

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf448-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7 Time-out Sequence

On power-up, the time-out sequence is as follows: First, PWRT time-out is invoked after the POR time delay has expired, then OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and Figure 3-7 depict time-out sequences on power-up. Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Bringing MCLR high will begin execution immediately (Figure 3-5). This is useful for testing purposes or to synchronize more than one PIC18FXX8 device operating in parallel.

Table 3-2 shows the Reset conditions for some Special Function Registers, while Table 3-3 shows the Reset conditions for all registers.

TABLE 3-1: TIME-OUT IN VARIOUS SITUATIONS

Oscillator	Power-up	(2)	5 (2)	Wake-up from	
Configuration	PWRTEN = 0	PWRTEN = 1	Brown-out ⁽²⁾	Sleep or Oscillator Switch	
HS with PLL enabled ⁽¹⁾	72 ms + 1024 Tosc + 2 ms	1024 Tosc + 2 ms	72 ms + 1024 Tosc + 2 ms	1024 Tosc + 2 ms	
HS, XT, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
EC	72 ms	—	72 ms	—	
External RC	72 ms		72 ms	_	

Note 1: 2 ms = Nominal time required for the 4x PLL to lock.

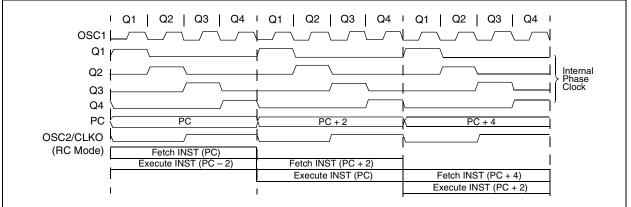
2: 72 ms is the nominal Power-up Timer delay.

REGISTER 3-1: RCON REGISTER BITS AND POSITIONS

R/W-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1
IPEN	—	—	RI	TO	PD	POR	BOR
bit 7							bit 0

TABLE 3-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	01 110q	1	1	1	0	0	u	u
MCLR Reset during normal operation	0000h	00 011q	u	u	u	u	u	u	u
Software Reset during normal operation	0000h	00 011q	0	u	u	u	u	u	u
Stack Full Reset during normal operation	0000h	00 011q	u	u	u	1	1	u	1
Stack Underflow Reset during normal operation	0000h	00 011q	u	u	u	1	1	1	u
MCLR Reset during Sleep	0000h	00 011q	u	1	0	u	u	u	u
WDT Reset	0000h	00 011q	u	0	1	u	u	u	u
WDT Wake-up	PC + 2	01 101q	u	0	0	u	u	u	u
Brown-out Reset	0000h	01 110q	1	1	1	u	0	u	u
Interrupt wake-up from Sleep	PC + 2 ⁽¹⁾	01 101q	u	1	0	u	u	u	u


Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (000008h or 000018h).

4.5 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the Program Counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 4-4.

4.6 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), two cycles are required to complete the instruction (Example 4-2).

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

4.7 Instructions in Program Memory

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB = 0). Figure 4-3 shows an example of how instruction words are stored in the program memory. To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 4.4 "PCL, PCLATH and PCLATU").

The CALL and GOTO instructions have an absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Example 4-3 shows how the instruction "GOTO 00006h" is encoded in the program memory. Program branch instructions that encode a relative address offset operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions by which the PC will be offset. Section 25.0 "Instruction Set Summary" provides further details of the instruction set.

REGISTER 8-2:	INTCON2: INTERRUPT CONTROL REGISTER 2											
	R/W-1	R/W-1	R/W-1	U-0	U-0	R/W-1	U-0	R/W-1				
	RBPU	INTEDG0	INTEDG1	_	_	TMR0IP		RBIP				
	bit 7							bit 0				
bit 7	RBPU: PO	RTB Pull-up	Enable bit									
		RTB pull-ups 3 pull-ups are			oort latch va	lues						
bit 6	INTEDG0:	External Inte	errupt 0 Edg	e Select bit								
		ot on rising e	0									
		ot on falling e	•									
bit 5		NTEDG1: External Interrupt 1 Edge Select bit _ = Interrupt on rising edge										
		ot on rising e ot on falling e	•									
bit 4-3		ented: Read	•									
bit 2	-	MR0 Overflo		Priority bit								
	1 = High pi											
	0 = Low pr	•										
bit 1	Unimplem	ented: Read	d as '0'									
bit 0	RBIP: RB	Port Change	Interrupt Pr	iority bit								
	1 = High p	•										
	0 = Low pr	riority										
	Legend:											
	R = Reada	ble bit	W = W	ritable bit	U = Unin	plemented	bit, read as	ʻ0'				
	-n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown				

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows software polling.

SSPSTAT: MSSP STATUS REGISTER (I²C MODE) REGISTER 17-3: R/W-0 R-0 R/W-0 R-0 R-0 R-0 R-0 R-0 SMP CKE D/A Ρ S R/W UA ΒF bit 7 bit 0 bit 7 SMP: Slew Rate Control bit In Master or Slave mode: 1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for High-Speed mode (400 kHz) bit 6 CKE: SMBus Select bit In Master or Slave mode: 1 = Enable SMBus specific inputs 0 = Disable SMBus specific inputs D/A: Data/Address bit bit 5 In Master mode: Reserved. In Slave mode: 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address bit 4 P: Stop bit 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last This bit is cleared on Reset and when SSPEN is cleared. Note: bit 3 S: Start bit 1 = Indicates that a Start bit has been detected last 0 = Start bit was not detected last Note: This bit is cleared on Reset and when SSPEN is cleared. R/W: Read/Write Information bit (I²C mode only) bit 2 In Slave mode: 1 = Read0 = Write Note: This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or not ACK bit. In Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is Note: in Idle mode. bit 1 **UA:** Update Address bit (10-bit Slave mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated bit 0 BF: Buffer Full Status bit In Transmit mode: 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty In Receive mode: 1 = Data transmit in progress (does not include the ACK and Stop bits), SSPBUF is full 0 = Data transmit complete (does not include the ACK and Stop bits), SSPBUF is empty I egend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

17.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition, or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive bit. Serial data is received via SDA while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I²C operation. See **Section 17.4.7 "Baud Rate Generator**" for more details.

A typical transmit sequence would go as follows:

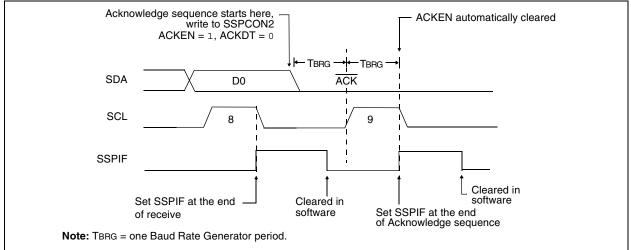
- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPCON2<0>).
- 2. SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- 9. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit PEN (SSPCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

17.4.12 ACKNOWLEDGE SEQUENCE TIMING

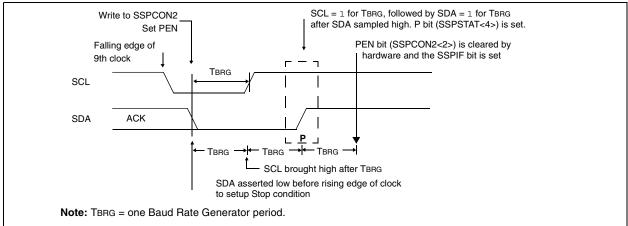
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 17-23).

17.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).


17.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to 0. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 17-24).


17.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

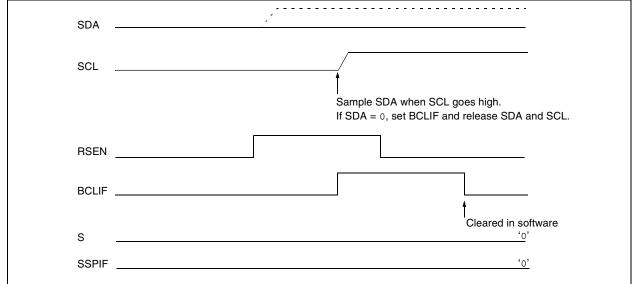
FIGURE 17-23: ACKNOWLEDGE SEQUENCE WAVEFORM

17.4.17.2 Bus Collision During a Repeated Start Condition

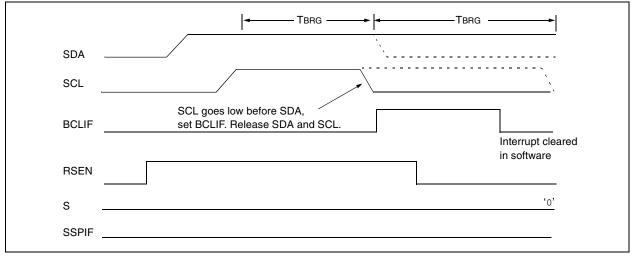
During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.


If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 17-29). If SDA is sampled high, the BRG is reloaded and begins

counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (Figure 17-30).

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 17-30: BUS COLLISION DURING A REPEATED START CONDITION (CASE 2)

TABLE	: 18-3:	BAUL	RATES	FURS	INCHR		NODE					
BAUD RATE	Fosc =	40 MHz	SPBRG value	33	MHz	SPBRG value	25	MHz	SPBRG value	20	MHz	SPBRG value
(Kbps)	KBAUD	% ERROR	(decimal)	KBAUD	% ERROR	(decimal)	KBAUD	% ERROR	(decimal)	KBAUD	% ERROR	(decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	NA	-	-	NA	-	-	NA	-	-
19.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
76.8	76.92	+0.16	129	77.10	+0.39	106	77.16	+0.47	80	76.92	+0.16	64
96	96.15	+0.16	103	95.93	-0.07	85	96.15	+0.16	64	96.15	+0.16	51
300	303.03	+1.01	32	294.64	-1.79	27	297.62	-0.79	20	294.12	-1.96	16
500	500	0	19	485.30	-2.94	16	480.77	-3.85	12	500	0	9
HIGH	10000	-	0	8250	-	0	6250	-	0	5000	-	0
LOW	39.06	-	255	32.23	-	255	24.41	-	255	19.53	-	255
BAUD	Fosc =	16 MHz	SPBRG	10	MHz	SPBRG	7.1590	9 MHz	SPBRG	5.068	8 MHz	SPBRG
RATE		%	value		%	value		%	value		%	value
(Kbps)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	NA	-	-	9.62	+0.23	185	9.60	0	131
19.2	19.23	+0.16	207	19.23	+0.16	129	19.24	+0.23	92	19.20	0	65
76.8	76.92	+0.16	51	75.76	-1.36	32	77.82	+1.32	22	74.54	-2.94	16
96	95.24	-0.79	41	96.15	+0.16	25	94.20	-1.88	18	97.48	+1.54	12
300	307.70	+2.56	12	312.50	+4.17	7	298.35	-0.57	5	316.80	+5.60	3
500	500	0	7	500	0	4	447.44	-10.51	3	422.40	-15.52	2
HIGH	4000	-	0	2500	-	0	1789.80	-	0	1267.20	-	0
LOW	15.63	-	255	9.77	-	255	6.99	-	255	4.95	-	255
BAUD	Fosc =	4 MHz	SPBRG	3.5795	45 MHz	SPBRG	1 M	1Hz	SPBRG	32.76	8 kHz	SPBRG
RATE (Kbps)		% EDDOD	value (decimal)		% 50000	value (decimal)	KRAUD	% 50000	value (decimal)	KRAUD	% EDBOD	value (decimal)
	KBAUD	ERROR		KBAUD	ERROR		KBAUD	ERROR		KBAUD	ERROR	
0.3	NA	-	-	NA	-	-	NA	-	-	0.30	+1.14	26
1.2	NA	-	-	NA	-	-	1.20	+0.16	207	1.17	-2.48	6
2.4	NA	-	-	NA	-	-	2.40	+0.16	103	2.73	+13.78	2
9.6	9.62	+0.16	103	9.62	+0.23	92	9.62	+0.16	25	8.20	-14.67	0
19.2	19.23	+0.16	51	19.04	-0.83	46	19.23	+0.16	12	NA	-	-
76.8	76.92	+0.16	12	74.57	-2.90	11	83.33	+8.51	2	NA	-	-
96	1000	+4.17	9	99.43	+3.57	8	83.33	-13.19	2	NA	-	-
300	333.33	+11.11	2	298.30	-0.57	2	250	-16.67	0	NA	-	-
500	500	0	1	447.44	-10.51	1	NA	-	-	NA	-	-
HIGH	1000	-	0	894.89	-	0	250	-	0	8.20	-	0
LOW	3.91	-	255	3.50	-	255	0.98	-	255	0.03	-	255

TABLE 18-3 BAUD BATES FOR SYNCHRONOUS MODE

IABLE	18-5:	BAUD	RAIES F	OR AS	INCHR	ONOUS	MODE (BRGH	= 1)			
BAUD RATE	Fosc =	40 MHz	SPBRG value	33	MHz	SPBRG value	25	MHz	SPBRG value	20	MHz	SPBRG value
(Kbps)	KBAUD	% ERROR	(decimal)	KBAUD	% ERROR	(decimal)	KBAUD	% ERROR	(decimal)	KBAUD	% ERROR	(decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	NA	-	-	NA	-	-
9.6	NA	-	-	9.60	-0.07	214	9.59	-0.15	162	9.62	+0.16	129
19.2	19.23	+0.16	129	19.28	+0.39	106	19.30	+0.47	80	19.23	+0.16	64
76.8	75.76	-1.36	32	76.39	-0.54	26	78.13	+1.73	19	78.13	+1.73	15
96	96.15	+0.16	25	98.21	+2.31	20	97.66	+1.73	15	96.15	+0.16	12
300	312.50	+4.17	7	294.64	-1.79	6	312.50	+4.17	4	312.50	+4.17	3
500	500	0	4	515.63	+3.13	3	520.83	+4.17	2	416.67	-16.67	2
HIGH	2500	-	0	2062.50	-	0	1562.50	-	0	1250	-	0
LOW	9.77	-	255	8,06	-	255	6.10	-	255	4.88	-	255
BAUD SPBRG		10 1	10 MHz SPBRG			9 MHz	SPBRG	5.068	8 MHz	SPBRG		
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	NA	-	-	NA	-	-
1.2	NA	-	-	NA	-	-	NA	-	-	NA	-	-
2.4	NA	-	-	NA	-	-	2.41	+0.23	185	2.40	0	131
9.6	9.62	+0.16	103	9.62	+0.16	64	9.52	-0.83	46	9.60	0	32
19.2	19.23	+0.16	51	18.94	-1.36	32	19.45	+1.32	22	18.64	-2.94	16
76.8	76.92	+0.16	12	78.13	+1.73	7	74.57	-2.90	5	79.20	+3.13	3
96	100	+4.17	9	89.29	-6.99	6	89.49	-6.78	4	105.60	+10.00	2
300	333.33	+11.11	2	312.50	+4.17	1	447.44	+49.15	0	316.80	+5.60	0
500	500	0	1	625	+25.00	0	447.44	-10.51	0	NA	-	-
HIGH	1000	-	0	625	-	0	447.44	-	0	316.80	-	0
LOW	3.91	-	255	2.44	-	255	1.75	-	255	1.24	-	255
BAUD	Fosc =	4 MHz	SPBRG	3.5795	45 MHz	SPBRG	1 N	1Hz	SPBRG	32.76	8 kHz	SPBRG
RATE (Kbps)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)	KBAUD	% ERROR	value (decimal)
0.3	NA	-	-	NA	-	-	0.30	+0.16	207	0.29	-2.48	6
1.2	1.20	+0.16	207	1.20	+0.23	185	1.20	+0.16	51	1.02	-14.67	1
2.4	2.40	+0.16	103	2.41	+0.23	92	2.40	+0.16	25	2.05	-14.67	0
9.6	9.62	+0.16	25	9.73	+1.32	22	8.93	-6.99	6	NA	-	-
19.2	19.23	+0.16	12	18.64	-2.90	11	20.83	+8.51	2	NA	-	-
76.8	NA	-	-	74.57	-2.90	2	62.50	-18.62	0	NA	-	-

TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

96

300

500

HIGH

LOW

NA

NA

NA

250

0.98

-

-

-

-

-

-

-

-

0

255

111.86

223.72

NA

55.93

0.22

+16.52

-25.43

-

-

-

1

0

-

0

255

NA

NA

NA

62.50

0.24

-

-

-

-

-

-

-

-

0

255

NA

NA

NA

2.05

0.008

-

-

-

-

-

-

-

-

0

255

REGISTER 19-2: CANSTAT: CAN STATUS REGISTER

R-1	R-0	R-0	U-0	R-0	R-0	R-0	U-0
OPMODE2	OPMODE1	OPMODE0		ICODE2	ICODE1	ICODE0	_
bit 7							bit 0

bit 7-5 **OPMODE2:OPMODE0:** Operation Mode Status bits

- 111 = Reserved
- 110 = Reserved
- 101 = Reserved
- 100 = Configuration mode
- 011 = Listen Only mode
- 010 = Loopback mode
- 001 = Disable mode
- 000 = Normal mode

Note: Before the device goes into Sleep mode, select Disable mode.

bit 4 Unimplemented: Read as '0'

bit 3-1 ICODE2:ICODE0: Interrupt Code bits

When an interrupt occurs, a prioritized coded interrupt value will be present in the ICODE2:ICODE0 bits. These codes indicate the source of the interrupt. The ICODE2:ICODE0 bits can be copied to the WIN2:WIN0 bits to select the correct buffer to map into the Access Bank area. See Example 19-1 for code example.

- 111 = Wake-up on interrupt
- 110 = RXB0 interrupt
- 101 = RXB1 interrupt
- 100 = TXB0 interrupt
- 011 = TXB1 interrupt
- 010 = TXB2 interrupt
- 001 = Error interrupt
- 000 = No interrupt
- bit 0

Unimplemented: Read as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared x = Bit is unknown	iown

REGISTER 19-23: RXFnEIDH: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER, HIGH BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

bit 7-0

EID15:EID8: Extended Identifier Filter bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-24: RXFnEIDL: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER, LOW BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 EID7:EID0: Extended Identifier Filter bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-25: RXMnSIDH: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK, HIGH BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 SID10:SID3: Standard Identifier Mask bits or Extended Identifier Mask bits EID28:EID21

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

19.8 Synchronization

To compensate for phase shifts between the oscillator frequencies of each of the nodes on the bus, each CAN controller must be able to synchronize to the relevant signal edge of the incoming signal. When an edge in the transmitted data is detected, the logic will compare the location of the edge to the expected time (Sync_Seg). The circuit will then adjust the values of Phase Segment 1 and Phase Segment 2, as necessary. There are two mechanisms used for synchronization.

19.8.1 HARD SYNCHRONIZATION

Hard synchronization is only done when there is a recessive to dominant edge during a bus Idle condition, indicating the start of a message. After hard synchronization, the bit time counters are restarted with Sync_Seg. Hard synchronization forces the edge which has occurred to lie within the synchronization segment of the restarted bit time. Due to the rules of synchronization, if a hard synchronization occurs, there will not be a resynchronization within that bit time.

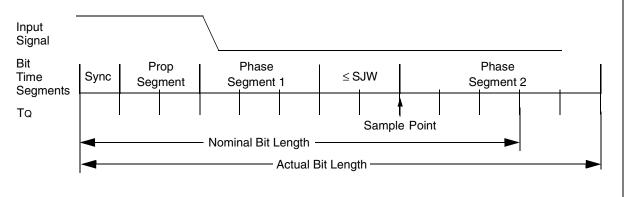
19.8.2 RESYNCHRONIZATION

As a result of resynchronization, Phase Segment 1 may be lengthened or Phase Segment 2 may be shortened. The amount of lengthening or shortening of the phase buffer segments has an upper bound given by the Synchronization Jump Width (SJW). The value of the SJW will be added to Phase Segment 1 (see Figure 19-8) or subtracted from Phase Segment 2 (see Figure 19-9). The SJW is programmable between 1 Tq and 4 Tq.

Clocking information will only be derived from recessive to dominant transitions. The property, that only a fixed maximum number of successive bits have the same value, ensures resynchronization to the bit stream during a frame. The phase error of an edge is given by the position of the edge relative to Sync_Seg, measured in Tq. The phase error is defined in magnitude of Tq as follows:

- e = 0 if the edge lies within Sync_Seg.
- e > 0 if the edge lies before the sample point.
- e < 0 if the edge lies after the sample point of the previous bit.

If the magnitude of the phase error is less than or equal to the programmed value of the synchronization jump width, the effect of a resynchronization is the same as that of a hard synchronization.


If the magnitude of the phase error is larger than the synchronization jump width and if the phase error is positive, then Phase Segment 1 is lengthened by an amount equal to the synchronization jump width.

If the magnitude of the phase error is larger than the resynchronization jump width and if the phase error is negative, then Phase Segment 2 is shortened by an amount equal to the synchronization jump width.

19.8.3 SYNCHRONIZATION RULES

- Only one synchronization within one bit time is allowed.
- An edge will be used for synchronization only if the value detected at the previous sample point (previously read bus value) differs from the bus value immediately after the edge.
- All other recessive to dominant edges, fulfilling rules 1 and 2, will be used for resynchronization with the exception that a node transmitting a dominant bit will not perform a resynchronization as a result of a recessive to dominant edge with a positive phase error.

FIGURE 19-8: LENGTHENING A BIT PERIOD (ADDING SJW TO PHASE SEGMENT 1)

22.0 COMPARATOR VOLTAGE REFERENCE MODULE

Note:	The compa	arator	voltage reference is o				
	available	on	the	PIC18F448	and		
	PIC18F45	8.					

This module is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The CVRCON register controls the operation of the reference, as shown in Register 22-1. The block diagram is shown in Figure 22-1.

The comparator and reference supply voltage can come from either VDD and Vss, or the external VREF+ and VREF-, that are multiplexed with RA3 and RA2. The comparator reference supply voltage is controlled by the CVRSS bit.

22.1 Configuring the Comparator Voltage Reference

The comparator voltage reference can output 16 distinct voltage levels for each range. The equations used to calculate the output of the comparator voltage reference are as follows.

EQUATION 22-1:

If CVRR = 1: $CVREF = (CVR < 3:0 > /24) \times CVRSRC$ where: CVRSS = 1, CVRSRC = (VREF+) - (VREF-)CVRSS = 0, CVRSRC = AVDD - AVSS

EQUATION 22-2:

If CVRR = 0: CVREF = (CVRSRC x 1/4) + (CVR<3:0>/32) x CVRSRC where: CVRSS = 1, CVRSRC = (VREF+) - (VREF-) CVRSS = 0, CVRSRC = AVDD - AVSS

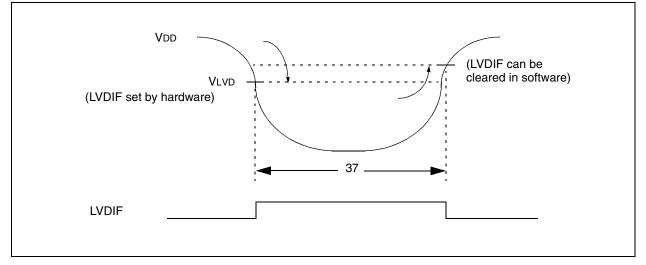
The settling time of the Comparator Voltage Reference must be considered when changing the RA0/AN0/ CVREF output (see Table 27-4 in **Section 27.2** "**DC Characteristics**").

REGISTER 22-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

	011100111				Enerioe	0011110		
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0
	bit 7							bit 0
bit 7	CVREN: C	omparator V	oltage Refe	rence Enab	le bit			
		circuit power						
		circuit power						
bit 6		omparator V	•					
		voltage level voltage is dis						
bit 5		mparator VRE						
0.110		VRSRC to 0.6	•		c/24 step si	78		
		VRSRC to 0.7						
bit 4	CVRSS: C	omparator Vi	REF Source	Selection b	it			
		rator referen	,	· ·	, (REF-)		
		rator referen	,					
bit 3-0		: Comparato	r VREF Valu	e Selection	$0 \le CVR3:C$	VR0 ≤ 15 b	its	
	When CVF			220)				
		CVR3:CVR0/	24) ● (CVR:	SRC)				
	When CVF	<u>1H = 0:</u> /4 ● (CVRSRC	+ (CVB3)	CVB0/32) •	(CVBSBC)			
			, (00110.	0 1110/02)				
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as '	0'
	-n = Value	at POR	'1' = Bi	t is set	'0' = Bit is	cleared	x = Bit is u	nknown

GENERAL FORMAT FOR INSTRUCTIONS FIGURE 25-1: Byte-oriented file register operations **Example Instruction** 10 9 8 7 15 0 OPCODE f (FILE #) ADDWF MYREG, W, B d а d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address Byte to Byte move operations (2-word) 15 12 11 0 OPCODE f (Source FILE #) MOVFF MYREG1, MYREG2 15 12 11 0 f (Destination FILE #) 1111 f = 12-bit file register address Bit-oriented file register operations 15 12 11 987 0 OPCODE b (BIT #) f (FILE #) а BSF MYREG, bit, B b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address Literal operations 15 8 7 0 OPCODE k (literal) MOVLW 0x7F k = 8-bit immediate value **Control** operations CALL, GOTO and Branch operations 15 8 7 0 OPCODE n<7:0> (literal) GOTO Label 15 12 11 0 1111 n<19:8> (literal) n = 20-bit immediate value 15 8 7 0 CALL MYFUNC OPCODE S n<7:0> (literal) 15 12 11 0 n<19:8> (literal) S = Fast bit 15 11 10 0 OPCODE BRA MYFUNC n<10:0> (literal) 15 8 7 0 OPCODE n<7:0> (literal) BC MYFUNC

MULLW	Multiply Literal with	w	MULWF	Multiply W with f			
Syntax:	[label] MULLW		Syntax:	[label] M	ULWF f[,a]		
Operands:	$0 \le k \le 255$		Operands:	$0 \leq f \leq 255$			
Operation:	(W) x k \rightarrow PRODH:PF	RODL		a ∈ [0,1]			
Status Affected:	None		Operation:	(W) x (f) \rightarrow I	PRODH:PRO	DL	
Encoding:	0000 1101	kkkk kkkk	Status Affected:	None			
Description:	An unsigned multiplica	tion is carried out	Encoding:	0000	001a fff	f ffff	
		Description:	Description: An unsigned multiplication is carrie between the contents of W and th register file location 'f'. The 16-bit is stored in the PRODH:PRODL register pair. PRODH contains the byte. Both W and 'f' are unchanged. None of the status flags are affect Note that neither Overflow nor Ca				
Words:	1			•	•	A Zero result	
Cycles:	1			•	out not detect Bank will be s	ed. If 'a' is '0',	
Q Cycle Activity:						If 'a' = 1, then	
Q1	Q2 Q3	Q4		the bank will be selected as per the BSR value (default).			
Decode	Read Process		Words:	1	uerauit).		
	literal 'k' Data	registers PRODH:					
		PRODL	Cycles:	1			
			Q Cycle Activity: Q1	Q2	Q3	Q4	
Example:	MULLW 0xC4		Decode	Read	Process	Write	
Before Instru W PRODH PRODL	= 0xE2 = ? = ?			register 'f'	Data	registers PRODH: PRODL	
After Instructi W PRODH PRODL	= 0xE2		Example: Before Instruc W REG PRODH PRODL	ction = 0x0 = 0xE = ?			


After Instruction

W REG PRODH PRODL 0xC4 0xB5 0x8A 0x94

= = =

XORWF	Exclusive	Exclusive OR W with f					
Syntax:	[label]	XORWF	f [,d	[,a]]			
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	d ∈ [0,1]					
Operation:	(W) .XOR.	(f) \rightarrow des	st				
Status Affected:	N, Z						
Encoding:	0001	10da	fff	f	ffff		
Description:	Exclusive C register 'f'. in W. If 'd' is in register ' Access Bal overriding t then the ba the BSR va	If 'd' is 'o' s '1', the r if' (defaul nk will be the BSR v ank will be	, the result t). If 'a selec value. e selec	esult is sto i' is ' ted, If 'a'	is stored bred back 0', the ' is '1',		
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	6		Q4		
Decode	Read register 'f'	Proce Data			/rite to stination		
Example:	XORWF	REG					
Before Instruct REG W After Instructio REG W	= 0xAF = 0xB5						
vv	- 0,05						

Low-Vol	tage Dete	ct Characteristics	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq Ta \leq +85^\circ C \mbox{ for industrial} \\ & -40^\circ C \leq Ta \leq +125^\circ C \mbox{ for extended} \end{array}$						
Param No.	Symbol	Characteristi	c	Min	Тур	Max	Units	Conditions	
D420	Vlvd	LVD Voltage	LVV = 0001	1.96	2.06	2.16	V	$T \ge 25^{\circ}C$	
			LVV = 0010	2.16	2.27	2.38	V	T ≥ 25°C	
			LVV = 0011	2.35	2.47	2.59	V	$T \ge 25^{\circ}C$	
			LVV = 0100	2.43	2.58	2.69	V		
			LVV = 0101	2.64	2.78	2.92	V		
			LVV = 0110	2.75	2.89	3.03	V		
			LVV = 0111	2.95	3.1	3.26	V		
			LVV = 1000	3.24	3.41	3.58	V		
			LVV = 1001	3.43	3.61	3.79	V		
			LVV = 1010	3.53	3.72	3.91	V		
			LVV = 1011	3.72	3.92	4.12	V		
			LVV = 1100	3.92	4.13	4.34	V		
			LVV = 1101	4.07	4.33	4.59	V		
			LVV = 1110	4.36	4.64	4.92	V		

TABLE 27-1: LOW-VOLTAGE DETECT CHARACTERISTICS

Param No.	Symbol	Characte	eristic	Min	Тур	Max	Units	Conditions
A01	NR	Resolution		_	_	10	bit	$VREF = VDD \ge 3.0V$
A03	EIL	Integral Linearity	Error	_	_	<±1	LSb	$VREF=VDD \geq 3.0V$
A04	Edl	Differential Linea	rity Error	_	_	<±1	LSb	$VREF = VDD \ge 3.0V$
A05	Efs	Full Scale Error		_	_	<±1	LSb	$VREF = VDD \ge 3.0V$
A06	EOFF	Offset Error		_	_	<±1.5	LSb	$VREF = VDD \ge 3.0V$
A10	_	Monotonicity ⁽³⁾		ç	juarante	ed	—	$VSS \le VAIN \le VREF$
A20	VREF	Reference Voltag	je	0V		_	V	
A20A	(VREFH – VREFL)			3V	_	_	V	For 10-bit resolution
A21	VREFH	Reference Voltage High		Vss		VDD + 0.3V	V	
A22	VREFL	Reference Voltag	je Low	Vss - 0.3V	_	Vdd	V	
A25	VAIN	Analog Input Vol	age	Vss - 0.3V	_	VREF + 0.3V	V	
A30	ZAIN	Recommended I Analog Voltage S		—	_	10.0	kΩ	
A40	IAD	A/D Conversion	PIC18FXX8	_	180	—	μA	Average current
		Current (VDD)	PIC18 LF XX8	—	90	—	μA	consumption when A/D is on (Note 1)
A50	IREF	VREF Input Curre	nt (Note 2)	0	_	5	μΑ μΑ	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD. During A/D conversion cycle.

TABLE 27-23: A/D CONVERTER CHARACTERISTICS: PIC18FXX8 (INDUSTRIAL, EXTENDED) PIC18LFXX8 (INDUSTRIAL)

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current specification includes any such leakage from the A/D module. VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or VDD and VSS pins, whichever is selected as reference input.

2: VSS \leq VAIN \leq VREF

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

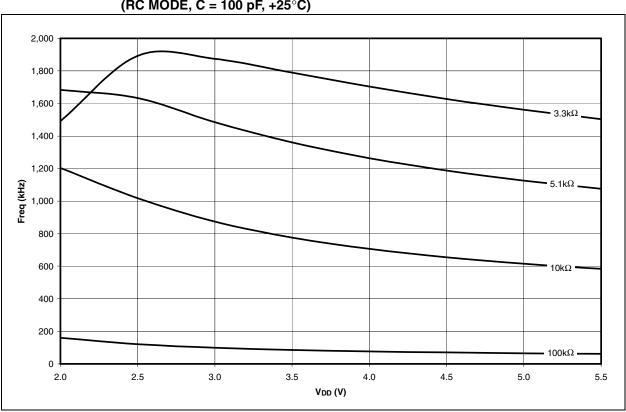
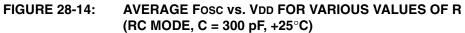
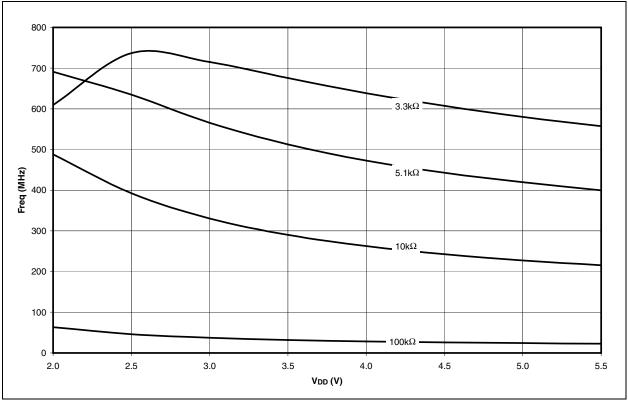




FIGURE 28-13: AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 100 pF, $+25^{\circ}$ C)

Code Examples
16 x 16 Signed Multiply Routine76
16 x 16 Unsigned Multiply Routine76
8 x 8 Signed Multiply Routine
8 x 8 Unsigned Multiply Routine
Changing Between Capture Prescalers
Data EEPROM Refresh Routine
Data EEPROM Write
Erasing a Flash Program Memory Row
Fast Register Stack
How to Clear RAM (Bank 1) Using
Indirect Addressing55
Initializing PORTA
Initializing PORTB
Initializing PORTC
Initializing PORTD102 Initializing PORTE104
Loading the SSPBUF Register
Reading a Flash Program
Memory Word
Saving Status, WREG and BSR
Registers in RAM92
WIN and ICODE Bits Usage in
Interrupt Service Routine to
Access TX/RX Buffers
Code Protection
COMF
Comparator Module
Analog Input Connection Considerations
Associated Registers
Configuration250
Effects of a Reset253
External Reference Signal
Internal Reference Signal
Interrupts
Operation During Sleep
Outputs
Reference
Response Time 251
Comparator Specifications
Comparator Voltage Reference Module
Accuracy/Error
Associated Registers
Configuring
Effects of a Reset
Operation During Sleep
Compare (CCP Module)
CCP1 Pin Configuration126
CCPR1 and ECCPR1 Registers 126
Registers Associated with Capture,
Compare, Timer1 and Timer3127
Software Interrupt
Special Event Trigger 115, 121, 126, 248 Timer1/Timer3 Mode Selection 126
Compare (ECCP Module)
Registers Associated with Enhanced
Capture, Compare, Timer1 and Timer3
Special Event Trigger
Compatible 10-Bit Analog-to-Digital
Converter (A/D) Module. See A/D.
Configuration Mode (CAN Module)
CPFSEQ

CPFSGT
Crystal Oscillator
Capacitor Selection 18
D
Data EEPROM Memory
Associated Registers 63
EEADR Register
EECON1 Register
EECON2 Register
Operation During Code-Protect
Protection Against Spurious Writes
Reading
Usage
Write Verify
Writing to
Data Memory
General Purpose Registers
Special Function Registers
Data Memory Map PIC18F248/448
PIC18F258/458
DAW
DC and AC Characteristics
Graphs and Tables
DC Characteristics
EEPROM and Enhanced Flash
PIC18FXX8 (Ind., Ext.) and
PIC18LFXX8 (Ind.) 336
DCFSNZ
DECF
DECFSZ 301
Demonstration Boards
PICDEM 1 326
PICDEM 17 327
PICDEM 18R 327
PICDEM 2 Plus 326
PICDEM 3 326
PICDEM 4 326
PICDEM LIN
PICDEM USB 327
PICDEM.net Internet/Ethernet
Development Support
Device Differences
Device Migrations
Device Overview
Features
Direct Addressing
Disable Mode (CAN Module)
E

Electrical Characteristics	. 329
Enhanced Capture/Compare/PWM (ECCP)	. 131
Auto-Shutdown	. 142
Capture Mode. See Capture	
(ECCP Module).	
Compare Mode. See Compare	
(ECCP Module).	
ECCPR1H Register	. 132
ECCPR1L Register	. 132
Interaction of CCP1 and	
ECCP1 Modules	. 132
Pin Assignments for Various Modes	. 132
PWM Mode. See PWM (ECCP Module).	
Timer Resources	. 132