

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08pt32vlc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Register name	Bit 7	6	5	4	3	2	1	Bit 0
0x303F	Reserved	_	_	_	_		_	_	
0x3040	PMC_SPMSC1	LVWF	LVWAC K	LVWIE	LVDRE	LVDSE	LVDE	BGBDS	BGBE
0x3041	PMC_SPMSC2		LVDV	LV	wv	—	—	—	—
0x3042-0x3049	Reserved		—	_	—	—	—	—	—
0x304A	SYS_ILLAH	Bit 15	14	13	12	11	19	9	Bit 8
0x304B	SYS_ILLAL	Bit 7	6	5	4	3	2	1	Bit 0
0x304C-0x304F	Reserved		—	—	—	—	—	—	—
0x3050	IPC_ILRS0	IL	R3	IL	R2	IL	R1	ILI	R0
0x3051	IPC_ILRS1	IL	R7	IL	R6	IL	R5	ILI	R4
0x3052	IPC_ILRS2	ILF	R11	ILF	R10	IL	R9	ILI	R8
0x3053	IPC_ILRS3	ILF	R15	ILF	R14	ILF	313	ILF	12
0x3054	IPC_ILRS4	ILF	R19	ILF	R18	ILF	R17	ILF	816
0x3055	IPC_ILRS5	ILF	R23	ILF	R22	ILF	R21	ILF	R20
0x3056	IPC_ILRS6	ILF	R27	ILF	R26	ILF	R25	ILF	R24
0x3057	IPC_ILRS7	ILF	R31	ILF	R30	ILF	R29	ILF	328
0x3058	IPC_ILRS8	ILF	R35	ILF	R34	ILF	333	ILF	32
0x3059	IPC_ILRS9	ILF	R39	ILF	R38	ILF	R37	ILF	36
0x305A-0x305F	Reserved		—		—		—	—	
0x3060	CRC_D0	Bit 31	30	29	28	27	26	25	Bit 24
0x3061	CRC_D1	Bit 23	22	21	20	19	18	17	Bit 16
0x3062	CRC_D2	Bit 15	14	13	12	11	10	9	Bit 8
0x3063	CRC_D3	Bit 7	6	5	4	3	2	1	Bit 0
0x3064	CRC_P0	Bit 31	30	29	28	27	26	25	Bit 24
0x3065	CRC_P1	Bit 23	22	21	20	19	18	17	Bit 16
0x3066	CRC_P2	Bit 15	14	13	12	11	10	9	Bit 8
0x3067	CRC_P3	Bit 7	6	5	4	3	2	1	Bit 0
0x3068	CRC_CTRL	т	ТС	то	TR	0	FXOR	WAS	TCRC
0x3069	Reserved		—		—		—	—	—
0x306A	RTC_SC1	RTIF	RTIE	—	RTCO	—	—	—	—
0x306B	RTC_SC2	RTC	LKS	—	—	—		RTCPS	
0x306C	RTC_MODH				MC	DH	•		
0x306D	RTC_MODL				MC	DL			
0x306E	RTC_CNTH				CN	ITH			
0x306F	RTC_CNTL				CN	ITL			
0x3070	I2C_A1	AD7	AD6	AD5	AD4	AD3	AD2	AD1	0
0x3071	12C_F	MULT ICR							
0x3072	I2C_C1	IICEN	IICEN IICIE MST TX TXAK				RSTA	WUEN	_
0x3073	12C_S	TCF	IAAS	BUSY	ARBL	RAM	SRW	IICIF	RXAK
0x3074	I2C_D	DATA							
	Table continues on the next page								

Table 4-4. High-page register allocation (continued)

Table continues on the next page...

4.5.2.2 Flash and EEPROM memory map

The MCU places the flash memory between global address 0x0000 and 0xFFFF as shown in the following table. Not all flash are available to users because some addresses are overlapped with RAM, EEPROM, and registers.

MC9S08PT60 contains a piece of 64 KB flash in which only 60,864 bytes flash are available for users. This flash block is divided into 128 sectors of 512 bytes. MC9S08PT32 contains a piece of 32 KB flash that is fully available for users. This flash block is divided into 64 sectors of 512 bytes.

Device	Global address	Size (Bytes)	Description	User availability
		64 KB		Sector [0:7]: N/A
MC9S08PT60	0x0000 — 0xFFFF		Flash block contains flash configuration field	Sector [8]: Last 448 bytes available
				Sector [9:23]: fully available
				Sector [24]: N/A
				Sector [25:127]: fully available
MC9S08PT32	0x8000 — 0xFFFF	32 KB	Flash block contains flash configuration field	Sector [64:127]: fully available

 Table 4-6.
 Flash memory addressing

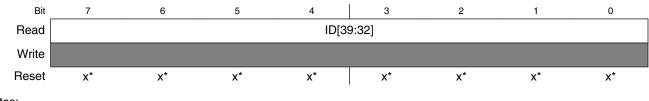
4.5.2.3 Flash and EEPROM initialization after system reset

On each system reset, the flash and EEPROM module executes an initialization sequence that establishes initial values for the flash and EEPROM block configuration parameters, the FPROT and EEPROT protection registers, and the FOPT and FSEC registers. The initialization routine reverts to built-in default values that leave the module in a fully protected and secured state if errors are encountered during execution of the reset sequence. If a double bit fault is detected during the reset sequence, both FSTAT[MGSTAT] bits will be set.

FSTAT[CCIF] is cleared throughout the initialization sequence. The NVM module holds off all CPU access for a portion of the initialization sequence. Flash and EEPROM reads are allowed after the hold is removed. Completion of the initialization sequence is marked by setting FSTAT[CCIF] high, which enables user commands.

If a reset occurs while any flash or EEPROM command is in progress, that command will be immediately aborted. The state of the word being programmed or the sector/block being erased is not guaranteed.

Vector Address (high/ Vector name Module Source Local enable Description number low) TC TCIE IDLE ILIE RIE RDRF 24 0xFFCE:FFCF Vsci0rx SCI0 SCI0 receive LBKDIF LBKDIE RXEDGIF RXEDGIE ORIE OR NF NEIE 23 0xFFD0:FFD1 Vsci0err SCI0 SCI0 error FE FEIE PF PEIE ADC conversion 22 0xFFD2:FFD3 Vadc ADC COCO AIEN complete interrupt Analog comparator 21 0xFFD4:FFD5 Vacmp ACMP ACF ACIE interrupt MTIM1 overflow 20 0xFFD6:FFD7 Vmtim1 MTIM1 TOF TOIE interrupt MTIM0 overflow 19 Vmtim0 MTIM0 TOF TOIE 0xFFD8:FFD9 interrupt Vftm0ovf 18 0xFFDA:FFDB FTM0 TOF TOIE FTM0 overflow 17 0xFFDC:FFDD Vftm0ch1 FTM0CH1 CH1F CH1IE FTM0 channel 1 16 0xFFDE:FFDF Vftm0ch0 FTM0CH0 CH0F CH0IE FTM0 channel 0 15 Vftm1ovf TOF TOIE FTM1 overflow 0xFFE0:FFE1 FTM1 14 0xFFE2:FFE3 Vftm1ch1 FTM1CH1 CH1F CH1IE FTM1 channel 1 13 0xFFE4:FFE5 Vftm1ch0 FTM1CH0 CH0F CH0IE FTM1 channel 0 12 0xFFE6:FFE7 Vftm2ovf FTM2 TOF TOIE FTM2 overflow 11 0xFFE8:FFE9 Vftm2ch5 FTM2CH5 CH5F CH5IE FTM2 channel 5 10 Vftm2ch4 FTM2 channel 4 **0xFFEA:FFEB** FTM2CH4 CH4F CH4IE 9 0xFFEC:FFED Vftm2ch3 FTM2CH3 CH3F **CH3IE** FTM2 channel 3 8 Vftm2ch2 FTM2 channel 2 **0xFFEE:FFEF** FTM2CH2 CH2F CH2IE 7 Vftm2ch1 CH1F CH1IE FTM2 channel 1 0xFFF0:FFF1 FTM2CH1 6 Vftm2ch0 0xFFF2:FFF3 FTM2CH0 CH0F CH0IE FTM2 channel 0 5 0xFFF4:FFF5 Vftm2fault FTM2 FAULTF FAULTIE FTM2 fault 4 0xFFF6:FFF7 Vclk ICS LOLS LOLIE Clock loss of lock System 3 Vlvw LVWF 0xFFF8:FFF9 LVWIE Low-voltage warning control WDOG WDOGF WDOGI WDOG timeout Vwdog 2 0xFFFA:FFFB IRQ IRQF Virq IRQIE **IRQ** interrupt 1 0xFFFC:FFFD Vswi Core SWI Instruction Software interrupt WDOG WDOGE Watchdog timer System 0 0xFFFE:FFFF Vreset LVD LVDRE Low-voltage detect control RESET pin RSTPE External pin

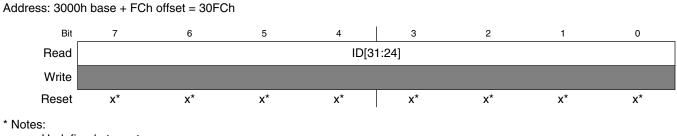

Table 5-1. Vector summary (from lowest to highest priority) (continued)

6.6.14 Universally Unique Identifier Register 4 (SYS_UUID4)

The read-only SYS_UUIDx registers contain a series of 63-bit number to identify the unique device in the family.

Address: 3000h base + FBh offset = 30FBh

* Notes:


• x = Undefined at reset.

SYS_UUID4 field descriptions

Field	Description
ID[39:32]	Universally Unique Identifier

6.6.15 Universally Unique Identifier Register 5 (SYS_UUID5)

The read-only SYS_UUIDx registers contain a series of 64-bit number to identify the unique device in the family.

x = Undefined at reset.

SYS_UUID5 field descriptions

Field	Description
ID[31:24]	Universally Unique Identifier

MC9S08PT60 Reference Manual, Rev. 4, 08/2014

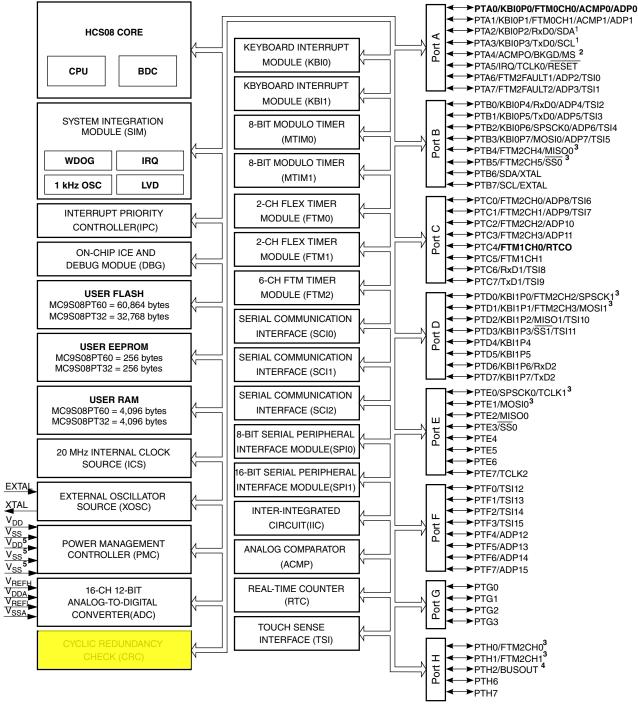
PORT_PTHOE field descriptions (continued)

Field	Description
5–3	This field is reserved.
Reserved	This read-only field is reserved and always has the value 0.
2 PTHOE2	Output Enable for Port H Bit 2
_	This read/write bit enables the port H pin as an output.
	0 Output Disabled for port H bit 2.
	1 Output Enabled for port H bit 2.
1	Output Enable for Port H Bit 1
PTHOE1	This read/write bit enables the port H pin as an output.
	0 Output Disabled for port H bit 1.
	1 Output Enabled for port H bit 1.
0 PTHOE0	Output Enable for Port H Bit 0
	This read/write bit enables the port H pin as an output.
	0 Output Disabled for port H bit 0.
	1 Output Enabled for port H bit 0.

7.7.18 Port A Input Enable Register (PORT_PTAIE)

Address: 0h base + 30B8h offset = 30B8h

Bit	7	6	5	4	3	2	1	0
Read Write	PTAIE7	PTAIE6	PTAIE5	0	PTAIE3	PTAIE2	PTAIE1	PTAIE0
Reset	0	0	0	0	0	0	0	0


PORT_PTAIE field descriptions

Field	Description
7	Input Enable for Port A Bit 7
PTAIE7	This read/write bit enables the port A pin as an input.
	0 Input disabled for port A bit 7.
	1 Input enabled for port A bit 7.
6 PTAIE6	Input Enable for Port A Bit 6
	This read/write bit enables the port A pin as an input.
	0 Input disabled for port A bit 6.
	1 Input enabled for port A bit 6.
5	Input Enable for Port A Bit 5
PTAIE5	This read/write bit enables the port A pin as an input.

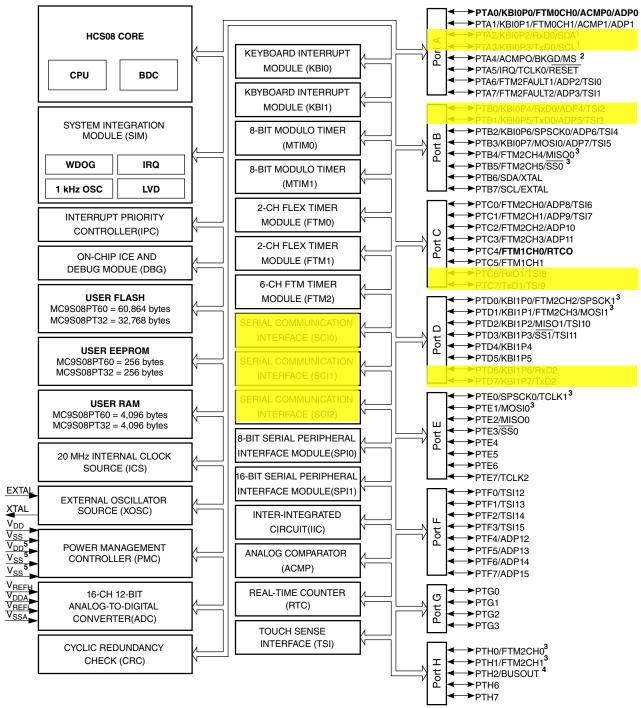
Table continues on the next page ...

Security

1. PTA2 and PTA3 operate as true open drain when working as output .

2. PTA4/ACMPO/BKGD/MS is an output-only pin when used as port pin.

3. PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 can provide ultra-high source/sink current up to 20 mA.


4. The frequency of the clock from BUSOUT must be equal or less than 10 MHz with 25 pF loading at PAD.

5. The secondary power pair of V_{DD} and V_{SS} (pin 41 and pin 40 in 64-pin packages) and the third V_{SS} (pin 13 in 64-pin packages) are not bonded in 32-pin packages.

Figure 9-2. Device block diagram highlighting CRC module

communication interfaces

1. PTA2 and PTA3 operate as true open drain when working as output .

2. PTA4/ACMPO/BKGD/MS is an output-only pin when used as port pin.

3. PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 can provide ultra-high source/sink current up to 20 mA.

4. The frequency of the clock from BUSOUT must be equal or less than 10 MHz with 25 pF loading at PAD.

5. The secondary power pair of V_{DD} and V_{SS} (pin 41 and pin 40 in 64-pin packages) and the third V_{SS} (pin 13 in 64-pin packages) are not bonded in 32-pin packages.

Figure 9-6. Device block diagram highlighting SCI modules and pins

FTM memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
26	Channel Value High (FTM0_C0VH)	8	R/W	00h	12.3.9/315
27	Channel Value Low (FTM0_C0VL)	8	R/W	00h	12.3.10/316
28	Channel Status and Control (FTM0_C1SC)	8	R/W	00h	12.3.8/312
29	Channel Value High (FTM0_C1VH)	8	R/W	00h	12.3.9/315
2A	Channel Value Low (FTM0_C1VL)	8	R/W	00h	12.3.10/316
2B	Channel Status and Control (FTM0_C2SC)	8	R/W	00h	12.3.8/312
2C	Channel Value High (FTM0_C2VH)	8	R/W	00h	12.3.9/315
2D	Channel Value Low (FTM0_C2VL)	8	R/W	00h	12.3.10/316
2E	Channel Status and Control (FTM0_C3SC)	8	R/W	00h	12.3.8/312
2F	Channel Value High (FTM0_C3VH)	8	R/W	00h	12.3.9/315
30	Channel Value Low (FTM0_C3VL)	8	R/W	00h	12.3.10/316
31	Channel Status and Control (FTM0_C4SC)	8	R/W	00h	12.3.8/312
32	Channel Value High (FTM0_C4VH)	8	R/W	00h	12.3.9/315
33	Channel Value Low (FTM0_C4VL)	8	R/W	00h	12.3.10/316
34	Channel Status and Control (FTM0_C5SC)	8	R/W	00h	12.3.8/312
35	Channel Value High (FTM0_C5VH)	8	R/W	00h	12.3.9/315
36	Channel Value Low (FTM0_C5VL)	8	R/W	00h	12.3.10/316
37	Counter Initial Value High (FTM0_CNTINH)	8	R/W	00h	12.3.11/316
38	Counter Initial Value Low (FTM0_CNTINL)	8	R/W	00h	12.3.12/317
39	Capture and Compare Status (FTM0_STATUS)	8	R/W	00h	12.3.13/317
ЗA	Features Mode Selection (FTM0_MODE)	8	R/W	04h	12.3.14/319
3B	Synchronization (FTM0_SYNC)	8	R/W	00h	12.3.15/320
3C	Initial State for Channel Output (FTM0_OUTINIT)	8	R/W	00h	12.3.16/322
3D	Output Mask (FTM0_OUTMASK)	8	R/W	00h	12.3.17/324
3E	Function for Linked Channels (FTM0_COMBINE0)	8	R/W	00h	12.3.18/325
ЗF	Function for Linked Channels (FTM0_COMBINE1)	8	R/W	00h	12.3.18/325
40	Function for Linked Channels (FTM0_COMBINE2)	8	R/W	00h	12.3.18/325
42	Deadtime Insertion Control (FTM0_DEADTIME)	8	R/W	00h	12.3.19/327
43	External Trigger (FTM0_EXTTRIG)	8	R/W	00h	12.3.20/328
44	Channels Polarity (FTM0_POL)	8	R/W	00h	12.3.21/329
45	Fault Mode Status (FTM0_FMS)	8	R/W	00h	12.3.22/331
46	Input Capture Filter Control (FTM0_FILTER0)	8	R/W	00h	12.3.23/332
47	Input Capture Filter Control (FTM0_FILTER1)	8	R/W	00h	12.3.23/332
48	Fault Input Filter Control (FTM0_FLTFILTER)	8	R/W	00h	12.3.24/333
49	Fault Input Control (FTM0_FLTCTRL)	8	R/W	00h	12.3.25/334
30	Status and Control (FTM1_SC)	8	R/W	00h	12.3.3/309
31	Counter High (FTM1_CNTH)	8	R/W	00h	12.3.4/310
32	Counter Low (FTM1_CNTL)	8	R/W	00h	12.3.5/311

Table continues on the next page...

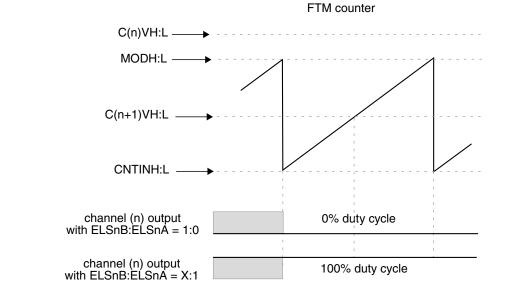


Figure 12-218. Channel (n) output if (C(n)V > MOD) and (CNTIN < C(n+1)V < MOD)

FTM counter

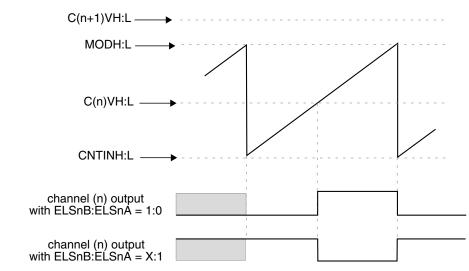


Figure 12-219. Channel (n) output if (C(n+1)V > MOD) and (CNTIN < C(n)V < MOD)

12.4.23 BDM mode

When BDM mode is active, the FlexTimer counter and the channels output are frozen.

However, the value of FlexTimer counter or the channels output are modified in BDM mode when:

- A write of any value to the CNTH or CNTL registers (Counter reset) resets the FTM counter to the value of CNTINH:L and the channels output to their initial value, except for channels in output compare mode.
- The PWM synchronization with REINIT = 1 (see FTM counter synchronization) resets the FTM counter to the value of CNTINH:L registers and the channels output to their initial value, except for channels in output compare mode.
- The initialization (Initialization) forces the value of the CHnOI bit to the channel (n) output.

Note

Do not use the above cases together with fault control (Fault control). If fault control is enabled and the fault condition is at the enabled fault input, these cases reset the FTM counter to the CNTINH:L value and the channels output to their initial value.

12.5 Reset overview

The FTM is reset whenever any chip reset occurs.

When the FTM exits from reset:

- The FTM counter and the prescaler counter are zero and are stopped (CLKS[1:0] = 0b00)
- The timer overflow interrupt is zero (Timer overflow interrupt)
- The channels interrupts are zero (Channel (n) interrupt)
- The fault interrupt is zero (Fault interrupt)
- The channels are in input capture mode (Input capture mode)
- The channels outputs are zero
- The channels pins are not controlled by FTM (ELS(n)B:ELS(n)A = 0b00). See table "Mode, Edge, and Level Selection"

SCIx_C2 field descriptions (continued)

Field	Description							
	TE must be 1 to use the SCI transmitter. When TE is set, the SCI forces the TxD pin to act as an output for the SCI system.							
	When the SCI is configured for single-wire operation (LOOPS = RSRC = 1), TXDIR controls the direction of traffic on the single SCI communication line (TxD pin).							
	TE can also queue an idle character by clearing TE then setting TE while a transmission is in progress.							
	When TE is written to 0, the transmitter keeps control of the port TxD pin until any data, queued idle, or queued break character finishes transmitting before allowing the pin to revert to a general-purpose I/O pin.							
	0 Transmitter off. 1 Transmitter on.							
2	Receiver Enable							
RE	When the SCI receiver is off, the RxD pin reverts to being a general-purpose port I/O pin. If LOOPS is set the RxD pin reverts to being a general-purpose I/O pin even if RE is set.							
	0 Receiver off.							
	1 Receiver on.							
1 RWU	Receiver Wakeup Control							
	This bit can be written to 1 to place the SCI receiver in a standby state where it waits for automatic hardware detection of a selected wakeup condition. The wakeup condition is an idle line between messages, WAKE = 0, idle-line wakeup, or a logic 1 in the most significant data bit in a character, WAKE = 1, address-mark wakeup. Application software sets RWU and, normally, a selected hardware condition automatically clears RWU.							
	0 Normal SCI receiver operation.							
	1 SCI receiver in standby waiting for wakeup condition.							
0 SBK	Send Break							
	Writing a 1 and then a 0 to SBK queues a break character in the transmit data stream. Additional break characters of 10 or 11 or 12, 13 or 14 or 15 if BRK13 = 1, bit times of logic 0 are queued as long as SBK is set. Depending on the timing of the set and clear of SBK relative to the information currently being transmitted, a second break character may be queued before software clears SBK.							
	0 Normal transmitter operation.							
	1 Queue break character(s) to be sent.							

15.3.5 SCI Status Register 1 (SCIx_S1)

This register has eight read-only status flags. Writes have no effect. Special software sequences, which do not involve writing to this register, clear these status flags.

Address: Base address + 4h offset

MC9S08PT60 Reference Manual, Rev. 4, 08/2014

Chapter 16 8-Bit Serial Peripheral Interface (8-bit SPI)

SPI0_C2 field descriptions (continued)

Field	Description
0	SPI pin control 0
SPC0	This bit enables bidirectional pin configurations.
	0 SPI uses separate pins for data input and data output (pin mode is normal).
	In master mode of operation: MISO is master in and MOSI is master out.
	In slave mode of operation: MISO is slave out and MOSI is slave in.
	1 SPI configured for single-wire bidirectional operation (pin mode is bidirectional).
	In master mode of operation: MISO is not used by SPI; MOSI is master in when BIDIROE is 0 or master I/O when BIDIROE is 1.
	In slave mode of operation: MISO is slave in when BIDIROE is 0 or slave I/O when BIDIROE is 1; MOSI is not used by SPI.

16.3.3 SPI baud rate register (SPIx_BR)

Use this register to set the prescaler and bit rate divisor for an SPI master. This register may be read or written at any time.

Address: 3098h base + 2h offset = 309Ah

Bit	7	6	5	4	3	2	1	0
Read Write	0		SPPR[2:0]			SPR	[3:0]	
Reset	0	0	0	0	0	0	0	0

SPI0_BR field descriptions

Field	Description							
7	This field is reserved.							
Reserved	This read-only field is reserved and always has the value 0.							
6–4 SPPR[2:0]	SPI baud rate prescale divisor							
	This 3-bit field selects one of eight divisors for the SPI baud rate prescaler. The input to this prescaler is the bus rate clock (BUSCLK). The output of this prescaler drives the input of the SPI baud rate divider. Refer to the description of "SPI Baud Rate Generation" for details.							
	000 Baud rate prescaler divisor is 1							
	001 Baud rate prescaler divisor is 2							
	010 Baud rate prescaler divisor is 3							
	011 Baud rate prescaler divisor is 4							
	100 Baud rate prescaler divisor is 5							
	101 Baud rate prescaler divisor is 6							
	110 Baud rate prescaler divisor is 7							
	111 Baud rate prescaler divisor is 8							

Table continues on the next page ...

MC9S08PT60 Reference Manual, Rev. 4, 08/2014

SPI1_BR field descriptions

Field	Description							
7	This field is reserved.							
Reserved	This read-only field is reserved and always has the value 0.							
6–4	SPI Baud Rate Prescale Divisor							
SPPR[2:0]	This 3-bit field selects one of eight divisors for the SPI baud rate prescaler. The input to this prescaler is the bus rate clock (BUSCLK). The output of this prescaler drives the input of the SPI baud rate divider. Refer to the description of "SPI Baud Rate Generation" for details.							
	000 Baud rate prescaler divisor is 1.							
	001 Baud rate prescaler divisor is 2.							
	010 Baud rate prescaler divisor is 3.							
	011 Baud rate prescaler divisor is 4.							
	100 Baud rate prescaler divisor is 5.							
	101 Baud rate prescaler divisor is 6.							
	110 Baud rate prescaler divisor is 7.							
	111 Baud rate prescaler divisor is 8.							
SPR[3:0]	SPI Baud Rate Divisor							
	This 4-bit field selects one of nine divisors for the SPI baud rate divider. The input to this divider comes from the SPI baud rate prescaler. Refer to the description of "SPI Baud Rate Generation" for details.							
	0000 Baud rate divisor is 2.							
	0001 Baud rate divisor is 4.							
	0010 Baud rate divisor is 8.							
	0011 Baud rate divisor is 16.							
	0100 Baud rate divisor is 32.							
	0101 Baud rate divisor is 64.							
	0110 Baud rate divisor is 128.							
	0111 Baud rate divisor is 256.							
	1000 Baud rate divisor is 512.							
	All others Reserved							

17.3.4 SPI Status Register (SPIx_S)

This register contains read-only status bits. Writes have no meaning or effect.

When the FIFO is supported and enabled (FIFOMODE is 1): This register has four flags that provide mechanisms to support an 8-byte FIFO mode: RNFULLF, TNEARF, TXFULLF, and RFIFOEF. When the SPI is in 8-byte FIFO mode, the function of SPRF and SPTEF differs slightly from their function in the normal buffered modes, mainly regarding how these flags are cleared by the amount available in the transmit and receive FIFOs.

• The RNFULLF and TNEAREF help improve the efficiency of FIFO operation when transfering large amounts of data. These flags provide a "watermark" feature of the FIFOs to allow continuous transmissions of data when running at high speed.

NOTE

When the TCKSEL bit is set, there is no need to monitor the SHTF1 bit because the bus speed is too high to match the protocol of SMBus.

Address: 3070h base + 8h offset = 3078h

Bit	7	6	5	4	3	2	1	0
Read	FACK			текегі	SLTF	SHTF1	SHTF2	OUTFOIL
Write	FACK	ALERTEN	SIICAEN	TCKSEL	w1c		w1c	SHTF2IE
Reset	0	0	0	0	0	0	0	0

I2C_SMB field descriptions

Field	Description
7 FACK	Fast NACK/ACK Enable
	For SMBus packet error checking, the CPU must be able to issue an ACK or NACK according to the result of receiving data byte.
	0 An ACK or NACK is sent on the following receiving data byte
	1 Writing 0 to TXAK after receiving a data byte generates an ACK. Writing 1 to TXAK after receiving a data byte generates a NACK.
6 ALERTEN	SMBus Alert Response Address Enable
	Enables or disables SMBus alert response address matching.
	NOTE: After the host responds to a device that used the alert response address, you must use software to put the device's address on the bus. The alert protocol is described in the SMBus specification.
	0 SMBus alert response address matching is disabled
	1 SMBus alert response address matching is enabled
5	Second I2C Address Enable
SIICAEN	Enables or disables SMBus device default address.
	0 I2C address register 2 matching is disabled
	1 I2C address register 2 matching is enabled
4 TCKSEL	Timeout Counter Clock Select
TONGEL	Selects the clock source of the timeout counter.
	0 Timeout counter counts at the frequency of the I2C module clock / 64
	1 Timeout counter counts at the frequency of the I2C module clock
3 SLTF	SCL Low Timeout Flag
	This bit is set when the SLT register (consisting of the SLTH and SLTL registers) is loaded with a non-zero value (LoValue) and an SCL low timeout occurs. Software clears this bit by writing a logic 1 to it.
	NOTE: The low timeout function is disabled when the SLT register's value is 0.
	0 No low timeout occurs
	1 Low timeout occurs

Table continues on the next page ...

MC9S08PT60 Reference Manual, Rev. 4, 08/2014

runctional description

18.4.6.3 Exit from low-power/stop modes

The slave receive input detect circuit and address matching feature are still active on low power modes (wait and stop). An asynchronous input matching slave address or general call address brings the CPU out of low power/stop mode if the interrupt is not masked. Therefore, TCF and IAAS both can trigger this interrupt.

18.4.6.4 Arbitration lost interrupt

The I2C is a true multimaster bus that allows more than one master to be connected on it. If two or more masters try to control the bus at the same time, the relative priority of the contending masters is determined by a data arbitration procedure. The I2C module asserts the arbitration-lost interrupt when it loses the data arbitration process and the ARBL bit in the Status Register is set.

Arbitration is lost in the following circumstances:

- 1. SDA is sampled as low when the master drives high during an address or data transmit cycle.
- 2. SDA is sampled as low when the master drives high during the acknowledge bit of a data receive cycle.
- 3. A START cycle is attempted when the bus is busy.
- 4. A repeated START cycle is requested in slave mode.
- 5. A STOP condition is detected when the master did not request it.

The ARBL bit must be cleared (by software) by writing 1 to it.

18.4.6.5 Timeout interrupt in SMBus

When the IICIE bit is set, the I2C module asserts a timeout interrupt (outputs SLTF and SHTF2) upon detection of any of the mentioned timeout conditions, with one exception. The SCL high and SDA high TIMEOUT mechanism must not be used to influence the timeout interrupt output, because this timeout indicates an idle condition on the bus. SHTF1 rises when it matches the SCL high and SDA high TIMEOUT and falls automatically just to indicate the bus status. The SHTF2's timeout period is the same as that of SHTF1, which is short compared to that of SLTF, so another control bit, SHTF2IE, is added to enable or disable it.

ADC_APCTL1 field descriptions (continued)

Field	Description
1	ADC Pin Control 1
ADPC1	ADPC1 controls the pin associated with channel AD1.
	0 AD1 pin I/O control enabled.
	1 AD1 pin I/O control disabled.
0	ADC Pin Control 0
ADPC0	ADPC0 controls the pin associated with channel AD0.
	0 AD0 pin I/O control enabled.
	1 AD0 pin I/O control disabled.

19.3.10 Pin Control 2 Register (ADC_APCTL2)

APCTL2 controls channels 8-15 of the ADC module.

Address: 10h base + 309Dh offset = 30ADh

Bit	7	6	5	4	3	2	1	0
Read Write	ADPC15	ADPC14	ADPC13	ADPC12	ADPC11	ADPC10	ADPC9	ADPC8
Reset	0	0	0	0	0	0	0	0

ADC_APCTL2 field descriptions

Field	Description
7	ADC Pin Control 15
ADPC15	ADPC15 controls the pin associated with channel AD15.
	0 AD15 pin I/O control enabled.
	1 AD15 pin I/O control disabled.
6 ADPC14	ADC Pin Control 14
	ADPC14 controls the pin associated with channel AD14.
	0 AD14 pin I/O control enabled.
	1 AD14 pin I/O control disabled.
5	ADC Pin Control 13
ADPC13	ADPC13 controls the pin associated with channel AD13.
	0 AD13 pin I/O control enabled.
	1 AD13 pin I/O control disabled.
4	ADC Pin Control 12
ADPC12	ADPC12 controls the pin associated with channel AD12.

Table continues on the next page...

runctional description

- 12. Reduce Rs value by incrementing TSI_CS2[EXTCHRG] by 1 if (Rs > minimum value) (i.e., TSI_CS2[EXTCHRG] < 111b), and then go to END (Now a matching DVOLT corresponding to the noise level is found)
- 13. Reduce DVOLT by incrementing TSI_CS2[DVOLT] by 1 if (Rs = maximum value) (i.e.,TSI_CS2[EXTCHRG] = 011b); (Now a matching DVOLT corresponding to the noise level is found)
- 14. END:

NOTE

The END condition of above algorithm can be one of

- TSI counter value within the WINDOW and Rs ≥ minimum value
- TSI counter value out of the WINDOW and Rs = minimum value and DVOLT = maximum value

At the end of the above steps, the correct matching DVOLT value and the electrode oscillator charge and discharge current value for the current noise level is found. That is, the correct TSI_CS2[DVOLT] value and TSI_CS2[EXTCHRG] value are found for the current noise level. And now users can proceed with normal capacitive sense procedure by keeping both TSI_CS[DVOLT] and TSI_CS2[EXTCHRG] untouched, that is, users just need switch to normal capacitive sense mode by clearing TSI_CS3[STAT_STUP[3:2]] bits and start TSI scan.

For typical applications, the noise detection/sense algorithm shall be performed first followed by normal capacitive sense for a given channel and then alternate between noise sense and capacitive sense as shown in Figure 21-15.

Figure 21-15. Noise detection/sense algorithm of typical application

The following flow chart shows how to detect touch with noise sense and normal capacitive sense.

runctional description

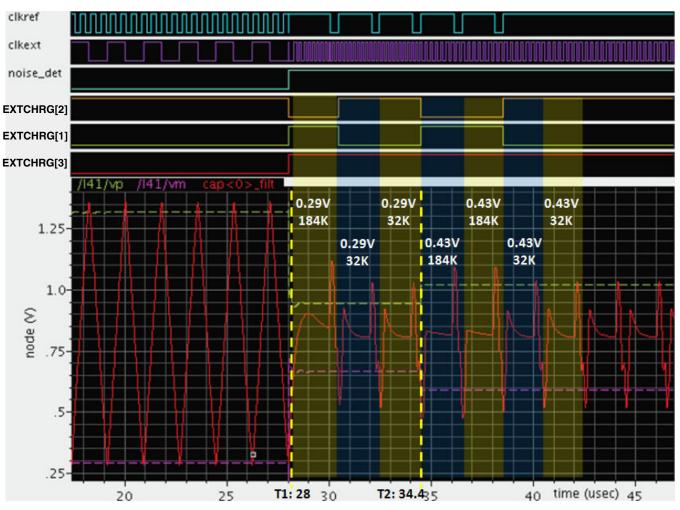


Figure 21-17. TSI noise detection mode waveform

22.5.6 CRC Polynomial 1 Register (CRC_P1)

P1 is one of the CRC polynomial registers (P0:P3). The set of CRC polynominal registers contains the value of polynomial. The registers of P0:P1 contain the MSB 16-bit of CRC polynomial, which is used only in CRC 32-bit mode. The registers of P2:P3 contain the LSB 16-bit of CRC polynomial, which is used in both CRC 16- and 32-bit modes.

Address: 3060h base + 5h offset = 3065h

Bit	7	6	5	4	3	2	1	0
Read Write				F	·1			
Reset	0	0	0	0	0	0	0	0

CRC_P1 field descriptions

Field	Description
P1	CRC Polynominal Bit 23:16

22.5.7 CRC Polynomial 2 Register (CRC_P2)

P2 is one of the CRC polynomial registers (P0:P3). The set of CRC polynominal registers contains the value of polynomial. The registers of P0:P1 contain the MSB 16-bit of CRC polynomial, which is used only in CRC 32-bit mode. The registers of P2:P3 contain the LSB 16-bit of CRC polynomial, which is used in both CRC 16- and 32-bit modes.

Address: 3060h base + 6h offset = 3066h Bit 7 5 6 4 3 2 1 0 Read P2 Write 0 0 0 1 0 0 0 0 Reset

CRC_P2 field descriptions

Field	Description
P2	CRC Polynominal Bit 15:8

Note

Before starting the refresh sequence, disable global interrupts. Otherwise, an interrupt could effectively invalidate the refresh sequence if writing the four bytes takes more than 16 bus clocks. Re-enable interrupts when the sequence is finished.

23.3.1.3 Example code: Refreshing the Watchdog

The following code segment shows the refresh write sequence of the WDOG module.

```
/* Refresh watchdog */
for (;;) // main loop
{
    ...
    DisableInterrupts; // disable global interrupt
    WDOG_CNT = 0xA602; // write the 1st refresh word
    WDOG_CNT = 0xB480; // write the 2nd refresh word to refresh counter
    EnableInterrupts; // enable global interrupt
    ...
}
```

23.3.2 Configuring the Watchdog

All watchdog control bits, timeout value, and window value are write-once after reset. This means that after a write has occurred they cannot be changed unless a reset occurs. This provides a robust mechanism to configure the watchdog and ensure that a runaway condition cannot mistakenly disable or modify the watchdog configuration after configured.

This is guaranteed by the user configuring the window and timeout value first, followed by the other control bits, and ensuring that CS1[UPDATE] is also set to 0. The new configuration takes effect only after all registers except WDOG_CNTH:L are written once after reset. Otherwise, the WDOG uses the reset values by default. If window mode is not used (CS2[WIN] is 0), writing to WDOG_WINH:L is not required to make the new configuration take effect.