

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K × 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf448t-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

28/40-Pin High-Performance, Enhanced Flash Microcontrollers with CAN

High-Performance RISC CPU:

- Linear program memory addressing up to 2 Mbytes
- · Linear data memory addressing to 4 Kbytes
- Up to 10 MIPS operation
- DC 40 MHz clock input
- 4 MHz-10 MHz oscillator/clock input with PLL active
- 16-bit wide instructions, 8-bit wide data path
- · Priority levels for interrupts
- 8 x 8 Single-Cycle Hardware Multiplier

Peripheral Features:

- High current sink/source 25 mA/25 mA
- Three external interrupt pins
- Timer0 module: 8-bit/16-bit timer/counter with 8-bit programmable prescaler
- Timer1 module: 16-bit timer/counter
- Timer2 module: 8-bit timer/counter with 8-bit period register (time base for PWM)
- Timer3 module: 16-bit timer/counter
- Secondary oscillator clock option Timer1/Timer3
- Capture/Compare/PWM (CCP) modules; CCP pins can be configured as:
 - Capture input: 16-bit, max resolution 6.25 ns
 - Compare: 16-bit, max resolution 100 ns (TCY)
 - PWM output: PWM resolution is 1 to 10-bit Max. PWM freq. @:8-bit resolution = 156 kHz 10-bit resolution = 39 kHz
- Enhanced CCP module which has all the features of the standard CCP module, but also has the following features for advanced motor control:
 - 1, 2 or 4 PWM outputs
 - Selectable PWM polarity
 - Programmable PWM dead time
- Master Synchronous Serial Port (MSSP) with two modes of operation:
 - 3-wire SPI™ (Supports all 4 SPI modes)
 - I²C[™] Master and Slave mode
- Addressable USART module:
 - Supports interrupt-on-address bit

Advanced Analog Features:

- 10-bit, up to 8-channel Analog-to-Digital Converter module (A/D) with:
 - Conversion available during Sleep
 - Up to 8 channels available
- Analog Comparator module:
 - Programmable input and output multiplexing
- Comparator Voltage Reference module
- Programmable Low-Voltage Detection (LVD) module:
 Supports interrupt-on-Low-Voltage Detection
- Programmable Brown-out Reset (BOR)

CAN bus Module Features:

- · Complies with ISO CAN Conformance Test
- · Message bit rates up to 1 Mbps
- Conforms to CAN 2.0B Active Spec with:
 - 29-bit Identifier Fields
 - 8-byte message length
 - 3 Transmit Message Buffers with prioritization
 - 2 Receive Message Buffers
 - 6 full, 29-bit Acceptance Filters
 - Prioritization of Acceptance Filters
 - Multiple Receive Buffers for High Priority Messages to prevent loss due to overflow
 - Advanced Error Management Features

Special Microcontroller Features:

- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator
- Programmable code protection
- Power-saving Sleep mode
- Selectable oscillator options, including:
 - 4x Phase Lock Loop (PLL) of primary oscillator
 Secondary Oscillator (32 kHz) clock input
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins

Flash Technology:

- · Low-power, high-speed Enhanced Flash technology
- · Fully static design
- Wide operating voltage range (2.0V to 5.5V)
- Industrial and Extended temperature ranges

FIGURE 3-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 3-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

4.2.3 PUSH AND POP INSTRUCTIONS

Since the Top-of-Stack (TOS) is readable and writable, the ability to push values onto the stack and pull values off the stack, without disturbing normal program execution, is a desirable option. To push the current PC value onto the stack, a PUSH instruction can be executed. This will increment the Stack Pointer and load the current PC value onto the stack. TOSU, TOSH and TOSL can then be modified to place a return address on the stack.

The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

4.2.4 STACK FULL/UNDERFLOW RESETS

These Resets are enabled by programming the STVREN configuration bit. When the STVREN bit is disabled, a full or underflow condition will set the appropriate STKFUL or STKUNF bit, but not cause a device Reset. When the STVREN bit is enabled, a full or underflow condition will set the appropriate STKFUL or STKUNF bit and then cause a device Reset. The STKFUL or STKUNF bits are only cleared by the user software or a POR.

4.3 Fast Register Stack

A "fast return" option is available for interrupts and calls. A fast register stack is provided for the Status, WREG and BSR registers and is only one layer in depth. The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the fast register stack are then loaded back into the working registers if the FAST RETURN instruction is used to return from the interrupt.

A low or high priority interrupt source will push values into the stack registers. If both low and high priority interrupts are enabled, the stack registers cannot be used reliably for low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten.

If high priority interrupts are not disabled during low priority interrupts, users must save the key registers in software during a low priority interrupt.

If no interrupts are used, the fast register stack can be used to restore the Status, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a FAST CALL instruction must be executed.

Example 4-1 shows a source code example that uses the fast register stack.

EXAMPLE 4-1: FAST REGISTER STACK CODE EXAMPLE CALL SUB1, FAST ; STATUS, WREG, BSR ; SAVED IN FAST REGISTER ; STACK • • •

RETURN FAST ;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

4.4 PCL, PCLATH and PCLATU

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<15:8> bits and is not directly readable or writable. Updates to the PCH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable or writable or writable. Updates to the PCH register the PC<20:16> bits and is not directly readable or writable. Updates to the PCU register may be performed through the PCLATH register through the PCLATU register.

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the LSb of PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

The contents of PCLATH and PCLATU will be transferred to the program counter by an operation that writes PCL. Similarly, the upper two bytes of the program counter will be transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see **Section 4.8.1** "**Computed GOTO**").

TABLE 4-2: REGISTER FILE SUMMARY (CONTINUED)										
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on Page:
CANSTATRO4	OPMODE2	OPMODE1	OPMODE0	_	ICODE2	ICODE1	ICODE0	_	xxx- xxx-	33, 202
TXB2D7	TXB2D77	TXB2D76	TXB2D75	TXB2D74	TXB2D73	TXB2D72	TXB2D71	TXB2D70	xxxx xxxx	35, 208
TXB2D6	TXB2D67	TXB2D66	TXB2D65	TXB2D64	TXB2D63	TXB2D62	TXB2D61	TXB2D60	xxxx xxxx	35, 208
TXB2D5	TXB2D57	TXB2D56	TXB2D55	TXB2D54	TXB2D53	TXB2D52	TXB2D51	TXB2D50	xxxx xxxx	35, 208
TXB2D4	TXB2D47	TXB2D46	TXB2D45	TXB2D44	TXB2D43	TXB2D42	TXB2D41	TXB2D40	xxxx xxxx	35, 208
TXB2D3	TXB2D37	TXB2D36	TXB2D35	TXB2D34	TXB2D33	TXB2D32	TXB2D31	TXB2D30	xxxx xxxx	35, 208
TXB2D2	TXB2D27	TXB2D26	TXB2D25	TXB2D24	TXB2D23	TXB2D22	TXB2D21	TXB2D20	xxxx xxxx	35, 208
TXB2D1	TXB2D17	TXB2D16	TXB2D15	TXB2D14	TXB2D13	TXB2D12	TXB2D11	TXB2D10	xxxx xxxx	35, 208
TXB2D0	TXB2D07	TXB2D06	TXB2D05	TXB2D04	TXB2D03	TXB2D02	TXB2D01	TXB2D00	xxxx xxxx	35, 208
TXB2DLC	—	TXRTR	—	-	DLC3	DLC2	DLC1	DLC0	-x xxxx	35, 209
TXB2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	35, 208
TXB2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	35, 207
TXB2SIDL	SID2	SID1	SID0	_	EXIDE	_	EID17	EID16	xxx- x-xx	35, 207
TXB2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	35, 207
TXB2CON	_	TXABT	TXLARB	TXERR	TXREQ	_	TXPRI1	TXPRI0	-000 0-00	35, 206
RXM1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	35, 217
RXM1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	35, 217
RXM1SIDL	SID2	SID1	SID0	_	_	_	EID17	EID16	xxxxx	36, 217
RXM1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	36, 216
RXM0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	36, 217
RXM0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	36, 217
RXM0SIDL	SID2	SID1	SID0	_	_	_	EID17	EID16	xxxxx	36, 217
RXM0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	36, 216
RXF5EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	36, 216
RXF5EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	36, 216
RXF5SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	36, 215
RXF5SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	36, 215
RXF4EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	36, 216
RXF4EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	36, 216
RXF4SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	36, 215
RXF4SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	36, 215
RXF3EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	36, 216
RXF3EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	36, 216
RXF3SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	36, 215
RXF3SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	36, 215
RXF2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	36, 216
RXF2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	36, 216
RXF2SIDL	SID2	SID1	SID0	_	EXIDEN	_	EID17	EID16	xxx- x-xx	36, 215
RXF2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	36.215
RXF1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	36, 216
RXF1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	36, 216
RXF1SIDL	SID2	SID1	SID0		EXIDEN		EID17	EID16	xxx- x-xx	36, 215
RXF1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	36, 215
RXF0EIDI	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	36, 216
RXF0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	36, 216
BXF0SIDI	SID2	SID1	SIDO				EID17	EID16	xxx- x-xy	36, 215
RXF0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	xxxx xxxx	36, 215

.....

Legend: \mathbf{x} = unknown, \mathbf{u} = unchanged, - = unimplemented, \mathbf{q} = value depends on condition Note

1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's.

2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read '0' in all other oscillator modes. 3:

6.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW MOVWF MOVWF MOVLW MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL	;;	Load TBLPTR with the base address of the word
READ_WORD				
	TBLRD*+	-	;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_LSB		
	TBLRD*+	-	;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_MSB		

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP	TXB0IP	RXB1IP	RXB0IP					
	bit 7							bit 0					
bit 7	IRXIP: Inv	alid Messag	e Received	Interrupt Prie	ority bit								
	1 = High p 0 = Low pr	riority riority											
bit 6	WAKIP: Bus Activity Wake-up Interrupt Priority bit												
	1 = High pr 0 = Low pr	riority riority											
bit 5	ERRIP: C/	ERRIP: CAN bus Error Interrupt Priority bit											
	1 = High pr 0 = Low pr	riority riority											
bit 4	TXB2IP: Transmit Buffer 2 Interrupt Priority bit												
	1 = High priority												
	0 = Low pr	iority											
bit 3	TXB1IP: ⊤	ransmit Buff	er 1 Interrup	ot Priority bit									
	 1 = High priority 0 = Low priority 												
bit 2	TXB0IP: ⊤	ransmit Buff	er 0 Interrup	ot Priority bit									
	1 = High pr 0 = Low pr	riority riority											
bit 1	RXB1IP: F	Receive Buff	er 1 Interrup	ot Priority bit									
	1 = High pr 0 = Low pr	riority riority											
bit 0	RXB0IP: F	Receive Buff	er 0 Interrup	ot Priority bit									
	1 = High p	riority											
	0 = Low pr	riority											
	Legend:												
	R = Reada	able bit	W = W	√ritable bit	U = Unin	nplemented	bit, read as	'0'					

REGISTER 8-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 9-3: OSC2/CLKO/RA6 PIN BLOCK DIAGRAM

9.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATC register, read and write the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions (Table 9-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register, without concern due to peripheral overrides.

EXAMP	PLE 9-3:	INITIALIZING PORTC					
CLRF	PORTC	; Initialize PORTC by					
		; clearing output					
		; data latches					
CLRF	LATC	; Alternate method					
		; to clear output					
		; data latches					
MOVLW	0CFh	; Value used to					
		; initialize data					
		; direction					
MOVWF	TRISC	; Set RC3:RC0 as inputs					
		; RC5:RC4 as outputs					
		; RC7:RC6 as inputs					

FIGURE 9-8: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

14.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers: TMR3H and TMR3L)
- Readable and writable (both registers)
- · Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- Reset from CCP1/ECCP1 module trigger

Figure 14-1 is a simplified block diagram of the Timer3 module.

Register 14-1 shows the Timer3 Control register. This register controls the operating mode of the Timer3 module and sets the CCP1 and ECCP1 clock source.

Register 12-1 shows the Timer1 Control register. This register controls the operating mode of the Timer1 module, as well as contains the Timer1 Oscillator Enable bit (T1OSCEN) which can be a clock source for Timer3.

Timer3 is disabled on POR. Note:

REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3ECCP1	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

bit 7	RD16: 16-bit Read/Write 1 = Enables register read 0 = Enables register read	Mode Enable bit I/write of Timer3 in or I/write of Timer3 in tw	ne 16-bit operation vo 8-bit operations	
bit 6,3	T3ECCP1:T3CCP1: Time 1x = Timer3 is the clock = 01 = Timer3 is the clock = Timer1 is the clock = 00 = Timer1 is the clock =	er3 and Timer1 to CC source for compare/c source for compare/c source for compare/c source for compare/c	P1/ECCP1 Enable bits apture CCP1 and ECCF apture of ECCP1, apture of CCP1 apture CCP1 and ECCF	P1 modules
bit 5-4	T3CKPS1:T3CKPS0 : Tir 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value	ner3 Input Clock Pres	scale Select bits	
bit 2	T3SYNC: Timer3 Externa(Not usable if the systemWhen TMR3CS = 1:1 = Do not synchronize e0 = Synchronize externalWhen TMR3CS = 0:This bit is ignored. Timera	al Clock Input Synchr clock comes from Til xternal clock input clock input 3 uses the internal clo	onization Control bit mer1/Timer3.) ock when TMR3CS = 0.	
bit 1	TMR3CS: Timer3 Clock 3 1 = External clock input fro 0 = Internal clock (Fosc/-	Source Select bit m Timer1 oscillator or 4)	T1CKI (on the rising edge	after the first falling edge)
bit 0	TMR3ON: Timer3 On bit 1 = Enables Timer3 0 = Stops Timer3			
	Legend:			
	R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

IADEE												
BAUD	Fosc =	40 MHz	SPBRG	33	MHz	SPBRG	25	MHz	SPBRG	20	ИНz	SPBRG
(Kbps)	KBAUD	% ERROR	value (decimal)									
0.3	NA	-	-									
1.2	NA	-	-									
2.4	NA	-	-	2.40	-0.07	214	2.40	-0.15	162	2.40	+0.16	129
9.6	9.62	+0.16	64	9.55	-0.54	53	9.53	-0.76	40	9.47	-1.36	32
19.2	18.94	-1.36	32	19.10	-0.54	26	19.53	+1.73	19	19.53	+1.73	15
76.8	78.13	+1.73	7	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3
96	89.29	-6.99	6	103.13	+7.42	4	97.66	+1.73	3	104.17	+8.51	2
300	312.50	+4.17	1	257.81	-14.06	1	NA	-	-	312.50	+4.17	0
500	625	+25.00	0	NA	-	-	NA	-	-	NA	-	-
HIGH	625	-	0	515.63	-	0	390.63	-	0	312.50	-	0
LOW	2.44	-	255	2.01	-	255	1.53	-	255	1.22	-	255
BAUD	Fosc =	16 MHz	SPBRG	10	MHz	SPBRG	7.1590	09 MHz	SPBRG	5.068	SPBRG	
RATE		%	value									
(Kbps)	KBAUD	ERROR	(decimal)									
0.3	NA	-	-									
1.2	1.20	+0.16	207	1.20	+0.16	129	1.20	+0.23	92	1.20	0	65
2.4	2.40	+0.16	103	2.40	+0.16	64	2.38	-0.83	46	2.40	0	32
9.6	9.62	+0.16	25	9.77	+1.73	15	9.32	-2.90	11	9.90	+3.13	7
19.2	19.23	+0.16	12	19.53	+1.73	7	18.64	-2.90	5	19.80	+3.13	3
76.8	83.33	+8.51	2	78.13	+1.73	1	111.86	+45.65	0	79.20	+3.13	0
96	83.33	-13.19	2	78.13	-18.62	1	NA	-	-	NA	-	-
300	250	-16.67	0	156.25	-47.92	0	NA	-	-	NA	-	-
500	NA	-	-									
HIGH	250	-	0	156.25	-	0	111.86	-	0	79.20	-	0
LOW	0.98	-	255	0.61	-	255	0.44	-	255	0.31	-	255
BAUD	Fosc	= 4 MHz	CDBDC	3.5795	545 MHz	CDBDC	1	MHz	CDDDC	32.76	8 kHz	CDDDC
RATE		0/	value									
(Kbps)	KBAUD	ERROR	(decimal)									
0.3	0.30	-0.16	207	0.30	+0.23	185	0.30	+0.16	51	0.26	-14.67	1
1.2	1.20	+1.67	51	1.19	-0.83	46	1.20	+0.16	12	NA	-	-
2.4	2.40	+1.67	25	2.43	+1.32	22	2.23	-6.99	6	NA	-	-
9.6	8.93	-6.99	6	9.32	-2.90	5	7.81	-18.62	1	NA	-	-
19.2	20.83	+8.51	2	18.64	-2.90	2	15.63	-18.62	0	NA	-	-
76.8	62.50	-18.62	0	55.93	-27.17	0	NA	-	-	NA	-	-
96	NA	-	-									
300	NA	-	-									
500	NA	-	-									

0

255

15.63

0.06

-

-

-

-

0

255

0.51

0.002

BAUD BATES FOR ASYNCHRONOUS MODE (BRGH = 0) TABLE 18-4:

0

255

55.93

0.22

-

-

HIGH

LOW

62.50

0.24

0

255

_

FIGURE 18-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 18-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value o POR, B	on OR	Value all o Res	e on ther ets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 0	00x	0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0	000	0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0	000	0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1	111	1111	1111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0	00x	0000	000u
TXREG	USART Tra	ansmit Regis	ter						0000 0	000	0000	0000
TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -	010	0000	-010
SPBRG	G Baud Rate Generator Register										0000	0000

Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's.

REGISTER 19-23: RXFnEIDH: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER, HIGH BYTE REGISTERS

	R/W-x							
	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bi	t 7							bit 0

bit 7-0

EID15:EID8: Extended Identifier Filter bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-24: RXFnEIDL: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER, LOW BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 EID7:EID0: Extended Identifier Filter bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-25: RXMnSIDH: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK, HIGH BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 SID10:SID3: Standard Identifier Mask bits or Extended Identifier Mask bits EID28:EID21

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Address	Name	Address	Name	Address	Name	Address	Name
F7Fh	_	F5Fh	—	F3Fh	—	F1Fh	RXM1EIDL
F7Eh	_	F5Eh	CANSTATRO1 ⁽²⁾	F3Eh	CANSTATRO3(2)	F1Eh	RXM1EIDH
F7Dh	_	F5Dh	RXB1D7	F3Dh	TXB1D7	F1Dh	RXM1SIDL
F7Ch	_	F5Ch	RXB1D6	F3Ch	TXB1D6	F1Ch	RXM1SIDH
F7Bh	_	F5Bh	RXB1D5	F3Bh	TXB1D5	F1Bh	RXM0EIDL
F7Ah	—	F5Ah	RXB1D4	F3Ah	TXB1D4	F1Ah	RXM0EIDH
F79h	_	F59h	RXB1D3	F39h	TXB1D3	F19h	RXM0SIDL
F78h		F58h	RXB1D2	F38h	TXB1D2	F18h	RXM0SIDH
F77h	_	F57h	RXB1D1	F37h	TXB1D1	F17h	RXF5EIDL
F76h	TXERRCNT	F56h	RXB1D0	F36h	TXB1D0	F16h	RXF5EIDH
F75h	RXERRCNT	F55h	RXB1DLC	F35h	TXB1DLC	F15h	RXF5SIDL
F74h	COMSTAT	F54h	RXB1EIDL	F34h	TXB1EIDL	F14h	RXF5SIDH
F73h	CIOCON	F53h	RXB1EIDH	F33h	TXB1EIDH	F13h	RXF4EIDL
F72h	BRGCON3	F52h	RXB1SIDL	F32h	TXB1SIDL	F12h	RXF4EIDH
F71h	BRGCON2	F51h	RXB1SIDH	F31h	TXB1SIDH	F11h	RXF4SIDL
F70h	BRGCON1	F50h	RXB1CON	F30h	TXB1CON	F10h	RXF4SIDH
F6Fh	CANCON	F4Fh	—	F2Fh	—	F0Fh	RXF3EIDL
F6Eh	CANSTAT	F4Eh	CANSTATRO2 ⁽²⁾	F2Eh	CANSTATRO4 ⁽²⁾	F0Eh	RXF3EIDH
F6Dh	RXB0D7	F4Dh	TXB0D7	F2Dh	TXB2D7	F0Dh	RXF3SIDL
F6Ch	RXB0D6	F4Ch	TXB0D6	F2Ch	TXB2D6	F0Ch	RXF3SIDH
F6Bh	RXB0D5	F4Bh	TXB0D5	F2Bh	TXB2D5	F0Bh	RXF2EIDL
F6Ah	RXB0D4	F4Ah	TXB0D4	F2Ah	TXB2D4	F0Ah	RXF2EIDH
F69h	RXB0D3	F49h	TXB0D3	F29h	TXB2D3	F09h	RXF2SIDL
F68h	RXB0D2	F48h	TXB0D2	F28h	TXB2D2	F08h	RXF2SIDH
F67h	RXB0D1	F47h	TXB0D1	F27h	TXB2D1	F07h	RXF1EIDL
F66h	RXB0D0	F46h	TXB0D0	F26h	TXB2D0	F06h	RXF1EIDH
F65h	RXB0DLC	F45h	TXB0DLC	F25h	TXB2DLC	F05h	RXF1SIDL
F64h	RXB0EIDL	F44h	TXB0EIDL	F24h	TXB2EIDL	F04h	RXF1SIDH
F63h	RXB0EIDH	F43h	TXB0EIDH	F23h	TXB2EIDH	F03h	RXF0EIDL
F62h	RXB0SIDL	F42h	TXB0SIDL	F22h	TXB2SIDL	F02h	RXF0EIDH
F61h	RXB0SIDH	F41h	TXB0SIDH	F21h	TXB2SIDH	F01h	RXF0SIDL
F60h	RXB0CON	F40h	TXB0CON	F20h	TXB2CON	F00h	RXF0SIDH

TABLE 19-1: CAN CONTROLLER REGISTER MAI

Note 1: Shaded registers are available in Access Bank low area while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the CANSTAT register due to the Microchip Header file requirement.

23.2 Operation

Depending on the power source for the device voltage, the voltage normally decreases relatively slowly. This means that the LVD module does not need to be constantly operating. To decrease the current requirements, the LVD circuitry only needs to be enabled for short periods where the voltage is checked. After doing the check, the LVD module may be disabled.

Each time that the LVD module is enabled, the circuitry requires some time to stabilize. After the circuitry has stabilized, all status flags may be cleared. The module will then indicate the proper state of the system.

The following steps are needed to set up the LVD module:

- Write the value to the LVDL3:LVDL0 bits (LVDCON register) which selects the desired LVD trip point.
- 2. Ensure that LVD interrupts are disabled (the LVDIE bit is cleared or the GIE bit is cleared).
- 3. Enable the LVD module (set the LVDEN bit in the LVDCON register).
- 4. Wait for the LVD module to stabilize (the IRVST bit to become set).
- 5. Clear the LVD interrupt flag, which may have falsely become set, until the LVD module has stabilized (clear the LVDIF bit).
- 6. Enable the LVD interrupt (set the LVDIE and the GIE bits).

Figure 23-4 shows typical waveforms that the LVD module may be used to detect.

FIGURE 23-4: LOW-VOLTAGE DETECT WAVEFORMS

					•			,	
	U-0	U-0	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1	
	_	—	OSCSEN	—	_	FOSC2	FOSC1	FOSC0	
	bit 7							bit 0	
bit 7-6 bit 5	Unimplem OSCSEN: 0	ented: Reac Oscillator Sy	l as '0' stem Clock S ock switch on	witch Enable	e bit led (main osc	sillator is so	ource)		
	0 = Oscillat	or system cl	ock switch op	tion is enable	ed (oscillator	switching	is enabled))	
oit 4-3	Unimplem	ented: Read	l as '0'						
oit 2-0	FOSC2:FO 111 = RC (110 = HS (101 = EC (100 = EC (011 = RC (010 = HS (001 = XT (000 = LP (FOSC2:FOSC0: Oscillator Selection bits 111 = RC oscillator w/OSC2 configured as RA6 110 = HS oscillator with PLL enabled/clock frequency = (4 x Fosc) 101 = EC oscillator w/OSC2 configured as RA6 100 = EC oscillator w/OSC2 configured as divide-by-4 clock output 011 = RC oscillator 010 = HS oscillator 010 = HS oscillator 001 = XT oscillator							
	Legend:								
	R = Readal	ole bit	P = Program	nmable bit	U = Unimple	emented bit	t, read as '	0'	
	-n = Value	when device	is unprogram	nmed	u = Unchang	ged from p	rogramme	d state	

REGISTER 24-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

REGISTER 24-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

	U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1			
	—	—	—	—	BORV1	BORV0	BOREN	PWRTEN			
	bit 7							bit 0			
bit 7-4 bit 3-2	Unimplem BORV1:BC	ented: Read DRV0: Browr	as '0' -out Reset V	oltage bits							
	11 = VBOR set to 2.0V 10 = VBOR set to 2.7V 01 = VBOR set to 4.2V 00 = VBOR set to 4.5V										
bit 1	BOREN: Brown-out Reset Enable bit 1 = Brown-out Reset enabled										
bit 0	0 = Brown-out Reset disabled PWRTEN: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled										
	Legend:										
	R = Readal	ble bit	P = Prograr	mmable bit	U = Unim	plemented	bit, read as	; '0'			
	-n = Value	when device	is unprogran	nmed	u = Uncha	anged from	programm	ed state			

GOT	0	Unconditio						
Syntax: [label] GOTO k								
Oper	ands:	$0 \le k \le 104$	8575					
Oper	ation:	$k \rightarrow PC < 20$):1>					
Statu	s Affected:	None						
Enco 1st w 2nd v	oding: vord (k<7:0>) word(k<19:8>)	1110 1111	1111 k ₁₉ kkk	1111 k ₇ kkk kkl k ₁₀ kkk kkkk kkl		kkkk ₀ kkkk ₈		
Desc	ription:	GOTO allow anywhere v range. The PC<20:1>. instruction.	GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction					
Word	ls:	2						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	Read literal 'k'<7:0>	No opera	tion	Read 'k'< Write	d literal 19:8>, e to PC		
	No operation	No operation	No opera	tion	оре	No eration		
<u>Exan</u>	nple: After Instructio PC: -	GOTO THE	RE					

INCF	Increment	Increment f					
Syntax:	[label] I	NCF f[,d [,a]]				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	(f) + 1 \rightarrow d	est					
Status Affected:	C, DC, N,	OV, Z					
Encoding:	0010	10da	ffff	ffff			
Description:	The conter incremente placed in V placed bac is '0', the A overriding t the bank w BSR value	I he contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q	3	Q4			
Decode	Read register 'f'	Proce Dat	ess a de	Write to estination			
Example:	INCF	CNT,					
Before Instruc CNT Z DC After Instructio CNT Z C DC	$\begin{array}{rcl} \text{tion} & & \\ & = & 0 \text{ xFF} \\ & = & 0 \\ & = & ? \\ & = & ? \\ \text{cn} & & \\ & = & 0 \text{ x00} \\ & = & 1 \\ & = & 1 \end{array}$						

27.3 AC (Timing) Characteristics

27.3.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

1. TppS2pp	S	3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase	letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase	etters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
1	Invalid (High-Impedance)	V	Valid
L	Low	Z	High-Impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C	specifications only)		
СС			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

FIGURE 28-19: TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD (-40°C TO +125°C)

FIGURE 28-21: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

© 2006 Microchip Technology Inc.