

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf258t-i-sog

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 4-1: SPECIAL FUNCTION REGISTER MAP (CONTINUED)

Address	Name	Address	Name	Address	Name	Address	Name
F7Fh	—	F5Fh		F3Fh	_	F1Fh	RXM1EIDL
F7Eh		F5Eh	CANSTATRO1 ⁽⁴⁾	F3Eh	CANSTATRO3 ⁽⁴⁾	F1Eh	RXM1EIDH
F7Dh		F5Dh	RXB1D7	F3Dh	TXB1D7	F1Dh	RXM1SIDL
F7Ch		F5Ch	RXB1D6	F3Ch	TXB1D6	F1Ch	RXM1SIDH
F7Bh	—	F5Bh	RXB1D5	F3Bh	TXB1D5	F1Bh	RXM0EIDL
F7Ah	—	F5Ah	RXB1D4	F3Ah	TXB1D4	F1Ah	RXM0EIDH
F79h	—	F59h	RXB1D3	F39h	TXB1D3	F19h	RXM0SIDL
F78h	—	F58h	RXB1D2	F38h	TXB1D2	F18h	RXM0SIDH
F77h	—	F57h	RXB1D1	F37h	TXB1D1	F17h	RXF5EIDL
F76h	TXERRCNT	F56h	RXB1D0	F36h	TXB1D0	F16h	RXF5EIDH
F75h	RXERRCNT	F55h	RXB1DLC	F35h	TXB1DLC	F15h	RXF5SIDL
F74h	COMSTAT	F54h	RXB1EIDL	F34h	TXB1EIDL	F14h	RXF5SIDH
F73h	CIOCON	F53h	RXB1EIDH	F33h	TXB1EIDH	F13h	RXF4EIDL
F72h	BRGCON3	F52h	RXB1SIDL	F32h	TXB1SIDL	F12h	RXF4EIDH
F71h	BRGCON2	F51h	RXB1SIDH	F31h	TXB1SIDH	F11h	RXF4SIDL
F70h	BRGCON1	F50h	RXB1CON	F30h	TXB1CON	F10h	RXF4SIDH
F6Fh	CANCON	F4Fh	_	F2Fh		F0Fh	RXF3EIDL
F6Eh	CANSTAT	F4Eh	CANSTATRO2 ⁽⁴⁾	F2Eh	CANSTATRO4 ⁽⁴⁾	F0Eh	RXF3EIDH
F6Dh		F4Dh	TXB0D7	F2Dh	TXB2D7	F0Dh	RXF3SIDL
F6Ch		F4Ch	TXB0D6	F2Ch	TXB2D6	F0Ch	RXF3SIDH
F6Bh	RXB0D5 ⁽³⁾	F4Bh	TXB0D5	F2Bh	TXB2D5	F0Bh	RXF2EIDL
F6Ah	RXB0D4 ⁽³⁾	F4Ah	TXB0D4	F2Ah	TXB2D4	F0Ah	RXF2EIDH
F69h	RXB0D3 ⁽³⁾	F49h	TXB0D3	F29h	TXB2D3	F09h	RXF2SIDL
F68h	RXB0D2 ⁽³⁾	F48h	TXB0D2	F28h	TXB2D2	F08h	RXF2SIDH
F67h	RXB0D1 ⁽³⁾	F47h	TXB0D1	F27h	TXB2D1	F07h	RXF1EIDL
F66h	RXB0D0 ⁽³⁾	F46h	TXB0D0	F26h	TXB2D0	F06h	RXF1EIDH
F65h	RXB0DLC ⁽³⁾	F45h	TXB0DLC	F25h	TXB2DLC	F05h	RXF1SIDL
F64h	RXB0EIDL ⁽³⁾	F44h	TXB0EIDL	F24h	TXB2EIDL	F04h	RXF1SIDH
F63h	RXB0EIDH ⁽³⁾	F43h	TXB0EIDH	F23h	TXB2EIDH	F03h	RXF0EIDL
F62h	RXB0SIDL ⁽³⁾	F42h	TXB0SIDL	F22h	TXB2SIDL	F02h	RXF0EIDH
F61h	RXB0SIDH ⁽³⁾	F41h	TXB0SIDH	F21h	TXB2SIDH	F01h	RXF0SIDL
F60h	RXB0CON ⁽³⁾	F40h	TXB0CON	F20h	TXB2CON	F00h	RXF0SIDH

Note: Shaded registers are available in Bank 15, while the rest are in Access Bank low.

Note 1: Unimplemented registers are read as '0'.

- 2: This is not a physical register.
- 3: Contents of register are dependent on WIN2:WIN0 bits in the CANCON register.
- 4: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the CANSTAT register due to the Microchip header file requirement.
- 5: These registers are not implemented on the PIC18F248 and PIC18F258.

6.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and erasable during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 8 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A bulk erase operation may not be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

6.1 **Table Reads and Table Writes**

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide, while the data RAM space is 8 bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).

Table read operations retrieve data from program memory and place it into the data RAM space. Figure 6-1 shows the operation of a table read with program memory and data RAM.

Table write operations store data from the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in Section 6.5 "Writing to Flash Program Memory". Figure 6-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word aligned. Therefore, a table block can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word aligned.

Instruction: TBLRD* Program Memory Table Pointer⁽¹⁾ Table Latch (8-bit) TBLPTRH TBLPTRU TBLPTRL TABLAT Program Memory (TBLPTR) Note 1: Table Pointer points to a byte in program memory.

FIGURE 6-1: **TABLE READ OPERATION**

8.1 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits. Because of the number of interrupts to be controlled, PIC18FXX8 devices have three INTCON registers. They are detailed in Register 8-1 through Register 8-3.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows software polling.

REGISTER 8-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEF	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF
bit 7	·						bit 0
	: Global Interr	-	oit				
1 = Enable	<u>N (RCON<7>)</u> es all unmaske es all interrupt	ed interrupts	i				
1 = Enabl	<u>N (RCON<7>)</u> es all high prio es all priority i	rity interrup	ts				
PEIE/GIE	-: Peripheral I	nterrupt Ena	able bit				
1 = Enable	<u>N (RCON<7>)</u> es all unmaske es all peripher	ed periphera					
1 = Enable	<u>N (RCON<7>)</u> es all low prior es all low prior	ity periphera					
TMR0IE:	TMR0 Overflov	w Interrupt E	Enable bit				
	es the TMR0 c es the TMR0 (•				
INTOIE: IN	IT0 External Ir	nterrupt Ena	ble bit				
	es the INT0 ex es the INT0 ex		•				
RBIE: RB	Port Change	Interrupt En	able bit				
	es the RB port es the RB por						
TMR0IF:	MR0 Overflov	v Interrupt F	lag bit				
	register has o register did no		must be clea	ared in softv	vare)		
INTOIF: IN	IT0 External Ir	nterrupt Flag	ı bit				
	IT0 external in IT0 external in			be cleared i	n software b	by reading P	ORTB)
RBIF: RB	Port Change I	nterrupt Fla	g bit				
	st one of the R of the RB7:RB				be cleared i	n software)	
Note:	A mismatch mismatch co					g PORTB v	will end the

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Name	Bit#	Buffer Type	Function
RE0/AN5/RD	bit 0	ST/TTL ⁽¹⁾	Input/output port pin, analog input or read control input in Parallel Slave Port mode.
RE1/AN6/WR/C1OUT	bit 1	ST/TTL ⁽¹⁾	Input/output port pin, analog input, write control input in Parallel Slave Port mode or Comparator 1 output.
RE2/AN7/CS/C2OUT	bit 2	ST/TTL ⁽¹⁾	Input/output port pin, analog input, chip select control input in Parallel Slave Port mode or Comparator 2 output.

TABLE 9-9: PORTE FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

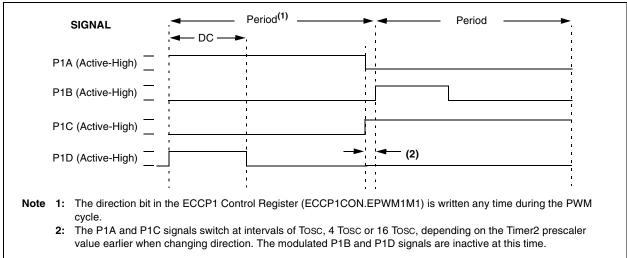
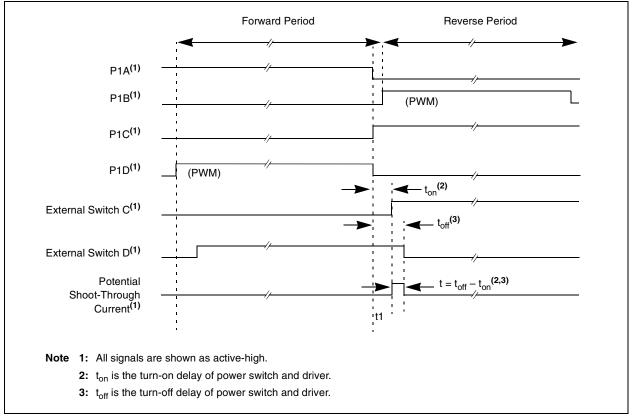

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

	TABLE 9-10:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTE
--	-------------	--


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
TRISE	IBF	OBF	IBOV	PSPMODE	_	TRISE2	TRISE1	TRISE0	0000 -111	0000 -111
PORTE	_			_	Ι	Read POF Write POF	RTE pin/ RTE Data La	atch	xxx	uuu
LATE	—	_	_	—	_	Read POF Write POF	RTE Data L RTE Data L		xxx	uuu
ADCON1	ADFM	ADCS2		—	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.

17.4.2 OPERATION

The MSSP module functions are enabled by setting MSSP Enable bit, SSPEN (SSPCON1<5>).

The SSPCON1 register allows control of the I^2C operation. Four mode selection bits (SSPCON1<3:0>) allow one of the following I^2C modes to be selected:

- I²C Master mode, clock = OSC/4 (SSPADD +1)
- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address) with Start and Stop bit interrupts enabled
- I²C Slave mode (10-bit address) with Start and Stop bit interrupts enabled
- I²C Firmware Controlled Master mode, slave is Idle

Selection of any I²C mode with the SSPEN bit set forces the SCL and SDA pins to be open-drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. To ensure proper operation of the module, pull-up resistors must be provided externally to the SCL and SDA pins.

17.4.3 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The MSSP module will override the input state with the output data when required (slave-transmitter).

The I²C Slave mode hardware will always generate an interrupt on an address match. Through the mode select bits, the user can also choose to interrupt on Start and Stop bits.

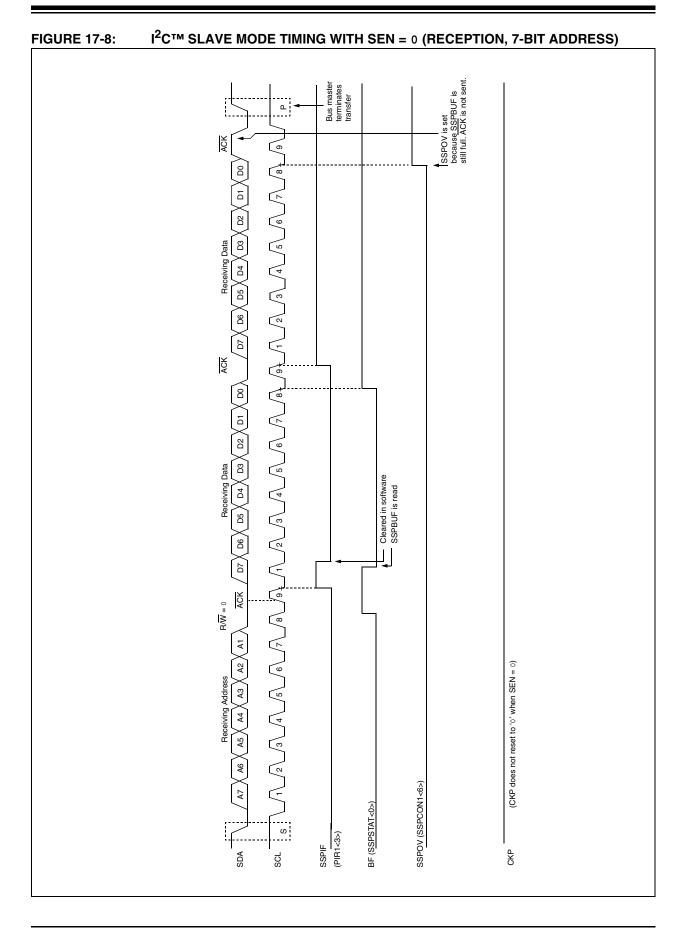
When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse and load the SSPBUF register with the received value currently in the SSPSR register.

Any combination of the following conditions will cause the MSSP module not to give this ACK pulse:

- The Buffer Full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- The overflow bit, SSPOV (SSPCON1<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The BF bit is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the MSSP module, are shown in timing parameter #100 and parameter #101.


17.4.3.1 Addressing

Once the MSSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8 bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- 1. The SSPSR register value is loaded into the SSPBUF register.
- 2. The Buffer Full bit BF is set.
- 3. An ACK pulse is generated.
- MSSP Interrupt Flag bit, SSPIF (PIR1<3>), is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '11110 A9 A8 0', where 'A9' and 'A8' are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7 through 9 for the slave-transmitter:

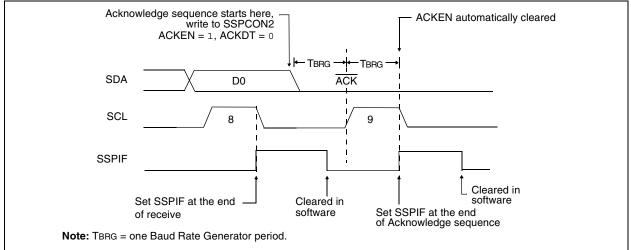
- 1. Receive first (high) byte of address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address. If match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

17.4.12 ACKNOWLEDGE SEQUENCE TIMING

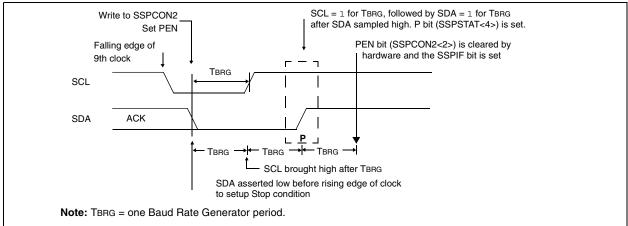
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 17-23).

17.4.12.1 WCOL Status Flag

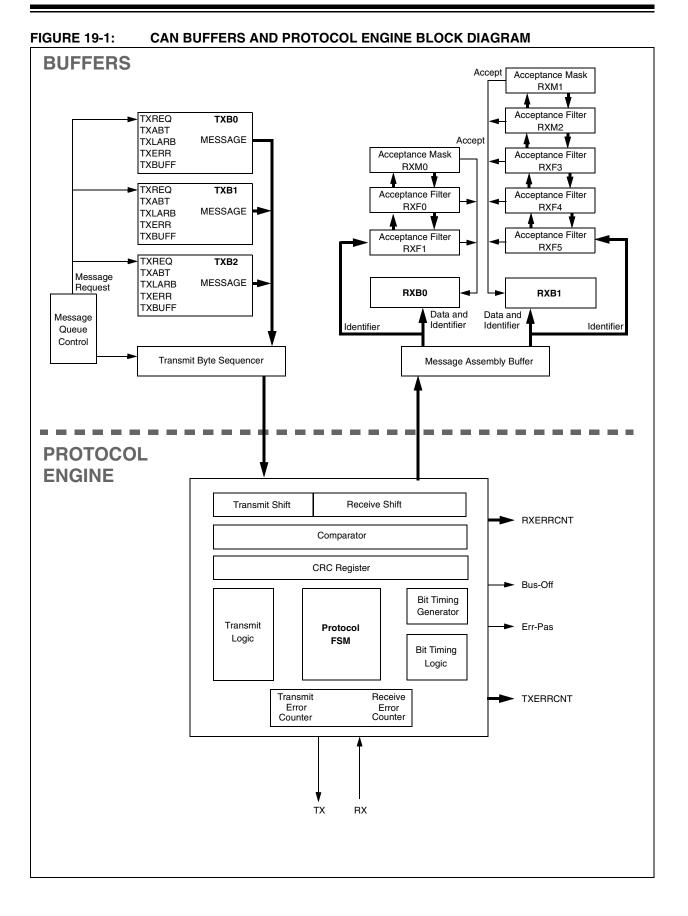
If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).


17.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to 0. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 17-24).


17.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).


FIGURE 17-23: ACKNOWLEDGE SEQUENCE WAVEFORM

NOTES:

REGISTER 19-2: CANSTAT: CAN STATUS REGISTER

	R-1	R-0	R-0	U-0	R-0	R-0	R-0	U-0
	OPMODE2	OPMODE1	OPMODE0		ICODE2	ICODE1	ICODE0	_
-	bit 7							bit 0

bit 7-5

5 **OPMODE2:OPMODE0:** Operation Mode Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Configuration mode
- 011 = Listen Only mode
- 010 = Loopback mode
- 001 = Disable mode
- 000 = Normal mode

Note: Before the device goes into Sleep mode, select Disable mode.

bit 4 Unimplemented: Read as '0'

bit 3-1 ICODE2:ICODE0: Interrupt Code bits

When an interrupt occurs, a prioritized coded interrupt value will be present in the ICODE2:ICODE0 bits. These codes indicate the source of the interrupt. The ICODE2:ICODE0 bits can be copied to the WIN2:WIN0 bits to select the correct buffer to map into the Access Bank area. See Example 19-1 for code example.

- 111 = Wake-up on interrupt
- 110 = RXB0 interrupt
- 101 = RXB1 interrupt
- 100 = TXB0 interrupt
- 011 = TXB1 interrupt
- 010 = TXB2 interrupt
- 001 = Error interrupt
- 000 = No interrupt
- bit 0

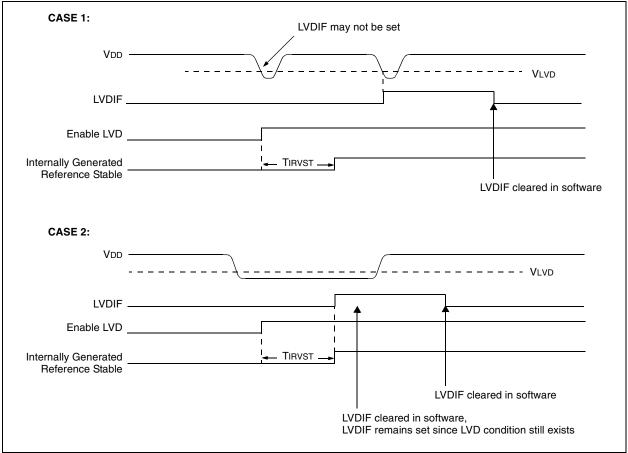
Unimplemented: Read as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

ГER 19-3:	COMSTAT: C	OMMUNI	CATION S	STATUS R	EGISTER			
	R/C-0	R/C-0	R-0	R-0	R-0	R-0	R-0	R-0
	RXB0OVFL RX	(B1OVFL	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN
	bit 7							bit 0
bit 7	RXB0OVFL: Re	eceive Buffe	er 0 Overflo	ow bit				
	1 = Receive But 0 = Receive But			ved				
bit 6	RXB1OVFL: Re	eceive Buffe	er 1 Overflo	ow bit				
	1 = Receive But 0 = Receive But			red				
bit 5	TXBO: Transmi	tter Bus-Of	f bit					
	1 = Transmit Er 0 = Transmit Er							
bit 4	TXBP: Transmit	tter Bus Pa	ssive bit					
	1 = Transmissio 0 = Transmissio							
bit 3	RXBP: Receive	r Bus Pass	ive bit					
	1 = Receive Err 0 = Receive Err							
bit 2	TXWARN: Tran	smitter Wa	rning bit					
	$1 = 127 \ge Trans$ 0 = Transmit Er			5				
bit 1	RXWARN: Rec	eiver Warni	ng bit					
	$1 = 127 \ge \text{Receit}$ 0 = Receive Err			5				
bit 0	EWARN: Error	Warning bit						
	This bit is a flag	of the RXV	VARN and	TXWARN b	its.			
	1 = The RXWA 0 = Neither the				e set			
	Legend:							
	R = Readable bi	it W = V	Vritable bit	C = Cleara	able bit	U = Unimple	emented bit,	read as '0'
	-n = Value at PC)R '1' = E	lit is set	'0' = Bit is	cleared	x = Bit is un	known	

REGISTER 19-3: COMSTAT: COMMUNICATION STATUS REGISTER

23.2 Operation


Depending on the power source for the device voltage, the voltage normally decreases relatively slowly. This means that the LVD module does not need to be constantly operating. To decrease the current requirements, the LVD circuitry only needs to be enabled for short periods where the voltage is checked. After doing the check, the LVD module may be disabled.

Each time that the LVD module is enabled, the circuitry requires some time to stabilize. After the circuitry has stabilized, all status flags may be cleared. The module will then indicate the proper state of the system.

The following steps are needed to set up the LVD module:

- Write the value to the LVDL3:LVDL0 bits (LVDCON register) which selects the desired LVD trip point.
- 2. Ensure that LVD interrupts are disabled (the LVDIE bit is cleared or the GIE bit is cleared).
- 3. Enable the LVD module (set the LVDEN bit in the LVDCON register).
- 4. Wait for the LVD module to stabilize (the IRVST bit to become set).
- 5. Clear the LVD interrupt flag, which may have falsely become set, until the LVD module has stabilized (clear the LVDIF bit).
- 6. Enable the LVD interrupt (set the LVDIE and the GIE bits).

Figure 23-4 shows typical waveforms that the LVD module may be used to detect.

FIGURE 23-4: LOW-VOLTAGE DETECT WAVEFORMS

NOTES:

TABLE 25-2: PIC18FXXX INSTRUCTION SET

Mnemo	onic,	Description	Cycles	16-E	Bit Instr	uction W	/ord	Status	Notes
Opera	nds	Description	Cycles	MSb			LSb	Affected	notes
BYTE-OR	IENTED	FILE REGISTER OPERATIONS	6						
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1 .	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)		11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1 ΄	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ		Increment f, Skip if 0	1 (2 or 3)		11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)		10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1		00da	ffff	ffff		1, 2
MOVF	f, d, a	Move f	1		00da	ffff		Z, N	1
MOVFF	f _s , f _d		2		ffff	ffff		None	•
movi i	's, 'a	f _d (destination) 2nd word	-		ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1		111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1		001a	ffff		None	
NEGF	f, a	Negate f	1		110a	ffff	ffff	C, DC, Z, OV, N	12
RLCF	f, d, a	Rotate Left f through Carry	1		01da	ffff	ffff	C, Z, N	1, 2
RLNCF		Rotate Left f (No Carry)	1		01da 01da	ffff	ffff		1, 2
RRCF	f, d, a	Rotate Right f through Carry	1		01da 00da	ffff	ffff	C, Z, N	1, 2
RRNCF	f, d, a	Rotate Right f (No Carry)	1		00da 00da	ffff	ffff		
SETF	f, a	Set f	1		100a	ffff		None	
SUBFWB		Subtract f from WREG with	1			ffff	ffff	C, DC, Z, OV, N	1 0
SUBEWB	f, d, a	borrow	1	0101	01da	LLLL	LLLL	C, DC, Z, OV, N	1, 2
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	
	f, d, a	Subtract WREG from f with	1		10da	ffff	ffff	C, DC, Z, OV, N	12
0001110	i, a, a	borrow		0101	Toda			0, 20, 2, 01, 11	•, –
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)		100a 011a	ffff		None	4 1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1		10da	ffff		Z, N	1, 2
-			1	0001	IUda	LLLL	LLLL	Ζ, Ν	
			4	1005				Nere	1.0
BCF	f, b, a	Bit Clear f	1		bbba	ffff	ffff	None	1,2
BSF	, .,	Bit Set f	1		bbba	ffff	ffff	None	1,2
BTFSC		Bit Test f, Skip if Clear	1 (2 or 3)		bbba	ffff		None	3, 4
BTFSS		Bit Test f, Skip if Set	1 (2 or 3)		bbba	ffff	ffff	None	3, 4
BTG	f, d, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2

Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

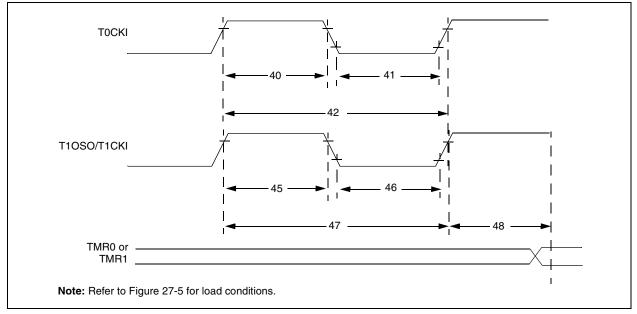
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

Mnemo	onic,	Description	Cycles	16-E	Bit Instr	uction V	Vord	Status	Notes
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
CONTROL	OPER	ATIONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	2	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	1 (2)	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call subroutine1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT		Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	xxxx	xxxx	xxxx	None	4
POP		Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH,	
								PEIE/GIEL	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP		Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 25-2: PIC18FXXX INSTRUCTION SET (CONTINUED)

Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.


3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

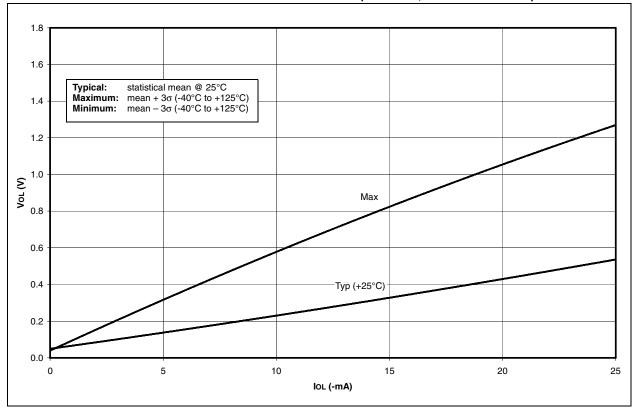
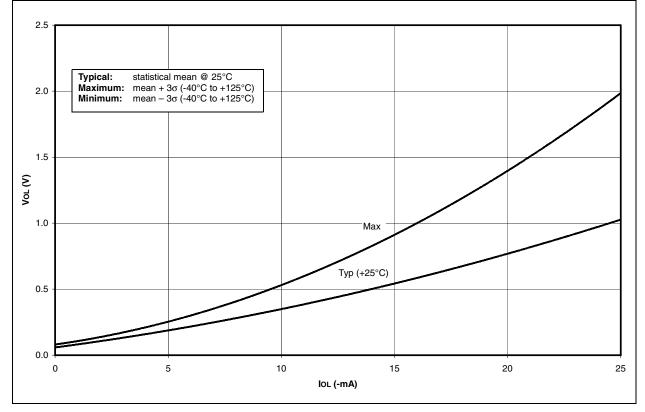

SLEEP Enter Sleep			ep Mode		SUBFWB	Subtract f from W with Borrow					
Syntax:		[label]	SLEEP		Syntax:	[<i>label</i>] SUBFWB f [,d [,a]]					
Operands: None			Operands:								
Operation:		$00h \rightarrow WI$				$d \in [0,1]$					
			postscaler,		Oneration		$a \in [0,1]$ (W) – (f) – (\overline{C}) \rightarrow dest				
		$1 \rightarrow TO, 0 \rightarrow PD$			Operation:						
Status Affected:		TO, PD			Status Affected:		N, OV, C, DC, Z				
Encoding:		0000 0000 0000 0011			Encoding:	0101		ff ffff			
Description:		The Powe cleared. T	r-Down status	s bit (PD) is status bit (TO)	Description:	Subtract register 'f' and Carry flag (borrow) from W (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored in					
		postscaler The proce with the os	are cleared.	o Sleep mode		register 'f Access B overriding	register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per				
Word		1					value (default)				
Cycle		1			Words:	1					
QC	ycle Activity:	Q2	Q3	Q4	Cycles:	1					
	Q1 Decode	No	Process	Go to	Q Cycle Activity:						
	200000	operation	Data	Sleep	Q1	Q2	Q3	Q4			
Exan	nple:	SLEEP			Decode	Read register 'f'	Process Data	Write to destination			
	Before Instruc				Example 1:	SUBFWB	REG				
	TO =	?			Before Instruc	Before Instruction					
PD = ? After Instruction TO = 1 †					REG W C	= 0x03 = 0x02 = 0x01	0x02				
	$\frac{10}{PD} = 0$			After Instructi REG	on = 0xFF						
† If WDT causes wake-up, this bit is cleared.					W C Z	= 0x02 = 0x00 = 0x00					
					Ν	= 0x01	; result is neo	gative			
					Example 2:	SUBFWB	REG, 0,	0			
					Before Instruc REG	ction = 2					
					W C After Instructi	= 5 = 1					
					REG W	= 2 = 3					
					C Z N	= 1 = 0 = 0	; result is pos	itive			
					Example 3:	SUBFWB	REG, 1,	0			
			Before Instruc	ction							
					REG W C	= 1 = 2 = 0					
					After Instructi	on					
					REG W	= 0 = 2					
					C Z N	= 1 = 1	; result is zero	0			
					IN	= 0					

FIGURE 27-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS


Param No.	Symbol		Characteristic	C	Min	Max	Units	Conditions
40	Tt0H	T0CKI High I	Pulse Width	No prescaler	0.5 TCY + 20	_	ns	
				With prescaler	10	_	ns	
41	Tt0L	T0CKI Low Pulse Width		No prescaler	0.5 TCY + 20	_	ns	
				With prescaler	10	_	ns	
42	Tt0P	T0CKI Period		No prescaler	Tcy + 10	_	ns	
				With prescaler	Greater of: 20 ns or <u>TCY + 40</u> N	_	ns	N = prescale value (1, 2, 4,, 256)
45	Tt1H	T1CKI High Time	Synchronous, no prescaler		0.5 TCY + 20	_	ns	
			Synchronous, with prescaler	PIC18FXX8	10	_	ns	
				PIC18 LF XX8	25	_	ns	
			Asynchronous	PIC18 F XX8	30	_	ns	
				PIC18 LF XX8	50	—	ns	
46	Tt1L	T1CKI Low Time	Synchronous, no prescaler		0.5 TCY + 5	_	ns	
			Synchronous, with prescaler	PIC18 F XX8	10	—	ns	
				PIC18 LF XX8	25	—	ns	
			Asynchronous	PIC18 F XX8	30	—	ns	
				PIC18 LF XX8	TBD	TBD	ns	
47	Tt1P	T1CKI Input Period Asynchronous			Greater of: 20 ns or <u>TCY + 40</u> N	_	ns	N = prescale value (1, 2, 4, 8)
					60	_	ns	
	Ft1	T1CKI Oscill	ator Input Frequ	DC	50	kHz		
48	Tcke2tmrl	Delay from E Timer Increm	xternal T1CKI C nent	2 Tosc	7 Tosc	_		

Legend: TBD = To Be Determined

FIGURE 28-23: TYPICAL AND MAXIMUM Vol vs. lol (VDD = 5V, -40°C TO +125°C)

