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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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PIC18FXX8
    
TABLE 4-1: SPECIAL FUNCTION REGISTER MAP

Address Name Address Name Address Name Address Name

FFFh TOSU FDFh INDF2(2) FBFh CCPR1H F9Fh IPR1

FFEh TOSH FDEh POSTINC2(2) FBEh CCPR1L F9Eh PIR1

FFDh TOSL FDDh POSTDEC2(2) FBDh CCP1CON F9Dh PIE1

FFCh STKPTR FDCh PREINC2(2) FBCh ECCPR1H(5) F9Ch —

FFBh PCLATU FDBh PLUSW2(2) FBBh ECCPR1L(5) F9Bh —

FFAh PCLATH FDAh FSR2H FBAh ECCP1CON(5) F9Ah —

FF9h PCL FD9h FSR2L FB9h — F99h —

FF8h TBLPTRU FD8h STATUS FB8h — F98h —

FF7h TBLPTRH FD7h TMR0H FB7h ECCP1DEL(5) F97h —

FF6h TBLPTRL FD6h TMR0L FB6h ECCPAS(5) F96h TRISE(5) 

FF5h TABLAT FD5h T0CON FB5h CVRCON(5) F95h TRISD(5)  

FF4h PRODH FD4h — FB4h CMCON(5) F94h TRISC

FF3h PRODL FD3h OSCCON FB3h TMR3H F93h TRISB

FF2h INTCON FD2h LVDCON FB2h TMR3L F92h TRISA

FF1h INTCON2 FD1h WDTCON FB1h T3CON F91h —

FF0h INTCON3 FD0h RCON FB0h — F90h —

FEFh INDF0(2) FCFh TMR1H FAFh SPBRG F8Fh —

FEEh POSTINC0(2) FCEh TMR1L FAEh RCREG F8Eh —

FEDh POSTDEC0(2) FCDh T1CON FADh TXREG F8Dh LATE(5) 

FECh PREINC0(2) FCCh TMR2 FACh TXSTA F8Ch LATD(5) 

FEBh PLUSW0(2) FCBh PR2 FABh RCSTA F8Bh LATC

FEAh FSR0H FCAh T2CON FAAh — F8Ah LATB

FE9h FSR0L FC9h SSPBUF FA9h EEADR F89h LATA

FE8h WREG FC8h SSPADD FA8h EEDATA F88h —

FE7h INDF1(2) FC7h SSPSTAT FA7h EECON2 F87h —

FE6h POSTINC1(2) FC6h SSPCON1 FA6h EECON1 F86h —

FE5h POSTDEC1(2) FC5h SSPCON2 FA5h IPR3 F85h —

FE4h PREINC1(2) FC4h ADRESH FA4h PIR3 F84h PORTE(5) 

FE3h PLUSW1(2) FC3h ADRESL FA3h PIE3 F83h PORTD(5) 

FE2h FSR1H FC2h ADCON0 FA2h IPR2 F82h PORTC

FE1h FSR1L FC1h ADCON1 FA1h PIR2 F81h PORTB

FE0h BSR FC0h — FA0h PIE2 F80h PORTA

Note 1: Unimplemented registers are read as ‘0’.
2: This is not a physical register.

3: Contents of register are dependent on WIN2:WIN0 bits in the CANCON register.
4: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given 

for each instance of the CANSTAT register due to the Microchip header file requirement.
5: These registers are not implemented on the PIC18F248 and PIC18F258.
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9.2 PORTB, TRISB and LATB 
Registers

PORTB is an 8-bit wide, bidirectional port. The corre-
sponding Data Direction register is TRISB. Setting a
TRISB bit (= 1) will make the corresponding PORTB
pin an input (i.e., put the corresponding output driver in
a high-impedance mode). Clearing a TRISB bit (= 0)
will make the corresponding PORTB pin an output (i.e.,
put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATB register,
read and write the latched output value for PORTB. 

EXAMPLE 9-2: INITIALIZING PORTB 

Each of the PORTB pins has a weak internal pull-up. A
single control bit can turn on all the pull-ups. This is
performed by clearing bit RBPU (INTCON2 register).
The weak pull-up is automatically turned off when the
port pin is configured as an output. The pull-ups are
disabled on a Power-on Reset.

Four of the PORTB pins (RB7:RB4) have an interrupt-
on-change feature. Only pins configured as inputs can
cause this interrupt to occur (i.e., any RB7:RB4 pin
configured as an output is excluded from the interrupt-
on-change comparison). The input pins (of RB7:RB4)
are compared with the old value latched on the last
read of PORTB. The “mismatch” outputs of RB7:RB4
are ORed together to generate the RB Port Change
Interrupt with Flag bit RBIF (INTCON register). 

This interrupt can wake the device from Sleep. The
user, in the Interrupt Service Routine, can clear the
interrupt in the following manner:

a) Any read or write of PORTB (except with the
MOVFF instruction). This will end the mismatch
condition.

b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF.
Reading PORTB will end the mismatch condition and
allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for
wake-up on key depression operation and operations
where PORTB is only used for the interrupt-on-change
feature. Polling of PORTB is not recommended while
using the interrupt-on-change feature.

CLRF PORTB ; Initialize PORTB by
; clearing output 
; data latches 

CLRF LATB ; Alternate method 
; to clear output 
; data latches 

MOVLW 0CFh ; Value used to
; initialize data 
; direction 

MOVWF TRISB ; Set RB3:RB0 as inputs
; RB5:RB4 as outputs 
; RB7:RB6 as inputs 

Note 1: While in Low-Voltage ICSP mode, the
RB5 pin can no longer be used as a
general purpose I/O pin and should not
be held low during normal operation to
protect against inadvertent ICSP mode
entry.

2: When using Low-Voltage ICSP Program-
ming (LVP), the pull-up on RB5 becomes
disabled. If TRISB bit 5 is cleared,
thereby setting RB5 as an output, LATB
bit 5 must also be cleared for proper
operation.
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17.3.8 SLEEP OPERATION

In Master mode, all module clocks are halted and the
transmission/reception will remain in that state until the
device wakes from Sleep. After the device returns to
normal mode, the module will continue to transmit/
receive data.

In Slave mode, the SPI Transmit/Receive Shift register
operates asynchronously to the device. This allows the
device to be placed in Sleep mode and data to be
shifted into the SPI Transmit/Receive Shift register.
When all 8 bits have been received, the MSSP interrupt
flag bit will be set and if enabled, will wake the device
from Sleep.

17.3.9 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the
current transfer.

17.3.10 BUS MODE COMPATIBILITY

Table 17-1 shows the compatibility between the
standard SPI modes and the states of the CKP and
CKE control bits. 

TABLE 17-1: SPI™ BUS MODES          

There is also an SMP bit which controls when the data
is sampled.

TABLE 17-2: REGISTERS ASSOCIATED WITH SPI™ OPERATION       

Standard SPI Mode 
Terminology

Control Bits State

CKP CKE

0, 0 0 1

0, 1 0 0

1, 0 1 1

1, 1 1 0

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on 

POR, BOR

Value on
all other
Resets

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 0000 000u

PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000

PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000

IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111

TRISC PORTC Data Direction Register 1111 1111 1111 1111

TRISA — TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 -111 1111 -111 1111

SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register xxxx xxxx uuuu uuuu

SSPCON1 WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000

SSPSTAT SMP CKE D/A P S R/W UA BF 0000 0000 0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP in SPI™ mode.
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.
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17.4.5 GENERAL CALL ADDRESS 
SUPPORT

The addressing procedure for the I2C bus is such that
the first byte after the Start condition usually
determines which device will be the slave addressed by
the master. The exception is the general call address
which can address all devices. When this address is
used, all devices should, in theory, respond with an
Acknowledge.

The general call address is one of eight addresses
reserved for specific purposes by the I2C protocol. It
consists of all ‘0’s with R/W = 0.

The general call address is recognized when the Gen-
eral Call Enable bit (GCEN) is enabled (SSPCON2<7>
set). Following a Start bit detect, 8 bits are shifted into
the SSPSR and the address is compared against the
SSPADD. It is also compared to the general call
address and fixed in hardware. 

If the general call address matches, the SSPSR is
transferred to the SSPBUF, the BF flag bit is set (eighth
bit) and on the falling edge of the ninth bit (ACK bit), the
SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the inter-
rupt can be checked by reading the contents of the
SSPBUF. The value can be used to determine if the
address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated
for the second half of the address to match and the UA
bit is set (SSPSTAT<1>). If the general call address is
sampled when the GCEN bit is set, while the slave is
configured in 10-bit Address mode, then the second
half of the address is not necessary, the UA bit will not
be set and the slave will begin receiving data after the
Acknowledge (Figure 17-15). 

FIGURE 17-15: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE 
(7 OR 10-BIT ADDRESS MODE)          

SDA

SCL

S

SSPIF

BF (SSPSTAT<0>)

SSPOV (SSPCON1<6>)

Cleared in software

SSPBUF is read

R/W = 0
ACKGeneral Call Address

Address is compared to General Call Address

GCEN (SSPCON2<7>)

Receiving data ACK

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

D7 D6 D5 D4 D3 D2 D1 D0

after ACK, set interrupt

‘0’

‘1’
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17.4.17.1 Bus Collision During a Start 
Condition

During a Start condition, a bus collision occurs if:

a) SDA or SCL are sampled low at the beginning of
the Start condition (Figure 17-26).

b) SCL is sampled low before SDA is asserted low
(Figure 17-27).

During a Start condition, both the SDA and the SCL
pins are monitored. 

If the SDA pin is already low, or the SCL pin is already
low, then all of the following occur:

• the Start condition is aborted, 
• the BCLIF flag is set and
•  the MSSP module is reset to its Idle state 

(Figure 17-26). 

The Start condition begins with the SDA and SCL pins
deasserted. When the SDA pin is sampled high, the
Baud Rate Generator is loaded from SSPADD<6:0>
and counts down to 0. If the SCL pin is sampled low
while SDA is high, a bus collision occurs because it is
assumed that another master is attempting to drive a
data ‘1’ during the Start condition. 

If the SDA pin is sampled low during this count, the
BRG is reset and the SDA line is asserted early
(Figure 17-28). If, however, a ‘1’ is sampled on the SDA
pin, the SDA pin is asserted low at the end of the BRG
count. The Baud Rate Generator is then reloaded and
counts down to 0 and during this time, if the SCL pins
are sampled as ‘0’, a bus collision does not occur. At
the end of the BRG count, the SCL pin is asserted low.      

FIGURE 17-26: BUS COLLISION DURING START CONDITION (SDA ONLY)      

Note: The reason that bus collision is not a factor
during a Start condition is that no two bus
masters can assert a Start condition at the
exact same time. Therefore, one master
will always assert SDA before the other.
This condition does not cause a bus colli-
sion because the two masters must be
allowed to arbitrate the first address
following the Start condition. If the address
is the same, arbitration must be allowed to
continue into the data portion, Repeated
Start or Stop conditions.

SDA

SCL

SEN

SDA sampled low before 

SDA goes low before the SEN bit is set.

S bit and SSPIF set because

SSP module reset into Idle state.
SEN cleared automatically because of bus collision. 

S bit and SSPIF set because

Set SEN, enable Start
condition if SDA = 1, SCL = 1

SDA = 0, SCL = 1.

BCLIF

S

SSPIF

SDA = 0, SCL = 1.

SSPIF and BCLIF are
cleared in software

SSPIF and BCLIF are
cleared in software.

Set BCLIF,

Start condition. Set BCLIF.
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TABLE 18-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)            

BAUD
RATE
(Kbps) 

FOSC = 40 MHz SPBRG
value 

(decimal)

33 MHz SPBRG
value 

(decimal)

25 MHz SPBRG
value 

(decimal)

20 MHz SPBRG
value 

(decimal)KBAUD
%

ERROR KBAUD
%

ERROR KBAUD
%

ERROR KBAUD
%

ERROR

0.3 NA - - NA - - NA - - NA - -

1.2 NA - - NA - - NA - - NA - -

2.4 NA - - 2.40 -0.07 214 2.40 -0.15 162 2.40 +0.16 129

9.6 9.62 +0.16 64 9.55 -0.54 53 9.53 -0.76 40 9.47 -1.36 32

19.2 18.94 -1.36 32 19.10 -0.54 26 19.53 +1.73 19 19.53 +1.73 15

76.8 78.13 +1.73 7 73.66 -4.09 6 78.13 +1.73 4 78.13 +1.73 3

96 89.29 -6.99 6 103.13 +7.42 4 97.66 +1.73 3 104.17 +8.51 2

300 312.50 +4.17 1 257.81 -14.06 1 NA - - 312.50 +4.17 0

500 625 +25.00 0 NA - - NA - - NA - -

HIGH 625 - 0 515.63 - 0 390.63 - 0 312.50 - 0

LOW 2.44 - 255 2.01 - 255 1.53 - 255 1.22 - 255

BAUD
RATE
(Kbps) 

FOSC = 16 MHz SPBRG
value 

(decimal)

10 MHz SPBRG
value 

(decimal)

7.15909 MHz SPBRG
value 

(decimal)

5.0688 MHz SPBRG
value 

(decimal)KBAUD
%

ERROR KBAUD
%

ERROR KBAUD
%

ERROR KBAUD
%

ERROR

0.3 NA - - NA - - NA - - NA - -

1.2 1.20 +0.16 207 1.20 +0.16 129 1.20 +0.23 92 1.20 0 65

2.4 2.40 +0.16 103 2.40 +0.16 64 2.38 -0.83 46 2.40 0 32

9.6 9.62 +0.16 25 9.77 +1.73 15 9.32 -2.90 11 9.90 +3.13 7

19.2 19.23 +0.16 12 19.53 +1.73 7 18.64 -2.90 5 19.80 +3.13 3

76.8 83.33 +8.51 2 78.13 +1.73 1 111.86 +45.65 0 79.20 +3.13 0

96 83.33 -13.19 2 78.13 -18.62 1 NA - - NA - -

300 250 -16.67 0 156.25 -47.92 0 NA - - NA - -

500 NA - - NA - - NA - - NA - -

HIGH 250 - 0 156.25 - 0 111.86 - 0 79.20 - 0

LOW 0.98 - 255 0.61 - 255 0.44 - 255 0.31 - 255

BAUD
RATE
(Kbps) 

FOSC = 4 MHz SPBRG
value 

(decimal)

3.579545 MHz SPBRG
value 

(decimal)

1 MHz SPBRG
value 

(decimal)

32.768 kHz SPBRG
value 

(decimal)KBAUD
%

ERROR KBAUD
%

ERROR KBAUD
%

ERROR KBAUD
%

ERROR

0.3 0.30 -0.16 207 0.30 +0.23 185 0.30 +0.16 51 0.26 -14.67 1

1.2 1.20 +1.67 51 1.19 -0.83 46 1.20 +0.16 12 NA - -

2.4 2.40 +1.67 25 2.43 +1.32 22 2.23 -6.99 6 NA - -

9.6 8.93 -6.99 6 9.32 -2.90 5 7.81 -18.62 1 NA - -

19.2 20.83 +8.51 2 18.64 -2.90 2 15.63 -18.62 0 NA - -

76.8 62.50 -18.62 0 55.93 -27.17 0 NA - - NA - -

96 NA - - NA - - NA - - NA - -

300 NA - - NA - - NA - - NA - -

500 NA - - NA - - NA - - NA - -

HIGH 62.50 - 0 55.93 - 0 15.63 - 0 0.51 - 0

LOW 0.24 - 255 0.22 - 255 0.06 - 255 0.002 - 255
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18.3 USART Synchronous 
Master Mode

In Synchronous Master mode, the data is transmitted in
a half-duplex manner (i.e., transmission and reception
do not occur at the same time). When transmitting data,
the reception is inhibited and vice versa. Synchronous
mode is entered by setting bit SYNC (TXSTA register).
In addition, enable bit SPEN (RCSTA register) is set in
order to configure the RC6/TX/CK and RC7/RX/DT I/O
pins to CK (clock) and DT (data) lines, respectively. The
Master mode indicates that the processor transmits the
master clock on the CK line. The Master mode is
entered by setting bit CSRC (TXSTA register).

18.3.1 USART SYNCHRONOUS MASTER 
TRANSMISSION

The USART transmitter block diagram is shown in
Figure 18-1. The heart of the transmitter is the Transmit
(Serial) Shift Register (TSR). The shift register obtains
its data from the Read/Write Transmit Buffer register
(TXREG). The TXREG register is loaded with data in
software. The TSR register is not loaded until the last
bit has been transmitted from the previous load. As
soon as the last bit is transmitted, the TSR is loaded
with new data from the TXREG (if available). Once the
TXREG register transfers the data to the TSR register
(occurs in one TCY), the TXREG is empty and interrupt
bit TXIF (PIR1 register) is set. The interrupt can be
enabled/disabled by setting/clearing enable bit TXIE
(PIE1 register). Flag bit TXIF will be set regardless of
the state of enable bit TXIE and cannot be cleared in

software. It will reset only when new data is loaded into
the TXREG register. While flag bit, TXIF, indicates the
status of the TXREG register, another bit, TRMT
(TXSTA register), shows the status of the TSR register.
TRMT is a read-only bit which is set when the TSR is
empty. No interrupt logic is tied to this bit, so the user
has to poll this bit in order to determine if the TSR
register is empty. The TSR is not mapped in data
memory, so it is not available to the user.

Steps to follow when setting up a Synchronous Master
Transmission:

1. Initialize the SPBRG register for the appropriate
baud rate (Section 18.1 “USART Baud Rate
Generator (BRG)”).

2. Enable the synchronous master serial port by
setting bits SYNC, SPEN and CSRC.

3. If interrupts are desired, set enable bit TXIE.
4. If 9-bit transmission is desired, set bit TX9.
5. Enable the transmission by setting bit TXEN.

6. If 9-bit transmission is selected, the ninth bit
should be loaded in bit TX9D.

7. Start transmission by loading data to the TXREG
register.

TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION       

Note: TXIF is not cleared immediately upon
loading data into the transmit buffer
TXREG. The flag bit becomes valid in the
second instruction cycle following the load
instruction.

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on 

POR, BOR

Value on 
all other 
Resets

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 0000 000u

PIR1 PSPIF(1) ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000

PIE1 PSPIE(1) ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000

IPR1 PSPIP(1) ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 0000 000x 0000 000u

TXREG USART Transmit Register 0000 0000 0000 0000

TXSTA CSRC TX9 TXEN SYNC — BRGH TRMT TX9D 0000 -010 0000 -010

SPBRG Baud Rate Generator Register 0000 0000 0000 0000

Legend: x = unknown, - = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.
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19.0 CAN MODULE

19.1 Overview 

The Controller Area Network (CAN) module is a serial
interface, useful for communicating with other peripher-
als or microcontroller devices. This interface/protocol
was designed to allow communications within noisy
environments. 

The CAN module is a communication controller,
implementing the CAN 2.0 A/B protocol as defined in
the BOSCH specification. The module will support
CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B
Active versions of the protocol. The module implemen-
tation is a full CAN system. The CAN specification is
not covered within this data sheet. The reader may
refer to the BOSCH CAN specification for further
details.

The module features are as follows:

• Complies with ISO CAN Conformance Test
• Implementation of the CAN protocol CAN 1.2, 

CAN 2.0A and CAN 2.0B 
• Standard and extended data frames
• 0-8 bytes data length

• Programmable bit rate up to 1 Mbit/sec
• Support for remote frames
• Double-buffered receiver with two prioritized 

received message storage buffers
• 6 full (standard/extended identifier) acceptance 

filters, 2 associated with the high priority receive 
buffer and 4 associated with the low priority 
receive buffer

• 2 full acceptance filter masks, one each 
associated with the high and low priority receive 
buffers

• Three transmit buffers with application specified 
prioritization and abort capability

• Programmable wake-up functionality with 
integrated low-pass filter

• Programmable Loopback mode supports self-test 
operation

• Signaling via interrupt capabilities for all CAN 
receiver and transmitter error states

• Programmable clock source

• Programmable link to timer module for 
time-stamping and network synchronization

• Low-power Sleep mode

19.1.1 OVERVIEW OF THE MODULE

The CAN bus module consists of a protocol engine and
message buffering and control. The CAN protocol
engine handles all functions for receiving and transmit-
ting messages on the CAN bus. Messages are
transmitted by first loading the appropriate data
registers. Status and errors can be checked by reading
the appropriate registers. Any message detected on
the CAN bus is checked for errors and then matched
against filters to see if it should be received and stored
in one of the 2 receive registers.

The CAN module supports the following frame types:

• Standard Data Frame
• Extended Data Frame

• Remote Frame
• Error Frame
• Overload Frame Reception

• Interframe Space

CAN module uses RB3/CANRX and RB2/CANTX/INT2
pins to interface with CAN bus. In order to configure
CANRX and CANTX as CAN interface:

• bit TRISB<3> must be set;
• bit TRISB<2> must be cleared.

19.1.2 TRANSMIT/RECEIVE BUFFERS

The PIC18FXX8 has three transmit and two receive
buffers, two acceptance masks (one for each receive
buffer) and a total of six acceptance filters. Figure 19-1
is a block diagram of these buffers and their connection
to the protocol engine.
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19.2.3.1 Message Acceptance Filters and 
Masks

This subsection describes the message acceptance
filters and masks for the CAN receive buffers.

REGISTER 19-21: RXFnSIDH: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER, 
HIGH BYTE REGISTERS             

REGISTER 19-22: RXFnSIDL: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER, 
LOW BYTE REGISTERS             

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3

bit 7 bit 0

bit 7-0 SID10:SID3: Standard Identifier Filter bits if EXIDEN = 0 or 
Extended Identifier Filter bits EID28:EID21 if EXIDEN = 1

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

R/W-x R/W-x R/W-x U-0 R/W-x U-0 R/W-x R/W-x

SID2 SID1 SID0 — EXIDEN — EID17 EID16

bit 7 bit 0

bit 7-5 SID2:SID0: Standard Identifier Filter bits if EXIDEN = 0 or
Extended Identifier Filter bits EID20:EID18 if EXIDEN = 1

bit 4 Unimplemented: Read as ‘0’

bit 3 EXIDEN: Extended Identifier Filter Enable bit

1 = Filter will only accept extended ID messages 
0 = Filter will only accept standard ID messages

bit 2 Unimplemented: Read as ‘0’

bit 1-0 EID17:EID16: Extended Identifier Filter bits

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
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19.6 Message Acceptance Filters 
and Masks

The message acceptance filters and masks are used to
determine if a message in the message assembly
buffer should be loaded into either of the receive buff-
ers. Once a valid message has been received into the
MAB, the identifier fields of the message are compared
to the filter values. If there is a match, that message will
be loaded into the appropriate receive buffer. The filter
masks are used to determine which bits in the identifier
are examined with the filters. A truth table is shown
below in Table 19-2 that indicates how each bit in the
identifier is compared to the masks and filters to deter-
mine if a message should be loaded into a receive
buffer. The mask essentially determines which bits to
apply the acceptance filters to. If any mask bit is set to
a zero, then that bit will automatically be accepted
regardless of the filter bit.

TABLE 19-2: FILTER/MASK TRUTH TABLE

As shown in the receive buffer block diagram
(Figure 19-4), acceptance filters RXF0 and RXF1 and
filter mask RXM0 are associated with RXB0. Filters
RXF2, RXF3, RXF4 and RXF5 and mask RXM1 are
associated with RXB1. When a filter matches and a
message is loaded into the receive buffer, the filter
number that enabled the message reception is loaded
into the FILHIT bit(s). 

For RXB1, the RXB1CON register contains the
FILHIT<2:0> bits. They are coded as follows:

• 101 = Acceptance Filter 5 (RXF5)
• 100 = Acceptance Filter 4 (RXF4)
• 011 = Acceptance Filter 3 (RXF3)

• 010 = Acceptance Filter 2 (RXF2)
• 001 = Acceptance Filter 1 (RXF1)
• 000 = Acceptance Filter 0 (RXF0)

The coding of the RXB0DBEN bit enables these three
bits to be used similarly to the FILHIT bits and to
distinguish a hit on filter RXF0 and RXF1, in either
RXB0, or after a rollover into RXB1.

• 111 = Acceptance Filter 1 (RXF1)
• 110 = Acceptance Filter 0 (RXF0)

• 001 = Acceptance Filter 1 (RXF1)
• 000 = Acceptance Filter 0

If the RXB0DBEN bit is clear, there are six codes
corresponding to the six filters. If the RXB0DBEN bit is
set, there are six codes corresponding to the six filters
plus two additional codes corresponding to RXF0 and
RXF1 filters that rollover into RXB1.

If more than one acceptance filter matches, the FILHIT
bits will encode the binary value of the lowest
numbered filter that matched. In other words, if filter
RXF2 and filter RXF4 match, FILHIT will be loaded with
the value for RXF2. This essentially prioritizes the
acceptance filters with a lower number filter having
higher priority. Messages are compared to filters in
ascending order of filter number.

The mask and filter registers can only be modified
when the PIC18FXX8 is in Configuration mode. The
mask and filter registers cannot be read outside of
Configuration mode. When outside of Configuration
mode, all mask and filter registers will be read as ‘0’.

FIGURE 19-6: MESSAGE ACCEPTANCE MASK AND FILTER OPERATION   

Mask 
bit n

Filter bit n
Message 
Identifier 
bit n001

Accept or 
Reject 
bit n

0 x x Accept

1 0 0 Accept

1 0 1 Reject

1 1 0 Reject

1 1 1 Accept

Legend:  x = don’t care

Note: ‘000’ and ‘001’ can only occur if the
RXB0DBEN bit is set in the RXB0CON
register allowing RXB0 messages to
rollover into RXB1.

Acceptance Filter Register Acceptance Mask Register

RxRqst

Message Assembly Buffer

RXFn0

RXFn1

RXFnn

RXMn0

RXMn1

RXMnn

Identifier
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FIGURE 19-9: SHORTENING A BIT PERIOD (SUBTRACTING SJW FROM PHASE SEGMENT 2) 

19.9 Programming Time Segments

Some requirements for programming of the time
segments:

• Prop Seg + Phase Seg 1 ≥ Phase Seg 2
• Phase Seg 2 ≥ Sync Jump Width

For example, assume that a 125 kHz CAN baud rate is
desired using 20 MHz for FOSC. With a TOSC of 50 ns,
a baud rate prescaler value of 04h gives a TQ of 500 ns.
To obtain a nominal bit rate of 125 kHz, the nominal bit
time must be 8 μs or 16 TQ.

Using 1 TQ for the Sync Segment, 2 TQ for the Propa-
gation Segment and 7 TQ for Phase Segment 1 would
place the sample point at 10 TQ after the transition.
This leaves 6 TQ for Phase Segment 2. 

By the rules above, the Sync Jump Width could be the
maximum of 4 TQ. However, normally a large SJW is
only necessary when the clock generation of the differ-
ent nodes is inaccurate or unstable, such as using
ceramic resonators. Typically, an SJW of 1 is enough.

19.10 Oscillator Tolerance

As a rule of thumb, the bit timing requirements allow
ceramic resonators to be used in applications with
transmission rates of up to 125 Kbit/sec. For the full bus
speed range of the CAN protocol, a quartz oscillator is
required. A maximum node-to-node oscillator variation
of 1.7% is allowed.

19.11 Bit Timing Configuration 
Registers

The Configuration registers (BRGCON1, BRGCON2,
BRGCON3) control the bit timing for the CAN bus
interface. These registers can only be modified when
the PIC18FXX8 is in Configuration mode.

19.11.1 BRGCON1

The BRP bits control the baud rate prescaler. The
SJW<1:0> bits select the synchronization jump width in
terms of multiples of TQ.

19.11.2 BRGCON2

The PRSEG bits set the length of the Propagation Seg-
ment in terms of TQ. The SEG1PH bits set the length of
Phase Segment 1 in TQ. The SAM bit controls how
many times the RXCAN pin is sampled. Setting this bit
to a ‘1’ causes the bus to be sampled three times; twice
at TQ/2 before the sample point and once at the normal
sample point (which is at the end of Phase Segment 1).
The value of the bus is determined to be the value read
during at least two of the samples. If the SAM bit is set
to a ‘0’, then the RXCAN pin is sampled only once at
the sample point. The SEG2PHTS bit controls how the
length of Phase Segment 2 is determined. If this bit is
set to a ‘1’, then the length of Phase Segment 2 is
determined by the SEG2PH bits of BRGCON3. If the
SEG2PHTS bit is set to a ‘0’, then the length of Phase
Segment 2 is the greater of Phase Segment 1 and the
information processing time (which is fixed at 2 TQ for
the PIC18FXX8).

19.11.3 BRGCON3

The PHSEG2<2:0> bits set the length (in TQ) of Phase
Segment 2 if the SEG2PHTS bit is set to a ‘1’. If the
SEG2PHTS bit is set to a ‘0’, then the PHSEG2<2:0>
bits have no effect.

Sync
Prop

Segment
Phase

Segment 1
Phase

Segment 2 ≤ SJW

TQ Sample Point

Nominal Bit Length

Actual Bit Length
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19.12 Error Detection

The CAN protocol provides sophisticated error detection
mechanisms. The following errors can be detected.

19.12.1 CRC ERROR

With the Cyclic Redundancy Check (CRC), the
transmitter calculates special check bits for the bit
sequence, from the start of a frame until the end of the
data field. This CRC sequence is transmitted in the
CRC field. The receiving node also calculates the CRC
sequence using the same formula and performs a
comparison to the received sequence. If a mismatch is
detected, a CRC error has occurred and an error frame
is generated. The message is repeated.

19.12.2 ACKNOWLEDGE ERROR

In the Acknowledge field of a message, the transmitter
checks if the Acknowledge slot (which was sent out as
a recessive bit) contains a dominant bit. If not, no other
node has received the frame correctly. An Acknowl-
edge Error has occurred; an error frame is generated
and the message will have to be repeated.

19.12.3 FORM ERROR 

If a node detects a dominant bit in one of the four
segments, including end of frame, interframe space,
Acknowledge delimiter or CRC delimiter, then a Form
Error has occurred and an error frame is generated.
The message is repeated.

19.12.4 BIT ERROR

A Bit Error occurs if a transmitter sends a dominant bit
and detects a recessive bit, or if it sends a recessive bit
and detects a dominant bit, when monitoring the actual
bus level and comparing it to the just transmitted bit. In
the case where the transmitter sends a recessive bit
and a dominant bit is detected during the arbitration
field and the Acknowledge slot, no Bit Error is
generated because normal arbitration is occurring.

19.12.5 STUFF BIT ERROR

If, between the start of frame and the CRC delimiter, six
consecutive bits with the same polarity are detected,
the bit stuffing rule has been violated. A Stuff Bit Error
occurs and an error frame is generated. The message
is repeated.

19.12.6 ERROR STATES

Detected errors are made public to all other nodes via
error frames. The transmission of the erroneous
message is aborted and the frame is repeated as soon
as possible. Furthermore, each CAN node is in one of
the three error states “error-active”, “error-passive” or
“bus-off” according to the value of the internal error
counters. The error-active state is the usual state,
where the bus node can transmit messages and
activate error frames (made of dominant bits) without
any restrictions. In the error-passive state, messages
and passive error frames (made of recessive bits) may
be transmitted. The bus-off state makes it temporarily
impossible for the station to participate in the bus
communication. During this state, messages can
neither be received nor transmitted.

19.12.7 ERROR MODES AND ERROR 
COUNTERS

The PIC18FXX8 contains two error counters: the
Receive Error Counter (RXERRCNT) and the Transmit
Error Counter (TXERRCNT). The values of both
counters can be read by the MCU. These counters are
incremented or decremented in accordance with the
CAN bus specification.

The PIC18FXX8 is error-active if both error counters
are below the error-passive limit of 128. It is error-
passive if at least one of the error counters equals or
exceeds 128. It goes to bus-off if the transmit error
counter equals or exceeds the bus-off limit of 256. The
device remains in this state until the bus-off recovery
sequence is received. The bus-off recovery sequence
consists of 128 occurrences of 11 consecutive
recessive bits (see Figure 19-10). Note that the CAN
module, after going bus-off, will recover back to error-
active without any intervention by the MCU if the bus
remains Idle for 128 x 11 bit times. If this is not desired,
the error Interrupt Service Routine should address this.
The current error mode of the CAN module can be read
by the MCU via the COMSTAT register.

Additionally, there is an Error State Warning flag bit,
EWARN, which is set if at least one of the error
counters equals or exceeds the error warning limit of
96. EWARN is reset if both error counters are less than
the error warning limit.
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NOTES:
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REGISTER 24-11: DEVID1: DEVICE ID REGISTER 1 FOR PIC18FXX8 DEVICES 
(BYTE ADDRESS 3FFFFEh)                

REGISTER 24-12: DEVID2: DEVICE ID REGISTER 2 FOR PIC18FXX8 DEVICES 
(BYTE ADDRESS 3FFFFFh)                

R R R R R R R R

DEV2 DEV1 DEV0 REV4 REV3 REV2 REV1 REV0

bit 7 bit 0

bit 7-5 DEV2:DEV0: Device ID bits
These bits are used with the DEV<10:3> bits in the Device ID Register 2 to identify the 
part number.
000 = PIC18F248
001 = PIC18F448
010 = PIC18F258
011 = PIC18F458

bit 4-0 REV4:REV0: Revision ID bits
These bits are used to indicate the device revision.

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

-n = Value when device is unprogrammed u = Unchanged from programmed state

R R R R R R R R

DEV10 DEV9 DEV8 DEV7 DEV6 DEV5 DEV4 DEV3

bit 7 bit 0

bit 7-0 DEV10:DEV3: Device ID bits

These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the 
part number.

00001000 = PIC18FXX8

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

-n = Value when device is unprogrammed u = Unchanged from programmed state
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DECFSZ Decrement f, Skip if 0

Syntax: [ label ]   DECFSZ   f [,d [,a]]

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f) – 1 → dest,
skip if result = 0

Status Affected: None

Encoding: 0010 11da ffff ffff

Description: The contents of register ‘f’ are 
decremented. If ‘d’ is ‘0’, the result is 
placed in W. If ‘d’ is ‘1’, the result is 
placed back in register ‘f’ (default).
If the result is ‘0’, the next instruction 
which is already fetched is discarded 
and a NOP is executed instead, making 
it a two-cycle instruction. If ‘a’ is ‘0’, the 
Access Bank will be selected, 
overriding the BSR value. If ‘a’ = 1, 
then the bank will be selected as per 
the BSR value (default).

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to 
destination

If skip:
Q1 Q2 Q3 Q4

No 
operation

No 
operation

No 
operation

No 
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

Example: HERE      DECFSZ   CNT
          GOTO     LOOP
CONTINUE 

Before Instruction
PC = Address (HERE)

After Instruction
CNT = CNT – 1
If CNT = 0;

PC = Address (CONTINUE)
If CNT ≠ 0;

PC = Address (HERE + 2)

DCFSNZ Decrement f, Skip if not 0

Syntax: [ label ]   DCFSNZ    f [,d [,a]]

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]
a ∈ [0,1]

Operation: (f) – 1 → dest,
skip if result ≠ 0

Status Affected: None

Encoding: 0100 11da ffff ffff

Description: The contents of register ‘f’ are 
decremented. If ‘d’ is ‘0’, the result is 
placed in W. If ‘d’ is ‘1’, the result is 
placed back in register ‘f’ (default).
If the result is not ‘0’, the next 
instruction which is already fetched is 
discarded and a NOP is executed 
instead, making it a two-cycle 
instruction. If ‘a’ is ‘0’, the Access Bank 
will be selected, overriding the BSR 
value. If ‘a’ = 1, then the bank will be 
selected as per the BSR value 
(default).

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process 
Data

Write to 
destination

If skip:

Q1 Q2 Q3 Q4

No 
operation

No 
operation

No 
operation

No 
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

No 
operation

Example: HERE    DCFSNZ TEMP
ZERO    : 
NZERO   : 

Before Instruction
TEMP = ?

After Instruction
TEMP = TEMP – 1,
If TEMP = 0;

PC = Address (ZERO)
If TEMP ≠ 0;

PC = Address (NZERO)
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TBLRD Table Read

Syntax: [ label ] TBLRD ( *; *+; *-; +*)

Operands: None

Operation: if TBLRD *,
(Prog Mem (TBLPTR)) → TABLAT;
TBLPTR – No Change;
if TBLRD *+,
(Prog Mem (TBLPTR)) → TABLAT;
(TBLPTR) + 1 → TBLPTR;
if TBLRD *-,
(Prog Mem (TBLPTR)) → TABLAT;
(TBLPTR) – 1 → TBLPTR;
if TBLRD +*,
(TBLPTR) + 1 → TBLPTR;
(Prog Mem (TBLPTR)) → TABLAT

Status Affected: None

Encoding: 0000 0000 0000 10nn
 nn=0 * 
   =1 *+
   =2 *-
   =3 +*

Description: This instruction is used to read the contents 
of Program Memory (P.M.). To address the 
program memory, a pointer called Table 
Pointer (TBLPTR) is used.
The TBLPTR (a 21-bit pointer) points to each 
byte in the program memory. TBLPTR has a 
2-Mbyte address range. 

TBLPTR[0] = 0: Least Significant 
Byte of Program 
Memory Word

TBLPTR[0] = 1: Most Significant Byte 
of Program Memory 
Word

The TBLRD instruction can modify the value 
of TBLPTR as follows:
• no change
• post-increment
• post-decrement
• pre-increment

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No 
operation

No 
operation

No 
operation

No 
operation

No operation
(Read Program 

Memory)

No 
operation

No operation
(Write 

TABLAT)

Example 1: TBLRD  *+ ;

Before Instruction
TABLAT = 0x55
TBLPTR = 0x00A356
MEMORY(0x00A356) = 0x34

After Instruction
TABLAT = 0x34
TBLPTR = 0x00A357

Example 2: TBLRD  +* ;

Before Instruction
TABLAT = 0xAA
TBLPTR = 0x01A357
MEMORY(0x01A357) = 0x12
MEMORY(0x01A358) = 0x34

After Instruction
TABLAT = 0x34
TBLPTR = 0x01A358
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FIGURE 27-3: PIC18LFXX8 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)        
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Vo
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g
e

6.0V

5.5V

4.5V

4.0V

2.0V

40 MHz

5.0V

3.5V

3.0V

2.5V

PIC18LFXX8

4 MHz

4.2V

FMAX = (16.36 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz, if VDDAPPMIN ≤ 4.2V = 40 MHz, if VDDAPPMIN > 4.2V

Note: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.
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27.3.2 TIMING CONDITIONS

The temperature and voltages specified in Table 27-5
apply to all timing specifications unless otherwise
noted. Figure 27-5 specifies the load conditions for the
timing specifications.

TABLE 27-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC       

FIGURE 27-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS    

AC CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +85°C for industrial

-40°C ≤ TA ≤ +125°C for extended
Operating voltage VDD range as described in DC specification, 
Section 27.1 “DC Characteristics”. 
LF parts operate for industrial temperatures only.

VDD/2

CL

RL

Pin

Pin

VSS

VSS

CL

RL = 464Ω

CL = 50 pF for all pins except OSC2/CLKO
and including D and E outputs as ports

Load Condition 1 Load Condition 2
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FIGURE 28-11: TYPICAL AND MAXIMUM IDD vs. VDD 
(TIMER1 AS MAIN OSCILLATOR 32.768 kHz, C1 AND C2 = 47 pF)

FIGURE 28-12: AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R 
(RC MODE, C = 20 pF, +25°C)
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FIGURE 28-21: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)

FIGURE 28-22: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 3V, -40°C TO +125°C)
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