

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf458-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18FXX8

28/40-Pin High-Performance, Enhanced Flash Microcontrollers with CAN

High-Performance RISC CPU:

- Linear program memory addressing up to 2 Mbytes
- · Linear data memory addressing to 4 Kbytes
- Up to 10 MIPS operation
- DC 40 MHz clock input
- 4 MHz-10 MHz oscillator/clock input with PLL active
- 16-bit wide instructions, 8-bit wide data path
- · Priority levels for interrupts
- 8 x 8 Single-Cycle Hardware Multiplier

Peripheral Features:

- High current sink/source 25 mA/25 mA
- Three external interrupt pins
- Timer0 module: 8-bit/16-bit timer/counter with 8-bit programmable prescaler
- Timer1 module: 16-bit timer/counter
- Timer2 module: 8-bit timer/counter with 8-bit period register (time base for PWM)
- Timer3 module: 16-bit timer/counter
- Secondary oscillator clock option Timer1/Timer3
- Capture/Compare/PWM (CCP) modules; CCP pins can be configured as:
 - Capture input: 16-bit, max resolution 6.25 ns
 - Compare: 16-bit, max resolution 100 ns (TCY)
 - PWM output: PWM resolution is 1 to 10-bit Max. PWM freq. @:8-bit resolution = 156 kHz 10-bit resolution = 39 kHz
- Enhanced CCP module which has all the features of the standard CCP module, but also has the following features for advanced motor control:
 - 1, 2 or 4 PWM outputs
 - Selectable PWM polarity
 - Programmable PWM dead time
- Master Synchronous Serial Port (MSSP) with two modes of operation:
 - 3-wire SPI™ (Supports all 4 SPI modes)
 - I²C[™] Master and Slave mode
- Addressable USART module:
 - Supports interrupt-on-address bit

Advanced Analog Features:

- 10-bit, up to 8-channel Analog-to-Digital Converter module (A/D) with:
 - Conversion available during Sleep
 - Up to 8 channels available
- Analog Comparator module:
 - Programmable input and output multiplexing
- Comparator Voltage Reference module
- Programmable Low-Voltage Detection (LVD) module:
 Supports interrupt-on-Low-Voltage Detection
- Programmable Brown-out Reset (BOR)

CAN bus Module Features:

- · Complies with ISO CAN Conformance Test
- · Message bit rates up to 1 Mbps
- Conforms to CAN 2.0B Active Spec with:
 - 29-bit Identifier Fields
 - 8-byte message length
 - 3 Transmit Message Buffers with prioritization
 - 2 Receive Message Buffers
 - 6 full, 29-bit Acceptance Filters
 - Prioritization of Acceptance Filters
 - Multiple Receive Buffers for High Priority Messages to prevent loss due to overflow
 - Advanced Error Management Features

Special Microcontroller Features:

- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator
- Programmable code protection
- Power-saving Sleep mode
- Selectable oscillator options, including:
 - 4x Phase Lock Loop (PLL) of primary oscillator
 Secondary Oscillator (32 kHz) clock input
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins

Flash Technology:

- · Low-power, high-speed Enhanced Flash technology
- · Fully static design
- Wide operating voltage range (2.0V to 5.5V)
- Industrial and Extended temperature ranges

PIC18FXX8

NOTES:

2.0 OSCILLATOR CONFIGURATIONS

2.1 Oscillator Types

The PIC18FXX8 can be operated in one of eight oscillator modes, programmable by three configuration bits (FOSC2, FOSC1 and FOSC0).

- 1. LP Low-Power Crystal
- 2. XT Crystal/Resonator
- 3. HS High-Speed Crystal/Resonator
- 4. HS4 High-Speed Crystal/Resonator with PLL enabled
- 5. RC External Resistor/Capacitor
- 6. RCIO External Resistor/Capacitor with I/O pin enabled
- 7. EC External Clock
- 8. ECIO External Clock with I/O pin enabled

2.2 Crystal Oscillator/Ceramic Resonators

In XT, LP, HS or HS4 (PLL) Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections. An external clock source may also be connected to the OSC1 pin, as shown in Figure 2-3 and Figure 2-4.

The PIC18FXX8 oscillator design requires the use of a parallel cut crystal.

Note: Use of a series cut crystal may give a frequency out of the crystal manufacturer's specifications.

FIGURE 2-1:

CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 2-1: CERAMIC RESONATORS

Ranges Tested:								
Mode	Mode Freq OSC1							
XT	455 kHz 2.0 MHz 4.0 MHz	68-100 pF 15-68 pF 15-68 pF	68-100 pF 15-68 pF 15-68 pF					
HS	8.0 MHz 16.0 MHz	10-68 pF 10-22 pF	10-68 pF 10-22 pF					
These values	ues are for de following Tabl	e sign guidance e 2-2.	only.					
	Resonators Used:							
455 kHz	Panasonic E	FO-A455K04B	±0.3%					

455 kHz	Panasonic EFO-A455K04B	±0.3%				
2.0 MHz	Murata Erie CSA2.00MG	±0.5%				
4.0 MHz	Murata Erie CSA4.00MG	±0.5%				
8.0 MHz	3.0 MHz Murata Erie CSA8.00MT					
16.0 MHz	Murata Erie CSA16.00MX	±0.5%				
All resonators used did not have built-in capacitors.						

4.2 Return Address Stack

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC (Program Counter) is pushed onto the stack when a PUSH, CALL or RCALL instruction is executed, or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN instructions.

The stack operates as a 31-word by 21-bit stack memory and a 5-bit Stack Pointer register, with the Stack Pointer initialized to 00000b after all Resets. There is no RAM associated with Stack Pointer 00000b. This is only a Reset value. During a CALL type instruction, causing a push onto the stack, the Stack Pointer is first incremented and the RAM location pointed to by the Stack Pointer is written with the contents of the PC. During a RETURN type instruction, causing a pop from the stack, the contents of the RAM location indicated by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.

The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the data on the top of the stack is readable and writable through SFR registers. Status bits indicate if the stack pointer is at or beyond the 31 levels provided.

4.2.1 TOP-OF-STACK ACCESS

The top of the stack is readable and writable. Three register locations, TOSU, TOSH and TOSL allow access to the contents of the stack location indicated by the STKPTR register. This allows users to implement a software stack, if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU, TOSH and TOSL registers. These values can be placed on a user defined software stack. At return time, the software can replace the TOSU, TOSH and TOSL and do a return.

The user should disable the global interrupt enable bits during this time to prevent inadvertent stack operations.

4.2.2 RETURN STACK POINTER (STKPTR)

The STKPTR register contains the Stack Pointer value, the STKFUL (Stack Full) status bit and the STKUNF (Stack Underflow) status bits. Register 4-1 shows the STKPTR register. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments when values are pushed onto the stack and decrements when values are popped off the stack. At Reset, the Stack Pointer value will be '0'. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit can only be cleared in software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) configuration bit. Refer to **Section 21.0 "Comparator Module**" for a description of the device configuration bits. If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to '0'.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. The 32nd push will overwrite the 31st push (and so on), while STKPTR remains at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the stack pointer remains at '0'. The STKUNF bit will remain set until cleared in software or a POR occurs.

Note: Returning a value of zero to the PC on an underflow has the effect of vectoring the program to the Reset vector, where the stack conditions can be verified and appropriate actions can be taken.

PIC18FXX8

ER 5-1:	EECON1:	EEPROM	CONTROL	REGISTE	K 1			
	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD
	bit 7							bit 0
hit 7		laab Dragrar	n ar Data El		man Calaat	hit		
DIL 7		nogram El	n or Dala El ash memori	, ,	mory Select	DIL		
	0 = Access	data EEPR	OM memory	y y				
bit 6	CFGS: Fla	sh Program/	'Data EE or	Configuratio	on Select bit			
	1 = Access 0 = Access	Configurati	on registers ash or data	EEPBOM m	emory			
bit 5	Unimplem	ented: Rea	d as '0'					
bit 4	FREE: Flas	sh Row Eras	e Enable bi	t				
	1 = Erase t	he program	memory row	w addressed	by TBLPTF	on the nex	t WR comm	and
	(reset b	by hardware)					
hit 0	0 = Perform	n white only Viite Error E	log hit					
DIL 3			nay Dil promoturol	v torminator	1			
	1 - A where ie (any M	CLR or any	WDT Reset	during self-	timed progra	mming in no	ormal operat	ion)
	0 = The wr	ite operation	completed					
	Note:	When a W tracing of the	RERR occu ne error con	ırs, the EEF dition.	GD or FRE	E bits are n	ot cleared.	This allows
bit 2	WREN: Wr	ite Enable b	it					
	1 = Allows	write cycles						
	0 = Inhibits	write to the	EEPROM o	or Flash mer	nory			
bit 1	WR: Write	Control bit		(urite evelo				write evelo
	⊥ = Initiates (The or	s a data EEF	elf-timed and	d the bit is c	eared by ha	rdware once	ase cycle or e write is cor	nplete. The
	WR bit	can only be	set (not cle	ared) in soft	ware.)			
	0 = Write c	ycle is comp	olete					
bit 0	RD: Read	Control bit						
1 = Initiates an EEPROM read (Read takes one cycle \overline{BD} is cleared in hardware. The \overline{BD} bit can only be set (not cl							not cleared)	
	in software. \overline{RD} bit cannot be set when EEPGD = 1.)							,
	0 = Does n	ot initiate ar	EEPROM	read				
	Levend							
	Legend:							

Legend:			
R = Readable bit	W = Writable bit	S = Settable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 5-1: EECON1: EEPROM CONTROL REGISTER 1

10.0 PARALLEL SLAVE PORT

Note:	The Parallel Slave Port is only available on
	PIC18F4X8 devices.

In addition to its function as a general I/O port, PORTD can also operate as an 8-bit wide Parallel Slave Port (PSP) or microprocessor port. PSP operation is controlled by the 4 upper bits of the TRISE register (Register 9-1). Setting control bit PSPMODE (TRISE<4>) enables PSP operation. In Slave mode, the port is asynchronously readable and writable by the external world.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting the control bit PSPMODE enables the PORTE I/O pins to become control inputs for the microprocessor port. When set, port pin RE0 is the RD input, RE1 is the WR input and RE2 is the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set).

A write to the PSP occurs when both the \overline{CS} and \overline{WR} lines are first detected low. A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The timing for the control signals in Write and Read modes is shown in Figure 10-2 and Figure 10-3, respectively.

FIGURE 10-1:

PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

FIGURE 10-2: PARALLEL SLAVE PORT WRITE WAVEFORMS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value or POR, BO	n R	Value all o Res	e on ther sets
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 000) x (0000	000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 000	00 (0000	0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 000	00 (0000	0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 111	.1 :	1111	1111
TRISD	PORTD Da	ata Direction	Register						1111 111	.1 :	1111	1111
TMR1L	Holding Re	egister for the	e Least Sigr	nificant Byte	e of the 16-bi	t TMR1 Reg	gister		XXXX XXX	x ι	JUUU	uuuu
TMR1H	Holding Re	egister for the	e Most Sign	ificant Byte	of the 16-bit	TMR1 Reg	ister		XXXX XXX	xι	JUUUL	uuuu
T1CON	RD16	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 000	0 ι	ı-uu	uuuu
CCPR1L	Capture/Co	ompare/PWN	A Register 1	I (LSB)			•		XXXX XXX	xι	JUUU	uuuu
CCPR1H	Capture/Co	ompare/PWN	A Register 1	I (MSB)					XXXX XXX	xι	JUUU	uuuu
CCP1CON	—	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 000	00.	00	0000
PIR2	—	CMIF	_	EEIF	BCLIF	LVDIF	TMR3IF	ECCP1IF	-0-0 000	00.	- 0 - 0	0000
PIE2	—	CMIE	_	EEIE	BCLIE	LVDIE	TMR3IE	ECCP1IE	-0-0 000	00.	- 0 - 0	0000
IPR2	—	CMIP	_	EEIP	BCLIP	LVDIP	TMR3IP	ECCP1IP	-1-1 111	.1 ·	-1-1	1111
TMR3L	Holding Register for the Least Significant Byte of the 16-bit TMR3 Register									xι	JUUUL	uuuu
TMR3H	Holding Register for the Most Significant Byte of the 16-bit TMR3 Register								XXXX XXX	xι	JUUU	uuuu
T3CON	RD16	T3ECCP1	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 000	0 ι	າກກາ	uuuu

TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as '0's.

16.0 ENHANCED CAPTURE/ COMPARE/PWM (ECCP) MODULE

Note:	The EC	CP (Enha	ance	d Cap	ture/Compa	are/
	PWM)	module	is	only	available	on
	PIC18F448 and PIC18F458 devices.					

This module contains a 16-bit register which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. The operation of the ECCP module differs from the CCP (discussed in detail in **Section 15.0 "Capture/Compare/PWM (CCP) Modules**") with the addition of an Enhanced PWM module which allows for up to 4 output channels and user selectable polarity. These features are discussed in detail in **Section 16.5** "**Enhanced PWM Mode**". The module can also be programmed for automatic shutdown in response to various analog or digital events.

The control register for ECCP1 is shown in Register 16-1.

REGISTER 16-1: ECCP1CON: ECCP1 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EPWM1M1	EPWM1M0	EDC1B1	EDC1B0	ECCP1M3	ECCP1M2	ECCP1M1	ECCP1M0
bit 7							bit 0

bit 7-6 **EPWM1M<1:0>:** PWM Output Configuration bits

I<u>f ECCP1M<3:2> = 00, 01, 10:</u>

xx = P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins If ECCP1M<3:2> = 11:

- 00 = Single output; P1A modulated; P1B, P1C, P1D assigned as port pins
- 01 = Full-bridge output forward; P1D modulated; P1A active; P1B, P1C inactive
- 10 = Half-bridge output; P1A, P1B modulated with deadband control; P1C, P1D assigned as port pins
- 11 = Full-bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive
- bit 5-4 EDC1B<1:0>: PWM Duty Cycle Least Significant bits

<u>Capture mode:</u> Unused.

Compare mode:

Unused.

PWM mode:

These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in ECCPR1L.

bit 3-0 ECCP1M<3:0>: ECCP1 Mode Select bits

- 0000 = Capture/Compare/PWM off (resets ECCP module)
- 0001 = Unused (reserved)
- 0010 = Compare mode, toggle output on match (ECCP1IF bit is set)
- 0011 = Unused (reserved)
- 0100 = Capture mode, every falling edge
- 0101 = Capture mode, every rising edge
- 0110 = Capture mode, every 4th rising edge
- 0111 = Capture mode, every 16th rising edge
- 1000 = Compare mode, set output on match (ECCP1IF bit is set)
- 1001 = Compare mode, clear output on match (ECCP1IF bit is set)
- 1010 = Compare mode, ECCP1 pin is unaffected (ECCP1IF bit is set)
- 1011 = Compare mode, trigger special event (ECCP1IF bit is set; ECCP resets TMR1or TMR3 and starts an A/D conversion if the A/D module is enabled)
- 1100 = PWM mode; P1A, P1C active-high; P1B, P1D active-high
- 1101 = PWM mode; P1A, P1C active-high; P1B, P1D active-low
- 1110 = PWM mode; P1A, P1C active-low; P1B, P1D active-high
- 1111 = PWM mode; P1A, P1C active-low; P1B, P1D active-low

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

16.6 Enhanced CCP Auto-Shutdown

When the ECCP is programmed for any of the PWM modes, the output pins associated with its function may be configured for auto-shutdown.

Auto-shutdown allows the internal output of either of the two comparator modules, or the external interrupt 0, to asynchronously disable the ECCP output pins. Thus, an external analog or digital event can discontinue an ECCP sequence. The comparator output(s) to be used is selected by setting the proper mode bits in the ECCPAS register. To use external interrupt INT0 as a shutdown event, INT0IE must be set. To use either of the comparator module outputs as a shutdown event, corresponding comparators must be enabled. When a shutdown occurs, the selected output values (PSSACn, PSSBDn) are written to the ECCP port pins. The internal shutdown signal is gated with the outputs and will immediately and asynchronously disable the outputs. If the internal shutdown is still in effect at the time a new cycle begins, that entire cycle is suppressed, thus eliminating narrow, glitchy pulses.

The ECCPASE bit is set by hardware upon a comparator event and can only be cleared in software. The ECCP outputs can be re-enabled only by clearing the ECCPASE bit.

The Auto-Shutdown mode can be manually entered by writing a '1' to the ECCPASE bit.

REGISTER 16-3: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN CONTROL REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0		
	bit 7							bit 0		
bit 7	ECCPASE:	ECCP Auto	o-Shutdown	Event Status	s bit					
	0 = ECCP o 1 = A shutd	outputs enat Jown event h	bled, no shu has occurre	Itdown event d, must be re	eset in softw	/are to re-en	able ECCP			
bit 6-4	ECCPAS<2	2:0>: ECCP	Auto-Shutd	lown bits						
	 000 = No auto-shutdown enabled, comparators have no effect on ECCP 001 = Comparator 1 output will cause shutdown 010 = Comparator 2 output will cause shutdown 011 = Either Comparator 1 or 2 can cause shutdown 100 = INT0 101 = INT0 or Comparator 1 output 110 = INT0 or Comparator 2 output 111 = INT0 or Comparator 1 or Comparator 2 output 									
bit 3-2	PSSACn: Pins A and C Shutdown State Control bits 00 = Drive Pins A and C to '0' 01 = Drive Pins A and C to '1' 1x = Pins A and C tri-state									
bit 1-0	PSSBDn: F	^{>} ins B and D) Shutdown	State Contro	ol bits					
	00 = Drive Pins B and D to '0' 01 = Drive Pins B and D to '1' 1x = Pins B and D tri-state									
	Legend:]		
	R = Reada	ble bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	ʻ0'		

R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 17-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | bit 0 |

bit 7 WCOL: Write Collision Detect bit (Transmit mode only)

 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)

0 = No collision

bit 6 **SSPOV:** Receive Overflow Indicator bit

SPI Slave mode:

- 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF even if only transmitting data to avoid setting overflow (must be cleared in software).
- 0 = No overflow
 - **Note:** In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.

bit 5 SSPEN: Synchronous Serial Port Enable bit

- 1 = Enables serial port and configures SCK, SDO, SDI and \overline{SS} as serial port pins
- 0 = Disables serial port and configures these pins as I/O port pins

Note: When enabled, these pins must be properly configured as input or output.

- bit 4 CKP: Clock Polarity Select bit
 - 1 = Idle state for clock is a high level
 - 0 = Idle state for clock is a low level
- bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits
 - 0101 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control disabled, \overline{SS} can be used as I/O pin 0100 = SPI Slave mode, clock = SCK pin, \overline{SS} pin control enabled
 - 0011 = SPI Master mode, clock = TMR2 output/2
 - 0010 = SPI Master mode, clock = Fosc/64
 - 0001 = SPI Master mode, clock = Fosc/16
 - 0000 = SPI Master mode, clock = Fosc/4
 - **Note:** Bit combinations not specifically listed here are either reserved or implemented in I^2C mode only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

17.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.

Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt if enabled):

- Start condition
- Stop condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

FIGURE 17-16: MSSP BLOCK DIAGRAM (I²C[™] MASTER MODE)

17.4.12 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 17-23).

17.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

17.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/ transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to 0. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 17-24).

17.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 17-23: ACKNOWLEDGE SEQUENCE WAVEFORM

19.2.2 CAN TRANSMIT BUFFER REGISTERS

This section describes the CAN Transmit Buffer registers and their associated control registers.

REGISTER 19-4:	REGISTER 19-4: TXBnCON: TRANSMIT BUFFER n CONTROL REGISTERS								
	U-0	R-0	R-0	R-0	R/W-0	U-0	R/W-0	R/W-0	
		TXABT	TXLARB	TXERR	TXREQ	—	TXPRI1	TXPRI0	
	bit 7							bit 0	
bit 7	Unimplem	nented: Rea	d as '0'						
bit 6	TXABT: Tr	XABT: Transmission Aborted Status bit							
	1 = Messa 0 = Messa	. = Message was aborted) = Message was not aborted							
bit 5	TXLARB:	Transmissio	n Lost Arbitr	ation Status	bit				
	1 = Messa 0 = Messa	 Message lost arbitration while being sent Message did not lose arbitration while being sent 							
bit 4	TXERR: T	TXERR: Transmission Error Detected Status bit							
	 1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent 								
bit 3	TXREQ: T	ransmit Req	uest Status	bit					
	1 = Reque 0 = Autom	ests sending atically clear	a message. ed when the	Clears the T message is	XABT, TXL	ARB and TX ly sent	KERR bits.		
	Note: Clearing this bit in software while the bit is set will request a message abort.								
bit 2	Unimplem	nented: Rea	d as '0'						
bit 1-0	TXPRI1:TXPRI0: Transmit Priority bits								
	 11 = Priority Level 3 (highest priority) 10 = Priority Level 2 01 = Priority Level 1 00 = Priority Level 0 (lowest priority) 								
	Note: These bits set the order in which the Transmit Buffer will be transferred. They do not alter the CAN message identifier.								
	Legend:								
	R = Reada	able bit	W = Writa	ble bit	U = Unin	plemented	bit, read as	'0'	

'1' = Bit is set

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

REGISTER 19-5: TXBnSIDH: TRANSMIT BUFFER n STANDARD IDENTIFIER, HIGH BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID10 | SID9 | SID8 | SID7 | SID6 | SID5 | SID4 | SID3 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 SID10:SID3: Standard Identifier bits if EXIDE = 0 (TXBnSID Register) or Extended Identifier bits EID28:EID21 if EXIDE = 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-6: TXBnSIDL: TRANSMIT BUFFER n STANDARD IDENTIFIER, LOW BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID2 | SID1 | SID0 | — | EXIDE | — | EID17 | EID16 |
| bit 7 | | | | | | | bit 0 |

- bit 7-5 SID2:SID0: Standard Identifier bits if EXIDE = 0 or Extended Identifier bits EID20:EID18 if EXIDE = 1
- bit 4 Unimplemented: Read as '0'
- bit 3 **EXIDE:** Extended Identifier enable bit
 - 1 = Message will transmit extended ID, SID10:SID0 becomes EID28:EID18
 - 0 = Message will transmit standard ID, EID17:EID0 are ignored
- bit 2 Unimplemented: Read as '0'
- bit 1-0 EID17:EID16: Extended Identifier bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-7: TXBnEIDH: TRANSMIT BUFFER n EXTENDED IDENTIFIER, HIGH BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 EID15:EID8: Extended Identifier bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-17: RXBnEIDL: RECEIVE BUFFER n EXTENDED IDENTIFIER, LOW BYTE REGISTERS

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 EID7:EID0: Extended Identifier bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-18: RXBnDLC: RECEIVE BUFFER n DATA LENGTH CODE REGISTERS

	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
		RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0			
	bit 7							bit 0			
bit 7	Unimplem	ented: Read	d as '0'								
bit 6	BXRTR : B	eceiver Rem	ote Transm	ission Requ	est bit						
2 0	1 = Remote 0 = No rem	 1 = Remote transfer request 0 = No remote transfer request 									
bit 5	RB1: Rese	RB1: Reserved bit 1									
	Reserved b	Reserved by CAN spec and read as '0'.									
bit 4	RB0: Rese	RB0: Reserved bit 0									
	Reserved b	by CAN spec	and read a	s '0'.							
bit 3-0	DLC3:DLC	0: Data Len	gth Code bit	s							
	1111 = Inv 1110 = Inv 1101 = Inv 1001 = Inv 1010 = Inv 1000 = Da 0111 = Da 0101 = Da 0101 = Da 0011 = Da 0011 = Da 0010 = Da	ralid ralid ralid ralid ralid ralid ta Length = $\frac{1}{2}$ ta Length = $\frac{1}{2}$	8 bytes 7 bytes 6 bytes 5 bytes 4 bytes 3 bytes 2 bytes 1 bytes 0 bytes								
	Legend:										
	R = Reada	ble bit	W = Writal	ole bit	U = Unin	nplemented	bit, read as	0'			
	-n = Value	at POR	'1' = Bit is	set	'0' = Bit i	s cleared	x = Bit is u	nknown			

23.2.1 REFERENCE VOLTAGE SET POINT

The internal reference voltage of the LVD module may be used by other internal circuitry (the Programmable Brown-out Reset). If these circuits are disabled (lower current consumption), the reference voltage circuit requires a time to become stable before a low-voltage condition can be reliably detected. This time is invariant of system clock speed. This start-up time is specified in electrical specification parameter #36. The low-voltage interrupt flag will not be enabled until a stable reference voltage is reached. Refer to the waveform in Figure 23-4.

23.2.2 CURRENT CONSUMPTION

When the module is enabled, the LVD comparator and voltage divider are enabled and will consume static current. The voltage divider can be tapped from multiple places in the resistor array. Total current consumption, when enabled, is specified in electrical specification parameter #D022B.

23.3 Operation During Sleep

When enabled, the LVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the LVDIF bit will be set and the device will wakeup from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

23.4 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the LVD module to be turned off.

PIC18FXX8

RET	URN	Return fro	rom Subroutine					
Synta	ntax: [label] RETURN [s]							
Oper	ands:	s ∈ [0,1]	s ∈ [0,1]					
Oper	peration: $(TOS) \rightarrow PC,$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow Status,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged							
Statu	s Affected:	None	None					
Encoding:		0000	0000	0000 0000		001s		
popped and the top of the stack (TOS is loaded into the program counter. If 's'= 1, the contents of the shadow registers WS, STATUSS and BSRS a loaded into their corresponding registers W, Status and BSR. If 's' = 0 no update of these registers occurs (default).					k (TOS) nter. If low SRS are g If 's' = 0, ccurs			
Words:		1	1					
Cycle	es:	2						
Q Cycle Activity:								
	Q1	Q2	Q3	3		Q4		
	Decode	No operation	Proce Data	ess a	Po fror	op PC m stack		
	No	No	No			No		
	operation	operation	operat	ion	ор	eration		
<u>Exan</u>	nple: After Interrupt PC = T0	return DS						

RLCF		Rotate Left f through Carry						
Syntax:		[label]	RLCF	f [,d [,a	a]]			
Operands:		$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:		$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow C,$ $(C) \rightarrow dest < 0 >$						
Statu	s Affected:	C, N, Z	C, N, Z					
Enco	ding:	0011	01da	01da ffff f				
Description:		The conter one bit to th If 'd' is '0', th is '1', the re 'f' (default). will be sele value. If 'a' selected as	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).					
Words:		1						
Cycles:		1						
Q Cycle Activity:								
	Q1	Q2	Q	3	Q4			
	Decode	Read register 'f'	Proce Dat	ess a	Write to destination			
Example:		RLCF	RI	EG, W				
	Before Instruc REG C	tion = 1110 = 0	0110					
	After Instruction REG = 1110 0110 W = 1100 1100 C = 1							

FIGURE 27-9: BROWN-OUT RESET AND LOW-VOLTAGE DETECT TIMING

TABLE 27-9:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
BROWN-OUT RESET AND LOW-VOLTAGE DETECT REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2			μs	
31	Twdt	Watchdog Timer Time-out Period (no prescaler)	7	18	33	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc		1024 Tosc		Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	28	72	132	ms	
34	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	2	_	μs	
35	TBOR	Brown-out Reset Pulse Width	200		—	μs	For VDD \leq BVDD (see D005)
36	TIRVST	Time for Internal Reference Voltage to become stable	_	20	50	μs	
37	TLVD	Low-Voltage Detect Pulse Width	200		_	μs	For VDD \leq VLVD (see D420)

© 2006 Microchip Technology Inc.

FIGURE 28-19: TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD (-40°C TO +125°C)

FIGURE 28-27: MINIMUM AND MAXIMUM VIN vs. VDD (I²C™ INPUT, -40°C TO +125°C)

