpu	t

TABLE 1-2: PIC18FXX8 PINOUT I/O DESCRIPTIONS

P = Power

OD = Open-Drain (no P diode to VDD)

3.0 RESET

The PIC18FXX8 differentiates between various kinds of RESET:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during Sleep
- d) Watchdog Timer (WDT) Reset during normal operation
- e) Programmable Brown-out Reset (PBOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset" state on Power-on Reset, MCLR, WDT Reset, Brownout Reset, MCLR Reset during Sleep and by the RESET instruction.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR are set or cleared differently in different Reset situations, as indicated in Table 3-2. These bits are used in software to determine the nature of the Reset. See Table 3-3 for a full description of the Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The Enhanced MCU devices have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

A WDT Reset does not drive MCLR pin low.

FIGURE 3-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

5.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

Generally, a write failure will be a bit which was written as a '1', but reads back as a '0' (due to leakage off the cell).

5.6 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together reduce the probability of an accidental write during brown-out, power glitch or software malfunction.

5.7 Operation During Code-Protect

Data EEPROM memory has its own code-protect mechanism. External read and write operations are disabled if either of these mechanisms are enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect configuration bit. Refer to **Section 24.0 "Special Features of the CPU"** for additional information.

5.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than specification D124 or D124A. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory. A simple data EEPROM refresh routine is shown in Example 5-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification D124 or D124A.

	CLRF	EEADR	; Start at address 0
	BCF	EECON1, CFGS	; Set for memory
	BCF	EECON1, EEPGD	; Set for Data EEPROM
	BCF	INTCON, GIE	; Disable interrupts
	BSF	EECON1, WREN	; Enable writes
Loop			; Loop to refresh array
	BSF	EECON1, RD	; Read current address
	MOVLW	55h	;
	MOVWF	EECON2	; Write 55h
	MOVLW	0AAh	;
	MOVWF	EECON2	; Write AAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BTFSC	EECON1, WR	; Wait for write to complete
	BRA	\$-2	
	INCFSZ	EEADR, F	; Increment address
	BRA	Loop	; Not zero, do it again
	BCF	EECON1, WREN	; Disable writes
	BSF	INTCON, GIE	; Enable interrupts

EXAMPLE 5-3: DATA EEPROM REFRESH ROUTINE

8.4 IPR Registers

The Interrupt Priority (IPR) registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Priority registers (IPR1, IPR2 and IPR3). The operation of the priority bits requires that the Interrupt Priority Enable bit (IPEN) be set.

REGISTER 8-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP
	bit 7							bit 0
bit 7	PSPIP: Pa	rallel Slave I	Port Read/W	/rite Interrup	ot Priority bit	(1)		
	1 = High pr 0 = Low pri	iority ority						
bit 6	ADIP: A/D	Converter Ir	nterrupt Prio	rity bit				
	1 = High pr 0 = Low pri	iority ority						
bit 5	RCIP: USA	RT Receive	Interrupt Pi	riority bit				
	1 = High pr 0 = Low pri	iority ority						
bit 4	TXIP: USA	RT Transmi	t Interrupt P	riority bit				
	1 = High pr	iority						
	0 = Low pri	ority						
bit 3	SSPIP: Ma	ster Synchro	onous Seria	I Port Interru	ipt Priority b	it		
	1 = High pr 0 = Low pri	iority ority						
bit 2	CCP1IP: C	CP1 Interru	pt Priority bi	t				
	1 = High pr 0 = Low pri	riority iority						
bit 1	TMR2IP: T	MR2 to PR2	2 Match Inte	rrupt Priority	bit			
	1 = High pr 0 = Low pri	iority ority						
bit 0	TMR1IP : T 1 = High pr 0 = Low pri	MR1 Overflo iority iority	ow Interrupt	Priority bit				
	Note 1:	This bit is o is unimpler	only availabl nented and	e on PIC18 reads as '0'.	F4X8 device	es. For PIC1	8F2X8 devi	ces, this bit

Legend:				
R = Read	lable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Valu	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

14.1 Timer3 Operation

Timer3 can operate in one of these modes:

- As a timer
- As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON register).

When TMR3CS = 0, Timer3 increments every instruction cycle. When TMR3CS = 1, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored.

Timer3 also has an internal "Reset input". This Reset can be generated by the CCP module (Section 15.1 "CCP1 Module").

FIGURE 14-1: TIMER3 BLOCK DIAGRAM

17.4.7 BAUD RATE GENERATOR

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Figure 17-17). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (Tcr) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by \overline{ACK}), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 17-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

FIGURE 17-17: BAUD RATE GENERATOR BLOCK DIAGRAM

Fosc	Fcy	Fcy * 2	BRG Value	FSCL (2 Rollovers of BRG)
40 MHz	10 MHz	20 MHz	18h	400 kHz ⁽¹⁾
40 MHz	10 MHz	20 MHz	1Fh	312.5 kHz
40 MHz	10 MHz	20 MHz	63h	100 kHz
16 MHz	4 MHz	8 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	8 MHz	0Ch	308 kHz
16 MHz	4 MHz	8 MHz	27h	100 kHz
4 MHz	1 MHz	2 MHz	02h	333 kHz ⁽¹⁾
4 MHz	1 MHz	2 MHz	09h	100kHz
4 MHz	1 MHz	2 MHz	00h	1 MHz ⁽¹⁾

TABLE 17-3: I²C[™] CLOCK RATE w/BRG

Note 1: The I²C[™] interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

18.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous Master mode is selected, reception is enabled by setting either enable bit SREN (RCSTA register) or enable bit CREN (RCSTA register). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence. Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 18.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, set enable bit RCIE.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- 7. Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if the enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.

TABLE 18-9:	BEGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION
IADEE IV V.	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	1111 1111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000u
RCREG	USART Receive Register									0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate	0000 0000	0000 0000							

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's.

FIGURE 18-8: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

© 2006 Microchip Technology Inc.

19.9 Programming Time Segments

Some requirements for programming of the time segments:

- Prop Seg + Phase Seg 1 ≥ Phase Seg 2
- Phase Seg 2 ≥ Sync Jump Width

For example, assume that a 125 kHz CAN baud rate is desired using 20 MHz for Fosc. With a Tosc of 50 ns, a baud rate prescaler value of 04h gives a TQ of 500 ns. To obtain a nominal bit rate of 125 kHz, the nominal bit time must be 8 μ s or 16 TQ.

Using 1 TQ for the Sync Segment, 2 TQ for the Propagation Segment and 7 TQ for Phase Segment 1 would place the sample point at 10 TQ after the transition. This leaves 6 TQ for Phase Segment 2.

By the rules above, the Sync Jump Width could be the maximum of 4 Tq. However, normally a large SJW is only necessary when the clock generation of the different nodes is inaccurate or unstable, such as using ceramic resonators. Typically, an SJW of 1 is enough.

19.10 Oscillator Tolerance

As a rule of thumb, the bit timing requirements allow ceramic resonators to be used in applications with transmission rates of up to 125 Kbit/sec. For the full bus speed range of the CAN protocol, a quartz oscillator is required. A maximum node-to-node oscillator variation of 1.7% is allowed.

19.11 Bit Timing Configuration Registers

The Configuration registers (BRGCON1, BRGCON2, BRGCON3) control the bit timing for the CAN bus interface. These registers can only be modified when the PIC18FXX8 is in Configuration mode.

19.11.1 BRGCON1

The BRP bits control the baud rate prescaler. The SJW < 1:0 > bits select the synchronization jump width in terms of multiples of Tq.

19.11.2 BRGCON2

The PRSEG bits set the length of the Propagation Segment in terms of TQ. The SEG1PH bits set the length of Phase Segment 1 in TQ. The SAM bit controls how many times the RXCAN pin is sampled. Setting this bit to a '1' causes the bus to be sampled three times; twice at TQ/2 before the sample point and once at the normal sample point (which is at the end of Phase Segment 1). The value of the bus is determined to be the value read during at least two of the samples. If the SAM bit is set to a '0', then the RXCAN pin is sampled only once at the sample point. The SEG2PHTS bit controls how the length of Phase Segment 2 is determined. If this bit is set to a '1', then the length of Phase Segment 2 is determined by the SEG2PH bits of BRGCON3. If the SEG2PHTS bit is set to a '0', then the length of Phase Segment 2 is the greater of Phase Segment 1 and the information processing time (which is fixed at 2 TQ for the PIC18FXX8).

19.11.3 BRGCON3

The PHSEG2<2:0> bits set the length (in TQ) of Phase Segment 2 if the SEG2PHTS bit is set to a '1'. If the SEG2PHTS bit is set to a '0', then the PHSEG2<2:0> bits have no effect.

19.13 CAN Interrupts

The module has several sources of interrupts. Each of these interrupts can be individually enabled or disabled. The CANINTF register contains interrupt flags. The CANINTE register contains the enables for the 8 main interrupts. A special set of read-only bits in the CANSTAT register, the ICODE bits, can be used in combination with a jump table for efficient handling of interrupts.

All interrupts have one source, with the exception of the error interrupt. Any of the error interrupt sources can set the error interrupt flag. The source of the error interrupt can be determined by reading the Communication Status register, COMSTAT.

The interrupts can be broken up into two categories: receive and transmit interrupts.

The receive related interrupts are:

- Receive Interrupts
- Wake-up Interrupt
- Receiver Overrun Interrupt
- Receiver Warning Interrupt
- Receiver Error-Passive Interrupt
- The transmit related interrupts are:
- Transmit Interrupts
- Transmitter Warning Interrupt
- Transmitter Error-Passive Interrupt
- · Bus-Off Interrupt

19.13.1 INTERRUPT CODE BITS

The source of a pending interrupt is indicated in the ICODE (Interrupt Code) bits of the CANSTAT register (ICODE<2:0>). Interrupts are internally prioritized such that the higher priority interrupts are assigned lower ICODE values. Once the highest priority interrupt condition has been cleared, the code for the next highest priority interrupt that is pending (if any) will be reflected by the ICODE bits (see Table 19-3, following page). Note that only those interrupt sources that have their associated CANINTE enable bit set will be reflected in the ICODE bits.

19.13.2 TRANSMIT INTERRUPT

When the transmit interrupt is enabled, an interrupt will be generated when the associated transmit buffer becomes empty and is ready to be loaded with a new message. The TXBnIF bit will be set to indicate the source of the interrupt. The interrupt is cleared by the MCU resetting the TXBnIF bit to a '0'.

19.13.3 RECEIVE INTERRUPT

When the receive interrupt is enabled, an interrupt will be generated when a message has been successfully received and loaded into the associated receive buffer. This interrupt is activated immediately after receiving the EOF field. The RXBnIF bit will be set to indicate the source of the interrupt. The interrupt is cleared by the MCU resetting the RXBnIF bit to a '0'.

REGISTER 20-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as '0'.
 0 = Left justified. Six (6) Least Significant bits of ADRESL are read as '0'.

bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in **bold**)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion					
0	00	Fosc/2					
0	01	Fosc/8					
0	10	Fosc/32					
0	11	FRC (clock derived from the internal A/D RC oscillator)					
1	00	Fosc/4					
1	01	Fosc/16					
1	10	Fosc/64					
1	11	FRC (clock derived from the internal A/D RC oscillator)					

bit 5-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits

PCFG	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	Α	Α	Α	А	Α	А	А	А	Vdd	Vss	8/0
0001	А	А	А	А	VREF+	А	А	А	AN3	Vss	7/1
0010	D	D	D	Α	Α	А	Α	Α	Vdd	Vss	5/0
0011	D	D	D	Α	VREF+	А	Α	Α	AN3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	Vdd	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	AN3	Vss	2/1
011x	D	D	D	D	D	D	D	D	—	—	0/0
1000	Α	Α	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	6/2
1001	D	D	Α	Α	Α	А	Α	Α	Vdd	Vss	6/0
1010	D	D	Α	А	VREF+	А	А	А	AN3	Vss	5/1
1011	D	D	Α	А	VREF+	VREF-	А	А	AN3	AN2	4/2
1100	D	D	D	А	VREF+	VREF-	А	А	AN3	AN2	3/2
1101	D	D	D	D	VREF+	VREF-	А	А	AN3	AN2	2/2
1110	D	D	D	D	D	D	D	А	Vdd	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	А	AN3	AN2	1/2

A = Analog input D = Digital I/O

C/R = # of analog input channels/# of A/D voltage references

Note: Shaded cells indicate channels available only on PIC18F4X8 devices.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: On any device Reset, the port pins that are multiplexed with analog functions (ANx) are forced to be analog inputs.

20.4 A/D Conversions

Figure 20-4 shows the operation of the A/D converter after the GO bit has been set. Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will not be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2 TAD wait is required before the next acquisition is started. After this 2 TAD wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D.

20.4.1 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16 bits wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit result register. The A/D Format Select bit (ADFM) controls this justification. Figure 20-3 shows the operation of the A/D result justification. The extra bits are loaded with '0's. When an A/D result will not overwrite these locations (A/D disable), these registers may be used as two general purpose 8-bit registers.

FIGURE 20-3: A/D RESULT JUSTIFICATION

24.4 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 Flash devices differs significantly from other PICmicro devices.

The user program memory is divided into five blocks. One of these is a boot block of 512 bytes. The remainder of the memory is divided into four blocks on binary boundaries. Each of the five blocks has three code protection bits associated with them. They are:

- Code-Protect bit (CPn)
- Write-Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

Figure 24-3 shows the program memory organization for 16 and 32-Kbyte devices and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 24-3.

FIGURE 24-3: CODE-PROTECTED PROGRAM MEMORY FOR PIC18FXX8

MEMORY SI	ZE/DEVICE		
16 Kbytes (PIC18FX48)	32 Kbytes (PIC18FX58)	Address Range	Controlled By:
Boot Block	Boot Block	000000h 0001FFh	CPB, WRTB, EBTRB
Block 0	Block 0	000200h 001FFFh	CP0, WRT0, EBTR0
Block 1	Block 1	002000h 003FFFh	CP1, WRT1, EBTR1
Unimplemented Read '0's	Block 2	004000h 005FFFh	CP2, WRT2, EBTR2
Unimplemented Read '0's	Block 3	006000h 007FFFh	CP3, WRT3, EBTR3
Unimplemented Read '0's	Unimplemented Read '0's	008000h	(Unimplemented Memory Space)
		1FFFFFh	

TABLE 24-3: SUMMARY OF CODE PROTECTION REGISTERS

File I	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L	_	—	—	_	CP3	CP2	CP1	CP0
300009h	CONFIG5H	CPD	CPB	—	—	—	—	—	_
30000Ah	CONFIG6L	—	—	—	_	WRT3	WRT2	WRT1	WRT0
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	—	—	—	_
30000Ch	CONFIG7L	—	—	—	—	EBTR3	EBTR2	EBTR1	EBTR0
30000Dh	CONFIG7H	—	EBTRB	—	_	—	—	—	_

Legend: Shaded cells are unimplemented.

TABLE 25-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM access bit:
	a = 0: RAM location in Access RAM (BSR register is ignored)
	a = 1: RAM bank is specified by BSR register
bbb	Bit address within an 8-bit file register (0 to 7).
BSR	Bank Select Register. Used to select the current RAM bank.
d	Destination select bit:
	d = 0: store result in file register f
dest	Destination either the WREG register or the specified register file location
f	8-bit register file address (0x00 to 0xFF).
fs	12-bit register file address (0x000 to 0xFFF). This is the source address.
fd	12-bit register file address (0x000 to 0xFFF). This is the destination address.
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).
label	Label name.
mm	The mode of the TBLPTR register for the table read and table write instructions.
	Only used with table read and table write instructions:
*	No change to register (such as TBLPTR with table reads and writes)
*+	Post-Increment register (such as TBLPTR with table reads and writes)
* _	Post-Decrement register (such as TBLPTR with table reads and writes)
+*	Pre-Increment register (such as TBLPTR with table reads and writes)
n	The relative address (2's complement number) for relative branch instructions or the direct address for
	Call/Branch and Return instructions.
PRODH	Product of Multiply High Byte.
PRODL	Product of Multiply Low Byte.
s	Fast Call/Return mode select bit:
	s = 0. do not update into/from shadow registers s = 1; certain registers loaded into/from shadow registers (Fast mode)
u	Unused or unchanged.
WREG	Working register (accumulator).
x	Don't care (0 or 1).
	The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all
	Microchip software tools.
TBLPTR	21-bit Table Pointer (points to a program memory location).
TABLAT	8-bit Table Latch.
TOS	Top-of-Stack.
PC	Program Counter
PCL	Program Counter Low Byte.
PCH	Program Counter High Byte.
PCLATH	Program Counter High Byte Latch.
PCLATU	Program Counter Upper Byte Latch.
GIE	Global Interrupt Enable bit.
WDT	Watchdog Timer.
TO	Time-out bit.
PD	Power-Down bit.
C, DC, Z, OV, N	ALU status bits: Carry, Digit Carry, Zero, Overflow, Negative.
	Optional.
()	Contents.
\rightarrow	Assigned to.
< >	Register bit field.
E	In the set of.
italics	User defined term (font is courier).

COMF	Complement f	CPFSEQ	Compare f	Compare f with W, Skip if $f = W$			
Syntax:	[<i>label</i>] COMF f [,d [,a]]	Syntax:	[label] Cl	[label] CPFSEQ f[,a]			
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$	Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0\leq f\leq 255\\ a\in \left[0,1\right] \end{array}$			
Operation:	$a \in [0,1]$ (f) $\rightarrow dest$	Operation:	(f) – (W), skip if (f) =	(W)			
Status Affected:	N, Z	Ctatus Affastad	(unsigned c	ompanson)			
Encoding:	0001 11da ffff ffff	Status Allected:	None				
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).		0110 Compares to location 'f' to performing If 'f' = W, tho discarded as instead, masting instruction.	0110 001a ffff ffff Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If 'f' = W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle			
Words:	1		will be seleo value. If 'a'	cted, overriding = 1, then the b	g the BSR bank will be		
	1		selected as	per the BSR v	value (default).		
Q Cycle Activity: Q1 Decode	Q2 Q3 Q4 Read Process Write to register 'f' Data destination	Words: Cycles:	1 1(2) Note: 3 c by	cycles if skip a	nd followed		
	· · · · · · · · · · · · · · · · · · ·	Q Cycle Activity:	-)				
Example:	COMF REG, W	Q1	Q2	Q3	Q4		
Before Instruc REG	ction = 0x13	Decode	Read register 'f'	Process Data	No operation		
After Instructi	on - 0x13	If skip:					
W	= 0xF3 = 0xEC	Q1	Q2	Q3	Q4		
		No	No	No	No		
		operation	operation	operation	operation		
					04		
		No	No	No	No		
		operation	operation	operation	operation		
		No operation	No operation	No operation	No operation		
		Example:	HERE NEQUAL EQUAL	CPFSEQ REG : :	G		
		Before Instru PC Addi W REG After Instructi	ress = HI = ? = ? on	ERE			

REG	=	?	
er Instruction			
If REG	=	W;	
PC	=	Address	(EQUAL)
ITREG	≠	VV;	()
PC	=	Address	(NEQUAL)

GOT	0	Unconditio								
Synta	ax:	[label] G	[<i>label</i>] GOTO k							
Oper	ands:	$0 \le k \le 104$	8575							
Oper	ation:	$k \rightarrow PC < 20$):1>							
Statu	s Affected:	None								
Enco 1st w 2nd v	oding: vord (k<7:0>) word(k<19:8>)	1110 1111								
Desc	ription:	GOTO allow anywhere v range. The PC<20:1>. instruction.	rs an und vithin ent 20-bit va GOTO is	onditio ire 2-M Ilue 'k' i always	nal b byte s loa a tw	ranch memory ded into o-cycle				
Word	ls:	2								
Cycle	es:	2								
QC	ycle Activity:									
	Q1	Q2	Q	3	Q4	Q4				
	Decode	Read literal 'k'<7:0>	No opera	tion	Read 'k'< Write	d literal 19:8>, e to PC				
	No operation	No operation	No opera	tion	оре	No eration				
<u>Exan</u>	nple: After Instructio PC: -	GOTO THE	RE							

INCF	Increment	f							
Syntax:	[label] I	[<i>label</i>] INCF f [,d [,a]]							
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Operation:	(f) + 1 \rightarrow d	est							
Status Affected:	C, DC, N,	OV, Z							
Encoding:	0010	10da	ffff	ffff					
Description:	The conter incremente placed in V placed bac is '0', the A overriding t the bank w BSR value	e result is esult is fault). If 'a' e selected, a' = 1, then per the							
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q	3	Q4					
Decode	Read register 'f'	Proce Dat	ess a de	Write to estination					
Example:	INCF	CNT,							
Before Instruc CNT Z DC After Instructio CNT Z C DC	$\begin{array}{rcl} \text{tion} & & \\ & = & 0 \text{ xFF} \\ & = & 0 \\ & = & ? \\ & = & ? \\ \text{cn} & & \\ & = & 0 \text{ x00} \\ & = & 1 \\ & = & 1 \end{array}$								

LFSI	R	Load FSR			MOVF	Мо	ve f			
Synta	ax:	[label] Ll	-SR f,k		Syntax:	[la	[<i>label</i>] MOVF f[,d[,a]]			
Oper	$\begin{array}{llllllllllllllllllllllllllllllllllll$		Operands	: 0 ≤ d ∈	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$					
Oper	ration:	$k\toFSRf$			o	a∈	[0,1]			
Statu	is Affected:	None			Operation	: t→	dest			
Enco	oding:	1110 1111	1110 00 0000 k ₇ }	ff k ₁₁ kkk kkk kkkk	Status Affe Encoding:	ected: N, 2	<u>7</u>)101	00da	ffff	ffff
Desc	cription:	The 12-bit li file select re	iteral 'k' is loa	ded into the I to by 'f'.	ed into the Description: The contents of a destination of a destination of the contents of the content of			contents of register 'f' are moved to stination dependent upon the		
Word	ds:	2				stat	us of 'd'.	. If 'd' is '0'	, the re	sult is
Cycle	es:	2				plac	placed in W. If d is 1, the result is placed back in register 'f' (default). Location 'f' can be anywhere in the			
QC	ycle Activity:					Loc				
	Q1	Q2	Q3	Q4		256 Boy	i-byte ba	ink. If 'a' is	°0', the	Access
	Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB to FSBfH		BSR value. If ' $a' = 1$, then the bar be selected as per the BSR value (default).				bank will alue
	Decode	Read literal	Process	Write literal	Words:	1				
		'k' LSB	Data	'k' to FSRfL	Cycles:	1				
					Q Cycle /	Activity:				
Exar	nple:	LFSR 2,	0x3AB			Q1	Q2	Q3		Q4
	After Instructi FSR2H	on = 0x - 0x	03		De	ecode R regi	ead ster 'f'	Process Data	s V	Vrite W
	1 GHZL	_ 0x			Example:	МО	VF R	EG, W		

Before Instruction REG W	=	0x22 0xFF
After Instruction		
REG W	=	0x22 0x22

27.1 DC Characteristics (Continued)

PIC18LFXX8 (Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
PIC18F2 (Indus	XX8 trial, Exter	nded)	Stan Oper	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Symbol	Characteristic/ Device	Min	Min Typ Max Units Conditions						
	Δ IWDT	Module Differential Cur	rent							
D022		Watchdog Timer PIC18LFXX8		0.75 0.8 7	1.5 8 25	μΑ μΑ μΑ	VDD = 2.5V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C			
D022		Watchdog Timer PIC18FXX8		7 7 7	25 25 45	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C			
D022A	ΔIBOR	Brown-out Reset ⁽⁵⁾ PIC18LFXX8		38 42 49	50 55 65	μΑ μΑ μΑ	VDD = 2.0V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C			
D022A		Brown-out Reset ⁽⁵⁾ PIC18FXX8		46 49 50	65 65 75	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C			
D022B	ΔILVD	Low-Voltage Detect ⁽⁵⁾ PIC18LFXX8	 	36 40 47	50 55 65	μΑ μΑ μΑ	VDD = 2.0V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C			
D022B		Low-Voltage Detect ⁽⁵⁾ PIC18FXX8		44 47 47	65 65 75	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C			
D025	ΔITMR1	Timer1 Oscillator PIC18LFXX8		6.2 6.2 7.5	40 45 55	μΑ μΑ μΑ	VDD = 2.0V, +25°C VDD = 2.0V, -40°C to +85°C VDD = 4.2V, -40°C to +85°C			
D025		Timer1 Oscillator PIC18FXX8		7.5 7.5 7.5	55 55 65	μΑ μΑ μΑ	VDD = 4.2V, +25°C VDD = 4.2V, -40°C to +85°C VDD = 4.2V, -40°C to +125°C			

Legend: Rows are shaded for improved readability.

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are: $\frac{OSC1}{MCLR} = \text{external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD}$ $\frac{MCLR}{MCLR} = \text{VDD; WDT enabled/disabled as specified.}$

3: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).

- 4: For RC oscillator configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2 REXT (mA) with REXT in kOhm.
- 5: The LVD and BOR modules share a large portion of circuitry. The △IBOR and △ILVD currents are not additive. Once one of these modules is enabled, the other may also be enabled without further penalty.

Low-Voltage Detect Characteristics		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq Ta \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq Ta \leq +125^{\circ}C \mbox{ for extended} \end{array}$						
Param No.	Symbol	Characteristi	Characteristic			Max	Units	Conditions
D420	Vlvd	LVD Voltage	LVV = 0001	1.96	2.06	2.16	V	$T \ge 25^{\circ}C$
			LVV = 0010	2.16	2.27	2.38	V	$T \ge 25^{\circ}C$
			LVV = 0011	2.35	2.47	2.59	V	$T \ge 25^{\circ}C$
			LVV = 0100	2.43	2.58	2.69	V	
			LVV = 0101	2.64	2.78	2.92	V	
			LVV = 0110	2.75	2.89	3.03	V	
			LVV = 0111	2.95	3.1	3.26	V	
			LVV = 1000	3.24	3.41	3.58	V	
			LVV = 1001	3.43	3.61	3.79	V	
			LVV = 1010	3.53	3.72	3.91	V	
			LVV = 1011	3.72	3.92	4.12	V	
			LVV = 1100	3.92	4.13	4.34	V	
			LVV = 1101	4.07	4.33	4.59	V	
			LVV = 1110	4.36	4.64	4.92	V	

TABLE 27-1: LOW-VOLTAGE DETECT CHARACTERISTICS

Transition from OSC1 to
Timer1 Oscillator21
USART Asynchronous Reception
USART Asynchronous Transmission
USART Asynchronous Transmission
(Back to Back)
USART Synchronous Receive
(Master/Slave)
USART Synchronous Reception
(Master Mode, SREN)195
USART Synchronous Transmission
USART Synchronous Transmission
(Master/Slave)
USART Synchronous Transmission
(Through TXEN)
Wake-up from Sleep via Interrupt 275
Timing Diagrams and Specifications 343
A/D Conversion Bequirements
A/D Converter Characteristics 358
Canture/Compare/PWM Bequirements
(CCP1 and ECCP1) 347
CLKO and I/O Timing
Bequirements 344
Example SPI Mode Bequirements
(Master Mode, CKE – 0) 349
Example SPI Mode Requirements
(Master Mode, CKE – 1) 350
Example SPI Mode Requirements
(Slave Mode CKE = 0) 351
Example SPI Slave Mode
Bequirements (CKE – 1) 352
External Clock Timing Bequirements 3/3
I ² C Bus Data Bequirements
(Slave Mode) 354
l ² C Bus Start/Ston Bits Bequirements
(Slave Mode) 353
Master SSP I ² C Bus Data
Poquiromonto 256
Master SSP I ² C Bus Start/Stop Bits
Requirements 355
Parallel Slave Port Requirements
(PIC18E248 and PIC18E458) 348
PLI Clock 344
Reset Watchdog Timer, Oscillator
Start-up Timer, Power-up Timer
Brown-out Reset and Low-Voltage
Detect Requirements 345
Timer() and Timer() External
Clock Requirements 346
Bequirements 257
USABT Synchronous Transmission
Requirements 257
TSTFS7 221
TXSTA Begister
BBGH Bit 185
<u> </u>

U

USART
Asynchronous Mode 189
Reception
Setting Up 9-Bit Mode with
Address Detect 191
Transmission
Asynchronous Reception192
Asynchronous Transmission
Associated Registers
Baud Rate Generator (BRG) 185
Associated Registers 185
Baud Rate Error, Calculating
Baud Rate Formula 185
Baud Rates for Asynchronous Mode
(BRGH = 0) 187
Baud Rates for Asynchronous Mode
(BRGH = 1) 188
Baud Rates for Synchronous Mode 186
High Baud Rate Select (BRGH Bit) 185
Sampling185
Serial Port Enable (SPEN) Bit 183
Synchronous Master Mode 193
Reception 195
Transmission 193
Synchronous Master Reception
Associated Registers 195
Synchronous Master Transmission
Associated Registers 193
Synchronous Slave Mode196
Reception 196
Transmission 196
Synchronous Slave Reception 197
Synchronous Slave Transmission
Associated Registers 197
V
Voltage Reference Specifications
W
Wake-up from Sleep 265 274
Using Interrupts

Using interrupts	
Watchdog Timer (WDT)	265, 272
Associated Registers	273
Control Register	
Postscaler	
Programming Considerations	
RC Oscillator	
Time-out Period	
WCOL 171	, 172, 173, 176
WCOL Status Flag 171	, 172, 173, 176
WDT. See Watchdog Timer.	
WWW, On-Line Support	5
x	
XORLW	321