

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf448t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-1: SPECIAL FUNCTION REGISTER MAP (CONTINUED)

Address	Name	Address	Name	Address	Name	Address	Name
F7Fh	_	F5Fh	—	F3Fh	—	F1Fh	RXM1EIDL
F7Eh	_	F5Eh	CANSTATRO1 ⁽⁴⁾	F3Eh	CANSTATRO3 ⁽⁴⁾	F1Eh	RXM1EIDH
F7Dh	_	F5Dh	RXB1D7	F3Dh	TXB1D7	F1Dh	RXM1SIDL
F7Ch	_	F5Ch	RXB1D6	F3Ch	TXB1D6	F1Ch	RXM1SIDH
F7Bh	_	F5Bh	RXB1D5	F3Bh	TXB1D5	F1Bh	RXM0EIDL
F7Ah	_	F5Ah	RXB1D4	F3Ah	TXB1D4	F1Ah	RXM0EIDH
F79h	_	F59h	RXB1D3	F39h	TXB1D3	F19h	RXM0SIDL
F78h	_	F58h	RXB1D2	F38h	TXB1D2	F18h	RXM0SIDH
F77h		F57h	RXB1D1	F37h	TXB1D1	F17h	RXF5EIDL
F76h	TXERRCNT	F56h	RXB1D0	F36h	TXB1D0	F16h	RXF5EIDH
F75h	RXERRCNT	F55h	RXB1DLC	F35h	TXB1DLC	F15h	RXF5SIDL
F74h	COMSTAT	F54h	RXB1EIDL	F34h	TXB1EIDL	F14h	RXF5SIDH
F73h	CIOCON	F53h	RXB1EIDH	F33h	TXB1EIDH	F13h	RXF4EIDL
F72h	BRGCON3	F52h	RXB1SIDL	F32h	TXB1SIDL	F12h	RXF4EIDH
F71h	BRGCON2	F51h	RXB1SIDH	F31h	TXB1SIDH	F11h	RXF4SIDL
F70h	BRGCON1	F50h	RXB1CON	F30h	TXB1CON	F10h	RXF4SIDH
F6Fh	CANCON	F4Fh		F2Fh	_	F0Fh	RXF3EIDL
F6Eh	CANSTAT	F4Eh	CANSTATRO2 ⁽⁴⁾	F2Eh	CANSTATRO4 ⁽⁴⁾	F0Eh	RXF3EIDH
F6Dh	RXB0D7 ⁽³⁾	F4Dh	TXB0D7	F2Dh	TXB2D7	F0Dh	RXF3SIDL
F6Ch	RXB0D6 ⁽³⁾	F4Ch	TXB0D6	F2Ch	TXB2D6	F0Ch	RXF3SIDH
F6Bh	RXB0D5 ⁽³⁾	F4Bh	TXB0D5	F2Bh	TXB2D5	F0Bh	RXF2EIDL
F6Ah	RXB0D4 ⁽³⁾	F4Ah	TXB0D4	F2Ah	TXB2D4	F0Ah	RXF2EIDH
F69h	RXB0D3 ⁽³⁾	F49h	TXB0D3	F29h	TXB2D3	F09h	RXF2SIDL
F68h	RXB0D2 ⁽³⁾	F48h	TXB0D2	F28h	TXB2D2	F08h	RXF2SIDH
F67h	RXB0D1 ⁽³⁾	F47h	TXB0D1	F27h	TXB2D1	F07h	RXF1EIDL
F66h	RXB0D0 ⁽³⁾	F46h	TXB0D0	F26h	TXB2D0	F06h	RXF1EIDH
F65h	RXB0DLC ⁽³⁾	F45h	TXB0DLC	F25h	TXB2DLC	F05h	RXF1SIDL
F64h	RXB0EIDL ⁽³⁾	F44h	TXB0EIDL	F24h	TXB2EIDL	F04h	RXF1SIDH
F63h	RXB0EIDH ⁽³⁾	F43h	TXB0EIDH	F23h	TXB2EIDH	F03h	RXF0EIDL
F62h	RXB0SIDL ⁽³⁾	F42h	TXB0SIDL	F22h	TXB2SIDL	F02h	RXF0EIDH
F61h	RXB0SIDH ⁽³⁾	F41h	TXB0SIDH	F21h	TXB2SIDH	F01h	RXF0SIDL
F60h	RXB0CON ⁽³⁾	F40h	TXB0CON	F20h	TXB2CON	F00h	RXF0SIDH

Note: Shaded registers are available in Bank 15, while the rest are in Access Bank low.

Note 1: Unimplemented registers are read as '0'.

- 2: This is not a physical register.
- 3: Contents of register are dependent on WIN2:WIN0 bits in the CANCON register.
- 4: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the CANSTAT register due to the Microchip header file requirement.
- 5: These registers are not implemented on the PIC18F248 and PIC18F258.

ER 5-1:	EEGONT: EEPROM CONTROL REGISTER 1											
	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0				
	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD				
	bit 7							bit 0				
hit 7		laab Dragrar	n ar Data El		man Calaat	hit						
DIL 7	LEPGU: Flash Program or Data EEPROM Memory Select bit											
	0 = Access	data EEPR	OM memory	y y								
bit 6	CFGS: Fla	sh Program/	'Data EE or	Configuratio	on Select bit							
	1 = Access 0 = Access	Configurati	on registers ash or data	EEPBOM m	emory							
bit 5	Unimplem	ented: Rea	d as '0'									
bit 4	FREE: Flas	sh Row Eras	e Enable bi	t								
	1 = Erase t	1 = Erase the program memory row addressed by TBLPTR on the next $\overline{\text{WR}}$ command										
	(reset by hardware)											
hit 0	0 = Perform	n white only Viite Error E	log hit									
DIL 3	$1 - \Delta$ write operation is prematurely terminated											
	(any MCLR or any WDT Reset during self-timed programming in normal operation)											
	0 = The wr	ite operation	completed									
	Note:	When a W tracing of the	RERR occu ne error con	ırs, the EEF dition.	GD or FRE	E bits are n	ot cleared.	This allows				
bit 2	WREN: Wr	ite Enable b	it									
	1 = Allows	write cycles										
	0 = Inhibits	write to the	EEPROM o	or Flash mer	nory							
bit 1	WR: Write	Control bit		(urite evelo				write evelo				
	1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle (The operation is self-timed and the bit is cleared by hardware once write is complete. The											
	WR bit	can only be	set (not cle	ared) in soft	ware.)							
	0 = Write c	0 = Write cycle is complete										
bit 0	RD: Read	Control bit										
	1 = Initiates (Read t	s an EEPRC takes one cv	vixi read cle. RD is cl	leared in hai	dware. The	RD bit can c	onlv be set (r	not cleared)				
	in software. RD bit cannot be set when EEPGD = 1 .)											
	0 = Does n	ot initiate ar	EEPROM	read								
	Levend											
	Legend:											

Legend:			
R = Readable bit	W = Writable bit	S = Settable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 5-1: EECON1: EEPROM CONTROL REGISTER 1

5.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

Generally, a write failure will be a bit which was written as a '1', but reads back as a '0' (due to leakage off the cell).

5.6 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together reduce the probability of an accidental write during brown-out, power glitch or software malfunction.

5.7 Operation During Code-Protect

Data EEPROM memory has its own code-protect mechanism. External read and write operations are disabled if either of these mechanisms are enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect configuration bit. Refer to **Section 24.0 "Special Features of the CPU"** for additional information.

5.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than specification D124 or D124A. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory. A simple data EEPROM refresh routine is shown in Example 5-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification D124 or D124A.

	CLRF	EEADR	; Start at address 0
	BCF	EECON1, CFGS	; Set for memory
	BCF	EECON1, EEPGD	; Set for Data EEPROM
	BCF	INTCON, GIE	; Disable interrupts
	BSF	EECON1, WREN	; Enable writes
Loop			; Loop to refresh array
	BSF	EECON1, RD	; Read current address
	MOVLW	55h	;
	MOVWF	EECON2	; Write 55h
	MOVLW	0AAh	;
	MOVWF	EECON2	; Write AAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BTFSC	EECON1, WR	; Wait for write to complete
	BRA	\$-2	
	INCFSZ	EEADR, F	; Increment address
	BRA	Loop	; Not zero, do it again
	BCF	EECON1, WREN	; Disable writes
	BSF	INTCON, GIE	; Enable interrupts

EXAMPLE 5-3: DATA EEPROM REFRESH ROUTINE

NOTES:

6.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

6.2.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the memory write and erase sequences.

Control bit EEPGD determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

Control bit CFGS determines if the access will be to the Configuration/Calibration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on Configuration registers regardless of EEPGD (see Section 24.0 "Special Features of the CPU"). When clear, memory selection access is determined by EEPGD. The FREE bit, when set, will allow a program memory erase operation. When the FREE bit is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation. In these situations, the user can check the WRERR bit and rewrite the location. It is necessary to reload the data and address registers (EEDATA and EEADR) due to Reset values of zero.

Control bits, $\overline{\text{RD}}$ and $\overline{\text{WR}}$, initiate read and write operations, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at the completion of the read or write operation. The inability to clear the $\overline{\text{WR}}$ bit in software prevents the accidental or premature termination of a write operation. The $\overline{\text{RD}}$ bit cannot be set when accessing program memory (EEPGD = 1).

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
	IRXIE	WAKIE	ERRIE	TXB2IE	TXB1IE	TXB0IE	RXB1IE	RXB0IE			
	bit 7							bit 0			
IRXIE: Invalid CAN Message Received Interrupt Enable bit											
 1 = Enables the invalid CAN message received interrupt 0 = Disables the invalid CAN message received interrupt 											
	WAKIE: B	us Activity W	/ake-up Inte	rrupt Enable	bit						
	 1 = Enables the bus activity wake-up interrupt 0 = Disables the bus activity wake-up interrupt 										
	ERRIE: CA	AN bus Error	Interrupt Er	nable bit							
	1 = Enable 0 = Disable	s the CAN b es the CAN b	ous error inte	errupt errupt							
	TXB2IE: Transmit Buffer 2 Interrupt Enable bit										
	 1 = Enables the Transmit Buffer 2 interrupt 0 = Disables the Transmit Buffer 2 interrupt 										
	TXB1IE: ⊤	ransmit Buff	er 1 Interrup	t Enable bit							
	1 = Enable 0 = Disable	s the Transr es the Trans	nit Buffer 1 i mit Buffer 1	nterrupt interrupt							
	TXB0IE: ⊤	ransmit Buff	er 0 Interrup	t Enable bit							
 1 = Enables the Transmit Buffer 0 interrupt 0 = Disables the Transmit Buffer 0 interrupt 											
	RXB1IE: F	eceive Buffe	er 1 Interrup	t Enable bit							
	1 = Enable 0 = Disable	s the Receives the Receives the Recei	ve Buffer 1 i ve Buffer 1 i	nterrupt nterrupt							
	RXB0IE: Receive Buffer 0 Interrupt Enable bit										
	1 = Enable 0 = Disable	s the Receives the Receives the Receives	ve Buffer 0 iı ve Buffer 0 i	nterrupt nterrupt							
	Legend:										
	R - Roada	ble hit	$\lambda = \lambda$	ritable bit	II – I Inim	nlamented	hit road as '	٠́^'			

REGISTER 8-9: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

_ogonai						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

FIGURE 9-6: RB2/CANTX/INT2 PIN BLOCK DIAGRAM

FIGURE 9-7: RB3/CANRX PIN BLOCK DIAGRAM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 3 Bit 2 Bit 1 Bit 0		Value or POR, BO	n R	Value on all other Resets		
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000) x (0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 000	00 (0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 000	00 (0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 111	.1 :	1111	1111
TRISD	PORTD Da	ata Direction	Register						1111 111	.1 :	1111	1111
TMR1L	Holding Re	egister for the	e Least Sigr	nificant Byte	e of the 16-bi	t TMR1 Reg	gister		XXXX XXX	x ι	JUUU	uuuu
TMR1H	Holding Re	egister for the	e Most Sign	ificant Byte	of the 16-bit	TMR1 Reg	ister		XXXX XXX	xι	JUUUL	uuuu
T1CON	RD16	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 000	0 ι	ı-uu	uuuu
CCPR1L	Capture/Co	ompare/PWN	A Register 1	I (LSB)					XXXX XXX	xι	JUUU	uuuu
CCPR1H	Capture/Co	ompare/PWN	A Register 1	I (MSB)					XXXX XXX	xι	JUUU	uuuu
CCP1CON	—	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 000	00.	00	0000
PIR2	—	CMIF	_	EEIF	BCLIF	LVDIF	TMR3IF	ECCP1IF	-0-0 000	00.	- 0 - 0	0000
PIE2	—	CMIE	_	EEIE	BCLIE	LVDIE	TMR3IE	ECCP1IE	-0-0 000	00.	- 0 - 0	0000
IPR2	—	CMIP	_	EEIP	BCLIP	LVDIP	TMR3IP	ECCP1IP	-1-1 111	.1 ·	-1-1	1111
TMR3L	Holding Re	egister for the	e Least Sigr	nificant Byte	of the 16-bi	t TMR3 Reg	gister		XXXX XXX	xι	JUUUL	uuuu
TMR3H	Holding Re	egister for the	e Most Sign	ificant Byte	of the 16-bit	TMR3 Reg	ister		XXXX XXX	xι	JUUU	uuuu
T3CON	RD16	T3ECCP1	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 000	0 ι	າກກາ	uuuu

TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's.

16.5.3 FULL-BRIDGE MODE

In Full-Bridge Output mode, four pins are used as outputs; however, only two outputs are active at a time. In the Forward mode, pin RD4/PSP4/ECCP1/P1A is continuously active and pin RD7/PSP7/P1D is modulated. In the Reverse mode, RD6/PSP6/P1C pin is continuously active and RD5/PSP5/P1B pin is modulated. These are illustrated in Figure 16-5.

FIGURE 16-5: FULL-BRIDGE PWM OUTPUT

P1A, P1B, P1C and P1D outputs are multiplexed with the PORTD<4:7> data latches. The TRISD<4:7> bits must be cleared to make the P1A, P1B, P1C and P1D pins output.

17.3.5 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 17-2) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode. The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This then, would give waveforms for SPI communication as shown in Figure 17-3, Figure 17-5 and Figure 17-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 17-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 17-3: SPI™ MODE WAVEFORM (MASTER MODE)

17.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 17-29). If SDA is sampled high, the BRG is reloaded and begins

counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (Figure 17-30).

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

18.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit Baud Rate Generator. The SPBRG register controls the period of a free running, 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA register) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 18-1 shows the formula for computation of the baud rate for different USART modes which only apply in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG register can be calculated using the formula in Table 18-1. From this, the error in baud rate can be determined.

EXAMPLE 18-1. CALCULATING BALLD BATE ERBOR

Example 18-1 shows the calculation of the baud rate error for the following conditions:

```
Fosc = 16 MHz
Desired Baud Rate = 9600
BRGH = 0
SYNC = 0
```

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

18.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

Desired Baud Rate	= Fosc/(64 (X + 1))
Solving for X:	
	X = ((Fosc/Desired Baud Rate)/64) - 1 X = ((16000000/9600)/64) - 1 X = [25.042] = 25
Calculated Baud Rate	= 16000000/(64 (25 + 1)) = 9615
Error	 <u>(Calculated Baud Rate – Desired Baud Rate)</u> Desired Baud Rate (9615 – 9600)/9600 0.16%

TABLE 18-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64 (X + 1))	Baud Rate = Fosc/(16 (X + 1))
1	(Synchronous) Baud Rate = Fosc/(4 (X + 1))	NA

Legend: X = value in SPBRG (0 to 255)

TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000u
SPBRG	PBRG Baud Rate Generator Register									0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

18.3 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTA register). In addition, enable bit SPEN (RCSTA register) is set in order to configure the RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and DT (data) lines, respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTA register).

18.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 18-1. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The shift register obtains its data from the Read/Write Transmit Buffer register (TXREG). The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG is empty and interrupt bit TXIF (PIR1 register) is set. The interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1 register). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in

software. It will reset only when new data is loaded into the TXREG register. While flag bit, TXIF, indicates the status of the TXREG register, another bit, TRMT (TXSTA register), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory, so it is not available to the user.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 18.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.

Note: TXIF is not cleared immediately upon loading data into the transmit buffer TXREG. The flag bit becomes valid in the second instruction cycle following the load instruction.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	1111 1111
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	0000 000u
TXREG	USART Trai	nsmit Registe	er						0000 0000	0000 0000
TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRG	Baud Rate Generator Register									0000 0000

TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's.

19.2.6 CAN INTERRUPT REGISTERS

The registers in this section are the same as described in Section 8.0 "Interrupts". They are duplicated here for convenience.

-n = Value at POR

ER 19-33:	PIR3: PE	RIPHERAL	INTERRU	PT REQUE	ST (FLAG	i) REGISTI	ER 3			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	IRXIF	WAKIF	ERRIF	TXB2IF	TXB1IF	TXB0IF	RXB1IF	RXB0IF		
	bit 7							bit 0		
bit 7	IRXIF: CAN Invalid Received Message Interrupt Flag bit									
	1 = An invalid message has occurred on the CAN bus 0 = No invalid message on CAN bus									
bit 6	WAKIF: C	AN bus Activ	vity Wake-up	o Interrupt Fl	ag bit					
	 1 = Activity on CAN bus has occurred 0 = No activity on CAN bus 									
bit 5	ERRIF: C/	AN bus Error	Interrupt Fl	ag bit						
	1 = An error has occurred in the CAN module (multiple sources)0 = No CAN module errors									
bit 4	TXB2IF: C	CAN Transmi	t Buffer 2 In	terrupt Flag	oit					
	1 = Transr	1 = Transmit Buffer 2 has completed transmission of a message and may be reloaded								
	0 = Iransr	nit Buffer 2 h	as not comp	pleted transn	hission of a	message				
bit 3	TXB1IF: (AN Transmi	t Butter 1 In	terrupt Flag I	Dit			-ll		
	 1 = Transmit Buffer 1 has completed transmission of a message and may be reloaded 0 = Transmit Buffer 1 has not completed transmission of a message 									
bit 2	TXB0IF: CAN Transmit Buffer 0 Interrupt Flag bit									
	 1 = Transmit Buffer 0 has completed transmission of a message and may be reloaded 0 = Transmit Buffer 0 has not completed transmission of a message 							ded		
bit 1	RXB1IF: CAN Receive Buffer 1 Interrupt Flag bit									
	1 = Receive Buffer 1 has received a new message 0 = Receive Buffer 1 has not received a new message									
bit 0	RXB0IF: CAN Receive Buffer 0 Interrupt Flag bit									
	1 = Receive Buffer 0 has received a new message0 = Receive Buffer 0 has not received a new message									
	Legend:									
	R = Reada	able bit	W = Writa	ble bit	U = Unin	nplemented	bit, read as	'0'		

'1' = Bit is set

'0' = Bit is cleared

REGISTE

x = Bit is unknown

REGISTER 20-2: ADCON1: A/D CONTROL REGISTER 1

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as '0'.
 0 = Left justified. Six (6) Least Significant bits of ADRESL are read as '0'.

bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in **bold**)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits

PCFG	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	Α	Α	Α	А	Α	Α	А	А	Vdd	Vss	8/0
0001	А	А	А	А	VREF+	А	А	А	AN3	Vss	7/1
0010	D	D	D	А	Α	А	А	А	Vdd	Vss	5/0
0011	D	D	D	А	VREF+	А	А	А	AN3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	Vdd	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	AN3	Vss	2/1
011x	D	D	D	D	D	D	D	D	—	—	0/0
1000	Α	Α	Α	А	VREF+	VREF-	Α	Α	AN3	AN2	6/2
1001	D	D	Α	А	Α	А	Α	Α	Vdd	Vss	6/0
1010	D	D	Α	А	VREF+	А	Α	Α	AN3	Vss	5/1
1011	D	D	Α	А	VREF+	VREF-	Α	Α	AN3	AN2	4/2
1100	D	D	D	А	VREF+	VREF-	Α	Α	AN3	AN2	3/2
1101	D	D	D	D	VREF+	VREF-	А	А	AN3	AN2	2/2
1110	D	D	D	D	D	D	D	А	Vdd	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	А	AN3	AN2	1/2

A = Analog input D = Digital I/O

C/R = # of analog input channels/# of A/D voltage references

Note: Shaded cells indicate channels available only on PIC18F4X8 devices.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: On any device Reset, the port pins that are multiplexed with analog functions (ANx) are forced to be analog inputs.

The value that is in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 20.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt

Read A/D Result registers (ADRESH/ADRESL); clear bit ADIF if required.

7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before next acquisition starts.

20.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 20-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

FIGURE 20-2: ANALOG INPUT MODEL

INCF	SZ	Increment	Increment f, Skip if 0						
Synta	ax:	[label] IN	[label] INCFSZ f[,d[,a]]						
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Oper	ation:	(f) + 1 \rightarrow de skip if result	(f) + 1 \rightarrow dest, skip if result = 0						
Statu	s Affected:	None	None						
Enco	ding:	0011	11da :	fff	ffff				
Desc	nption:	I he content incremented placed in W placed back If the result which is alre and a NOP is it a two-cycl Access Ban overriding th the bank will BSR value of	incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default)						
Word	ls:	1	1						
Cycle	es:	cles if skip 2-word ins	and foll	owed					
QC	vcle Activity:								
	Q1 Q2 Q3 Q4								
	Decode	Read	Process	, M	/rite to				
16 - 1-		register t	Data	des	stination				
IT SK	ID: 01	02	03		04				
	No	No	No		No				
	operation	operation	operation	ор	eration				
lf sk	ip and followe	d by 2-word in	struction:						
	Q1	Q2	Q3		Q4				
	No	No	No		No				
	operation	operation	operation	ор	eration				
	No operation	No operation	No operatior	и ор	No eration				
Example:		HERE NZERO ZERO	HERE INCFSZ CNT NZERO : ZERO :						
	Before Instruc PC	tion = Address	S (HERE)						
	After Instructio CNT If CNT	on = CNT + = 0;	1						
		= Address $\rightarrow 0^{\circ}$	S (ZERO)						
	PC	= Address	(NZERO)						

INFSNZ			Increment f, Skip if not 0						
Syntax:		[<i>la</i>	[<i>label</i>] INFSNZ f[.d[.a]]						
Operands:		0 ≤ d ∈ a ∈	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:		(f) ski	(f) + 1 \rightarrow dest, skip if result \neq 0						
Status A	ffected:	No	None						
Encodin	ig:		0100	10da	fff	f	ffff		
Descript	Th inc pla pla lf t ins dis ins wil val sel	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).							
Words:		1	1						
Cycles:			1(2) Note: 3 cycles if skip and followed by a 2-word instruction.						
Q Cycle	e Activity:								
	Q1	1	Q2	Q	3		Q4		
	Decode	F reg	lead ister 'f'	Proce Dat	ess a	W des	rite to stination		
If skip:									
	Q1	1	Q2	Q3			Q4		
	No		No	No			No		
	peration	operation		operation		ор	eration		
li skip a		a by 2-word in: O2		03			04		
	No		No	No			No.		
0	peration	ope	eration	operat	tion	ор	eration		
	No		No	No			No		
0	peration	оре	eration	opera	tion	ор	eration		
Example:		HE ZE NZ	HERE INFSNZ REG ZERO NZERO						
Be	fore Instruc PC	tion =	Addres	s (HERI	Ξ)				
Aft	er Instructio REG If REG PC If REG PC	on ≠ = = =	REG + 0; Addres: 0; Addres:	1 s (nzem s (zero	RO) D)				

IORLW	Inclusive (OR Litera	al with W	1				
Syntax:	[label] I	ORLW k						
Operands:	$0 \le k \le 255$	$0 \le k \le 255$						
Operation:	(W) .OR. k	(W) .OR. $k \rightarrow W$						
Status Affected:	N, Z	N, Z						
Encoding:	0000	1001	kkkk	kkkk				
Description:	The conter eight-bit lite W.	The contents of W are ORed with the eight-bit literal 'k'. The result is placed in W.						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	3	Q4				
Decode	Read literal 'k'	Proce Data	ess V a	/rite to W				
Example:	IORLW	0x35						
Before Instruct W	ion = 0x9A							
After Instructio W	n = 0xBF							

IORWF	Inclusive C	Inclusive OR W with f				
Syntax:	[label] IC	DRWF f[,d[,a]]			
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Operation:	(W) .OR. (f)	\rightarrow dest				
Status Affected:	N, Z					
Encoding:	0001	00da ffi	ff ffff			
	the result is (default). If will be selection value. If 'a' selected as	o, the result is placed in W. If d is \perp , the result is placed back in register 'f' (default). If 'a' is 'o', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default)				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write to destination			
Example: IORWF RESULT, W Before Instruction RESULT = 0x13						
W	= 0x91					

0x13 0x93

After Instruction RESULT = W =

