E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC G2_LE
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	-
RAM Controllers	DDR, SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (1)
SATA	-
USB	USB 1.1 (2)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	-
Package / Case	272-BBGA
Supplier Device Package	272-PBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc5200cbv266

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Electrical and Thermal Characteristics

3.1 DC Electrical Characteristics

3.1.1 Absolute Maximum Ratings

The tables in this section describe the MPC5200 DC Electrical characteristics. Table 1 gives the absolute maximum ratings.

Characteristic	Symbol	Min	Max	Unit	SpecID
Supply voltage - G2_LE core and peripheral logic	VDD_CORE	-0.3	1.8	V	D1.1
Supply voltage - I/O buffers	VDD_IO, VDD_MEM_IO	-0.3	3.6	V	D1.2
Supply voltage - System APLL	SYS_PLL_AVDD	-0.3	2.1	V	D1.3
Supply voltage - G2_LE APLL	CORE_PLL_AVDD	-0.3	2.1	V	D1.4
Input voltage (VDD_IO)	Vin	-0.3	VDD_IO + 0.3	V	D1.5
Input voltage (VDD_MEM_IO)	Vin	-0.3	VDD_MEM_IO + 0.3	V	D1.6
Input voltage overshoot	Vinos	-	1.0	V	D1.7
Input voltage undershoot	Vinus	-	1.0	V	D1.8
Storage temperature range	Tstg	-55	150	°C	D1.9

Table	1	Absolute	Maximum	Ratings ¹
lable	••	Absolute	Waximum	naungs

NOTES:

Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage.

3.1.2 Recommended Operating Conditions

Table 2 gives the recommended operating conditions.

Table 2. Recommended Operating Conditions

Characteristic	Symbol	Min ¹	Max ⁽¹⁾	Unit	SpecID
Supply voltage - G2_LE core and peripheral logic	VDD_CORE	1.42	1.58	V	D2.1
Supply voltage - standard I/O buffers	VDD_IO	3.0	3.6	V	D2.2
Supply voltage - memory I/O buffers (SDR)	VDD_MEM_IO _{SDR}	3.0	3.6	V	D2.3
Supply voltage - memory I/O buffers (DDR)	VDD_MEM_IO _{DDR}	2.42	2.63	V	D2.4
Supply voltage - System APLL	SYS_PLL_AVDD	1.42	1.58	V	D2.5
Supply voltage - G2_LE APLL	CORE_PLL_AVDD	1.42	1.58	V	D2.6
Input voltage - standard I/O buffers	Vin	0	VDD_IO	V	D2.7
Input voltage - memory I/O buffers (SDR)	Vin _{SDR}	0	VDD_MEM_IO _{SDR}	V	D2.8

Characteristic	Symbol	Min ¹	Max ⁽¹⁾	Unit	SpecID
Input voltage - memory I/O buffers (DDR)	Vin _{DDR}	0	VDD_MEM_IO _{DDR}	V	D2.9
Ambient operating temperature range ²	T _A	-40	+85	°C	D2.10
Extended ambient operating temperature range ³	T _{Aext}	-40	+105	°C	D2.11
Die junction operating temperature range	Tj	-40	+115	°C	D2.12
Extended die junction operating temperature range	Tjext	-40	+125	°C	D2.13

Table 2. Recommended Operating Conditions (continued)

NOTES: 1 ⊤⊦

¹ These are recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.

² Maximum G2_LE core operating frequency is 400 MHz

³ Maximum G2_LE core operating frequency is 264 MHz

3.1.3 DC Electrical Specifications

Table 3 gives the DC Electrical characteristics for the MPC5200 at recommended operating conditions (see Table 2).

Characteristic	Condition	Symbol	Min	Max	Unit	SpecID
Input high voltage	Input type = TTL VDD_IO/VDD_MEM_IO _{SDR}	V _{IH}	2.0	—	V	D3.1
Input high voltage	Input type = TTL VDD_MEM_IO _{DDR}	V _{IH}	1.7	—	V	D3.2
Input high voltage	Input type = PCI VDD_IO	V _{IH}	2.0	—	V	D3.3
Input high voltage	Input type = SCHMITT VDD_IO	V _{IH}	2.0	—	V	D3.4
Input high voltage	SYS_XTAL_IN	CVIH	2.0	—	V	D3.5
Input high voltage	RTC_XTAL_IN	CVIH	2.0	—	V	D3.6
Input low voltage	Input type = TTL VDD_IO/VDD_MEM_IO _{SDR}	V _{IL}	_	0.8	V	D3.7
Input low voltage	Input type = TTL VDD_MEM_IO _{DDR}	V _{IL}	—	0.7	V	D3.8
Input low voltage	Input type = PCI VDD_IO	V _{IL}	—	0.8	V	D3.9
Input low voltage	Input type = SCHMITT VDD_IO	V _{IL}		0.8	V	D3.10
Input low voltage	SYS_XTAL_IN	CVIL		0.8	V	D3.11
Input low voltage	RTC_XTAL_IN	CVIL	_	0.8	V	D3.12

Table 3. DC Electrical Specifications

Driver Type	Supply Voltage	I _{ОН}	I _{OL}	Unit	SpecID
DRV8_OD	VDD_IO = 3.3V	-	8	mA	D3.27
DRV16_MEM	VDD_IO_MEM = 3.3V	16	16	mA	D3.28
DRV16_MEM	VDD_IO_MEM = 2.5V	16	16	mA	D3.29
PCI	VDD_IO = 3.3V	16	16	mA	D3.30

Table 4. Drive Capability of MPC5200 Output Pins (continued)

3.1.4 Electrostatic Discharge

CAUTION

This device contains circuitry that protects against damage due to high-static voltage or electrical fields. However, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages. Operational reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (i.e., either GND or V_{CC}). Table 7 gives package thermal characteristics for this device.

Table 5. ESD and Latch-Up Protection Characteristics

Sym	Rating	Min	Мах	Unit	SpecID
V _{HBM}	Human Body Model (HBM)—JEDEC JESD22-A114-B	2000		V	D4.1
V _{MM}	Machine Model (MM)—JEDEC JESD22-A115	200	_	V	D4.2
V _{CDM}	Charge Device Model (CDM)—JEDEC JESD22-C101	500	_	V	D4.3
I _{LAT}	Latch-up Current at T _A =85 ^o C positive negative	+100 -100	_	mA	D4.4
I _{LAT}	Latch-up Current at T _A =27 ^o C positive negative	+200 -200	_	mA	D4.5

3.1.5 Power Dissipation

Power dissipation of the MPC5200 is caused by 3 different components: the dissipation of the internal or core digital logic (supplied by VDD_CORE), the dissipation of the analog circuitry (supplied by SYS_PLL_AVDD and CORE_PLL_AVDD) and the dissipation of the IO logic (supplied by VDD_IO_MEM and VDD_IO). Table 6 details typical measured core and analog power dissipation figures for a range of operating modes. However, the dissipation due to the switching of the IO pins can not be given in general, but must be calculated by the user for each application case using the following formula

$$P_{IO} = P_{IOint} + \sum_{M} N \times C \times VDD_{IO}^{2} \times f$$

where N is the number of output pins switching in a group M, C is the capacitance per pin, VDD_IO is the IO voltage swing, f is the switching frequency and PIOint is the power consumed by the unloaded IO stage. The total power consumption of the MPC5200 processor must not exceed the value, which would cause the maximum junction temperature to be exceeded.

$$P_{total} = P_{core} + P_{analog} + P_{IO}$$

Core Power Supply (VDD_CORE)								
	SYS_XTAL/XLB/P	CI/IPG/CORE (MHz)			0			
Mode	33/66/33/33/264 33/132/66/132/396		Unit	Notes	SpeciD			
	Тур	Тур						
Operational	727.5	1080	mW	1,2	D5.1			
Doze	_	600	mW	1,3	D5.2			
Nap	—	225	mW	1,4	D5.3			
Sleep	_	225	mW	1,5 ,	D5.4			
Deep-Sleep	52.5	52.5	mW	1,6	D5.5			
	PLL Power Supplies (SYS	_PLL_AVDD, CORE_PLL_AVDD)						
Mode	T	ӯҏ	Unit	Notes				
Typical		2	mW	7	D5.6			
	Unloaded I/O Power Sup	plies (VDD_IO, VDD_MEM_IO ⁸)						
Mode	Тур		Unit	Notes				
Typical	;	33	mW	9	D5.7			

Table 6. Power Dissipation

NOTES:

¹ Typical core power is measured at VDD_CORE = 1.5 V, Tj = 25 C

² Operational power is measured while running an entirely cache-resident program with floating-point multiplication instructions in parallel with a continuous PCI transaction via BestComm.

³ Doze power is measured with the G2_LE core in Doze mode, the system oscillator, System PLL and Core PLL are active, all other system modules are inactive

⁴ Nap power is measured with the G2_LE core in Nap mode, the stem oscillator, System PLL and Core PLL are active, all other system modules are inactive

⁵ Sleep power is measured with the G2_LE core in Sleep mode, the stem oscillator, System PLL and Core PLL are active, all other system modules are inactive

⁶ Deep-Sleep power is measured with the G2_LE core in Sleep mode, the stem oscillator, System PLL, Core PLL and all other system modules are inactive

⁷ Typical PLL power is measured at SYS_PLL_AVDD = CORE_PLL_AVDD = 1.5 V, Tj = 25 C

⁸ IO power figures given in the table represent the worst case scenario. For the mem_io rail connected to 2.5V the IO power is expected to be lower and bounded by the worst case with VDD_MEM_IO connected to 3.3V.

⁹ Unloaded typical I/O power is measured in Deep-Sleep mode at VDD_IO = VDD_MEM_IO_{SDR}= 3.3 V, Tj = 25 C

3.2.4 G2_LE Core PLL Electrical Characteristics

The internal clocking of the G2_LE core is generated from and synchronized to the system clock by means of a voltage-controlled core PLL.

Characteristic	Symbol	Notes	Min	Typical	Max	Unit	SpecID
G2_LE frequency	f _{core}	1	50	—	550	MHz	O4.1
G2_LE cycle time	t _{core}	(1)	2.85	—	40.0	ns	O4.2
G2_LE VCO frequency	f _{VCOcore}	(1)	400	_	1200	MHz	O4.3
G2_LE input clock frequency	f _{XLB_CLK}		25	—	367	MHz	O4.4
G2_LE input clock cycle time	t _{XLB_CLK}		2.73	_	50.0	ns	O4.5
G2_LE input clock jitter	t _{jitter}	2	_	—	150	ps	O4.6
G2_LE PLL relock time	t _{lock}	3	_	—	100	μS	O4.7

Table	11.	G2_	LE	PLL	. Specifications
-------	-----	-----	----	-----	------------------

NOTES:

The XLB_CLK frequency and G2_LE PLL Configuration bits must be chosen such that the resulting system frequencies, CPU (core) frequency, and G2_LE PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies.

² This represents total input jitter - short term and long term combined - and is guaranteed by design. Two different types of jitter can exist on the input to core_sysclk, systemic and true random jitter. True random jitter is rejected, but the PLL. Systemic jitter will be passed into and through the PLL to the internal clock circuitry, directly reducing the operating frequency.

³ Relock time is guaranteed by design and characterization. PLL-relock time is the maximum amount of time required for the PLL lock after a stable Vdd and core_sysclk are reached during the power-on reset sequence. This specification also applies when the PLL has been disabled and subsequently re-enabled during sleep modes.

SPI

 I^2C

J1850

PSC

MSCAN

3.3 AC Electrical Characteristics

Hyperlinks to the indicated timing specification sections are provided below.

- AC Operating Frequency Data
 USB
- Clock AC Specifications
- Resets
- External Interrupts
- SDRAM
- PCI
- Local Plus Bus
- ATA

- GPIOs and Timers
- IEEE 1149.1 (JTAG) AC Specifications

• Ethernet

AC Test Timing Conditions:

Unless otherwise noted, all test conditions are as follows:

3.3.5.4 Memory Interface Timing-DDR SDRAM Write Command

Table 21. DDR SDRAM Memory Write Timing

NOTE: Control Signals signals are composed of RAS, CAS, MEM_WE, MEM_CS, MEM_CS1 and CLK_EN

Figure 9. DDR SDRAM Memory Write Timing

3.3.6 PCI

The PCI interface on the MPC5200 is designed to PCI Version 2.2 and supports 33-MHz and 66-MHz PCI operations. See the PCI Local Bus Specification [4]; the component section specifies the electrical and timing parameters for PCI components with the intent that components connect directly together whether on the planar or an expansion board, without any external buffers or other "glue logic." Parameters apply at the package pins, not at expansion board edge connectors.

The MPC5200 is always the source of the PCI CLK. The clock waveform must be delivered to each 33-MHz or 66-MHz PCI component in the system. Figure 10 shows the clock waveform and required measurement points for 3.3 V signaling environments. Table 22 summarizes the clock specifications.

3.3.7.2 Burst Mode

Sym	Description	Min	Мах	Units	Notes	SpecID
t _{CSA}	PCI CLK to CS assertion	-	1.8	ns		A7.20
t _{CSN}	PCI CLK to CS negation	-	1.8	ns		A7.21
t ₁	CS pulse width	(1+WS+4 ^{LB} *2*(32/DS))*	(1+WS+4 ^{LB} *2*(32/DS))	ns	1,2	A7.22
		t _{PClck}	*t _{PClck}			
t ₂	ADDR valid before CS assertion	t _{IPBIck}	t _{PClck}	ns		A7.23
t ₃	ADDR hold after CS negation	-	-0.7	ns		A7.24
t ₄	OE assertion before CS assertion	-	0.4	ns		A7.25
t ₅	OE negation before CS negation	-	0.4	ns		A7.26
t ₆	RW valid before CS assertion	t _{PClck}	-	ns		A7.27
t ₇	RW hold after CS negation	t _{PClck}	-	ns		A7.28
t ₈	DATA setup before rising edge of PCI	1.8	-	ns		A7.29
t ₉	DATA hold after rising edge of PCI	0	-	ns		A7.30
t ₁₀	DATA hold after CS negation	0	(DC+1)*t _{PClck}	ns		A7.31
t ₁₁	ACK assertion after CS assertion	-	(WS+1)*t _{PClck}	ns		A7.32
t ₁₂	ACK negation before CS negation	-	0.6	ns	3	A7.33
t ₁₃	ACK pulse width	4 ^{LB} *2*(32/DS)*t _{PClck}	4 ^{LB} *2*(32/DS)*t _{PClck}	ns	2,3	A7.34
t ₁₄	CS assertion after TS assertion	-	0.8	ns		A7.35
t ₁₅	TS pulse width	t _{PClck}	t _{PClck}	ns		A7.36

Table 25. Burst Mode Timing

NOTES:

Wait States (WS) can be programmed in the Chip Select X Register, Bit field WaitP and WaitX. It can be specified 0 - 65535.
 Example:

Long Burst is used, this means the CS related BERx and SLB bits of the Chip Select Burst Control Register are set and a burst on the internal XLB is executed. => LB = 1

Data bus width is 8 bit. \Rightarrow DS = 8

 $=> 4^{1} * 2^{*} (32/8) = 32 =>$ ACK is asserted for 32 PCI cycles to transfer one cache line.

Wait State is set to 10. => WS = 10

 $1+10+32 = 43 \Rightarrow CS$ is asserted for 43 PCI cycles.

3. ACK is output and indicates the burst.

NOTE: The direction of signal assertion is towards the top of the page, and the direction of negation is towards the bottom of the page, irrespective of the electrical properties of the signal.

Figure 16. Multiword DMA Timing

Name	MOI (n	DE 0 Is)	MOI (n	DE 1 is)	MOI (n	DE 2 Is)	Comment	SpecID
	Min	Max	Min	Мах	Min	Мах		
(t) _{2CYC}	240	—	160	—	120	—	Typical sustained average two cycle time. For information only, do not test.	A8.26
(t) _{CYC}	114	—	75	_	55	—	Cycle time allowing for asymmetry and clock variations from STROBE edge to STROBE edge	A8.27
(t) _{2CYC}	235	_	156	-	117	_	Two-cycle time allowing for clock variations, from rising edge to next rising edge or from falling edge to next falling edge of STROBE.	A8.28
(t) _{DS}	15	—	10	-	7	_	Data setup time at recipient.	A8.29
(t) _{DH}	5	—	5	—	5	—	Data hold time at recipient.	A8.30
(t) _{DVS}	70	_	48	_	34		Data valid setup time at sender, to STROBE edge.	A8.31
(t) _{DVH}	6	—	6	—	6	—	Data valid hold time at sender, from STROBE edge.	A8.32
(t) _{FS}	0	230	0	200	0	170	First STROBE time for drive to first negate DSTROBE from STOP during a data-in burst.	A8.33

Name	MODE 0 Name (ns)		MODE 0 MODE 1 (ns) (ns)		MODE 2 (ns)		Comment	SpecID
	Min	Max	Min	Max	Min	Мах		
(t) _{LI}	0	150	0	150	0	150	Limited Interlock time. ^{1,2}	A8.34
(t) _{MLI}	20	—	20	—	20	_	Interlock time with minimum. ^{1,2}	A8.35
(t) _{UI}	0		0	—	0	_	Unlimited interlock time. ^{1,2}	A8.36
(t) _{AZ}		10		10	—	10	Maximum time allowed for output drivers to release from being asserted or negated	A8.37
(t) _{ZAH}	20	—	20	—	20	_	Minimum delay time required for output drivers to	A8.38
(t) _{ZAD}	0		0	_	0	_	assent of negate from released state	A8.39
(t) _{ENV}	20	70	20	70	20	70	Envelope time—from DMACK to STOP and HDMARDY during data out burst initiation.	A8.40
(t) _{SR}	_	50	_	30	—	20	STROBE to DMARDY time, if DMARDY is negated before this long after STROBE edge, the recipient receives no more than one additional data word.	A8.41
(t) _{RFS}		75		60	—	50	Ready-to-Final STROBE time—no STROBE edges are sent this long after negation of DMARDY.	A8.42
(t) _{RP}	160	—	125	—	100	—	Ready-to-Pause time—the time recipient waits to initiate pause after negating DMARDY.	A8.43
(t) _{IORDYZ}	—	20	—	20	—	20	Pull-up time before allowing IORDY to be released.	A8.44
(t) _{ZIORDY}	0		0	—	0	_	Minimum time drive waits before driving IORDY	A8.45
(t) _{ACK}	20	—	20	—	20	—	Setup and hold times for DMACK, before assertion or negation.	A8.46
(t) _{SS}	50	—	50	—	50	—	Time from STROBE edge to negation of DMARQ or assertion of STOP, when sender terminates a burst.	A8.47

Table 29. Ultra DMA Timing Specification (continued)

NOTES:

t_{UI}, t_{MLI}, t_{LI} indicate sender-to-recipient or recipient-to-sender interlocks. That is, one agent (either sender or recipient) is waiting for the other agent to respond with a signal before proceeding.

- t_{UI} is an unlimited interlock that has no maximum time value.
- t_{MLI} is a limited time-out that has a defined minimum.
- t_{11} is a limited time-out that has a defined maximum.

² All timing parameters are measured at the connector of the drive to which the parameter applies. For example, the sender shall stop generating STROBE edges t_{RFS} after negation of DMARDY. Both STROBE and DMARDY timing measurements are taken at the connector of the sender. Even though the sender stops generating STROBE edges, the receiver may receive additional STROBE edges due to propagation delays. All timing measurement switching points (low to high and high to low) are taken at 1.5 V.

Figure 22. Timing Diagram—Initiating an Ultra DMA Data Out Burst

Figure 23. Timing Diagram—Sustained Ultra DMA Data Out Burst

Figure 24. Timing Diagram—Drive Pausing an Ultra DMA Data Out Burst

Figure 25. Timing Diagram—Host Terminating Ultra DMA Data Out Burst

Electrical and Thermal Characteristics

Figure 33. Timing Diagram — SPI Master Mode, Format 0 (CPHA = 0)

Table 37. Timing Specifications	 SPI Slave Mode, 	Format 0 (CPHA = 0)
---------------------------------	-------------------------------------	---------------------

Sym	Description	Min	Max	Units	SpecID
1	Cycle time	4	1024	IP-Bus Cycle ¹	A11.12
2	Clock high or low time	2	512	IP-Bus Cycle ¹	A11.13
3	Slave select clock delay	15.0	—	ns	A11.14
4	Output Data valid after Slave Select (\overline{SS})	—	50.0	ns	A11.15
5	Output Data valid after SCK	—	50.0	ns	A11.16
6	Input Data setup time	50.0	—	ns	A11.17
7	Input Data hold time	0.0	—	ns	A11.18
8	Slave disable lag time	15.0	—	ns	A11.19
9	Sequential Transfer delay	1	—	IP-Bus Cycle ¹	A11.20

NOTES:

Inter Peripheral Clock is defined in the MPC5200 User Manual [1].

NOTE

Output timing was specified at a nominal 50 pF load.

MPC5200 Data Sheet, Rev. 4

Sym	Description	Min	Max	Units	SpecID
1 ¹	Start condition hold time	6	_	IP-Bus Cycle ³	A13.8
2 ¹	Clock low period	10	—	IP-Bus Cycle ³	A13.9
3 ²	SCL/SDA rise time	—	7.9	ns	A13.10
4 ¹	Data hold time	7	—	IP-Bus Cycle ³	A13.11
5 ¹	SCL/SDA fall time	—	7.9	ns	A13.12
6 ¹	Clock high time	10	—	IP-Bus Cycle ³	A13.13
7 ¹	Data setup time	2	—	IP-Bus Cycle ³	A13.14
8 ¹	Start condition setup time (for repeated start condition only)	20		IP-Bus Cycle ³	A13.15
9 ¹	Stop condition setup time	10	—	IP-Bus Cycle ³	A13.16

NOTES:

Programming IFDR with the maximum frequency (IFDR=0x20) results in the minimum output timings listed. The I²C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed in IFDR.

² Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL or SDA takes to reach a high level depends on external signal capacitance and pull-up resistor values

³ Inter Peripheral Clock is defined in the MPC5200 User Manual [1].

NOTE

Output timing was specified at a nominal 50 pF load.

Figure 37. Timing Diagram—I²C Input/Output

3.3.14 J1850

See the MPC5200 User Manual [1].

3.3.15.4 SPI Mode

Sym	Description	Min	Max	Units	SpecID
1	SCK cycle time, programable in the PSC CCS register	30.0	_	ns	A15.26
2	SCK pulse width, 50% SCK cycle time	15.0	_	ns	A15.27
3	Slave select clock delay, programable in the PSC CCS register	30.0	_	ns	A15.28
4	Output Data valid after Slave Select (SS)	_	8.9	ns	A15.29
5	Output Data valid after SCK		8.9	ns	A15.30
6	Input Data setup time	6.0	_	ns	A15.31
7	Input Data hold time	1.0	_	ns	A15.32
8	Slave disable lag time	_	8.9	ns	A15.33
9	Sequential Transfer delay, programable in the PSC CTUR / CTLR register	15.0	_	ns	A15.34
10	Clock falling time	_	7.9	ns	A15.35
11	Clock rising time	_	7.9	ns	A15.36

Table 46. Timing Specifications — SPI Master Mode, Format 0 (CPHA = 0)

NOTE

Output timing was specified at a nominal 50 pF load.

Figure 42. Timing Diagram — SPI Master Mode, Format 0 (CPHA = 0)

Package Description

4 Package Description

4.1 Package Parameters

The MPC5200 uses a 27 mm x 27 mm TE-PBGA package. The package parameters are as provided in the following list:

- Package outline 27 mm x 27 mm
- Interconnects 272
- Pitch 1.27 mm

4.2 Mechanical Dimensions

Figure 51 provides the mechanical dimensions, top surface, side profile, and pinout for the MPC5200, 272 TE-PBGA package.

Package Description

4.3 **Pinout Listings**

See details in the MPC5200 User Manual [1].

Table 52. MPC5200 Pinout Listing

Name	Alias	Туре	Power Supply	Output Driver Type	Input Type	Pull-up/ down
			SDRAM			
MEM_CAS	CAS	I/O	VDD_MEM_IO	DRV16_MEM	TTL	
MEM_CLK_EN	CLK_EN	I/O	VDD_MEM_IO	DRV16_MEM	TTL	
MEM_CS		I/O	VDD_MEM_IO	DRV16_MEM	TTL	
MEM_DQM[3:0]	DQM	I/O	VDD_MEM_IO	DRV16_MEM	TTL	
MEM_MA[12:0]	MA	I/O	VDD_MEM_IO	DRV16_MEM	TTL	
MEM_MBA[1:0]	MBA	I/O	VDD_MEM_IO	DRV16_MEM	TTL	
MEM_MDQS[3:0]	MDQS	I/O	VDD_MEM_IO	DRV16_MEM	TTL	
MEM_MDQ[31:0]	MDQ	I/O	VDD_MEM_IO	DRV16_MEM	TTL	
MEM_CLK		I/O	VDD_MEM_IO	DRV16_MEM	TTL	
MEM_CLK		I/O	VDD_MEM_IO	DRV16_MEM	TTL	
MEM_RAS	RAS	I/O	VDD_MEM_IO	DRV16_MEM	TTL	
MEM_WE		I/O	VDD_MEM_IO	DRV16_MEM	TTL	
			PCI			
EXT_AD[31:0]		I/O	VDD_IO	PCI	PCI	
PCI_CBE_0		I/O	VDD_IO	PCI	PCI	
PCI_CBE_1		I/O	VDD_IO	PCI	PCI	
PCI_CBE_2		I/O	VDD_IO	PCI	PCI	
PCI_CBE_3		I/O	VDD_IO	PCI	PCI	
PCI_CLOCK		I/O	VDD_IO	PCI	PCI	
PCI_DEVSEL		I/O	VDD_IO	PCI	PCI	
PCI_FRAME		I/O	VDD_IO	PCI	PCI	
PCI_GNT		I/O	VDD_IO	DRV8	TTL	
PCI_IDSEL		I/O	VDD_IO	DRV8	TTL	
PCI_IRDY		I/O	VDD_IO	PCI	PCI	
PCI_PAR		I/O	VDD_IO	PCI	PCI	
PCI_PERR		I/O	VDD_IO	PCI	PCI	
PCI_REQ		I/O	VDD_IO	DRV8	TTL	
PCI_RESET		I/O	VDD_IO	PCI	PCI	
PCI_SERR		I/O	VDD_IO	PCI	PCI	
PCI_STOP		I/O	VDD_IO	PCI	PCI	

Package Description

Name	Alias	Туре	Power Supply	Output Driver Type	Input Type	Pull-up/ down	
I2C_3	SDA	I/O	VDD_IO	DRV4	Schmitt		
	·		PSC				
PSC1_0	TxD, Sdata_out, MOSI, TX	I/O	VDD_IO	DRV4	TTL		
PSC1_1	RxD, Sdata_in, MISO, TX	I/O	VDD_IO	DRV4	TTL		
PSC1_2	Mclk, Sync, RTS	I/O	VDD_IO	DRV4	TTL		
PSC1_3	BitClk, SCK, CTS	I/O	VDD_IO	DRV4	TTL		
PSC1_4	Frame, SS , CD	I/O	VDD_IO	DRV4	TTL		
PSC2_0	TxD, Sdata_out, MOSI, TX	I/O	VDD_IO	DRV4	TTL		
PSC2_1	RxD, Sdata_in, MISO, TX	I/O	VDD_IO	DRV4	TTL		
PSC2_2	Mclk, Sync, RTS	I/O	VDD_IO	DRV4	TTL		
PSC2_3	BitClk, SCK, CTS	I/O	VDD_IO	DRV4	TTL		
PSC2_4	Frame, SS , CD	I/O	VDD_IO	DRV4	TTL		
PSC3_0	USB_OE, TxDS, TX	I/O	VDD_IO	DRV4	TTL		
PSC3_1	USB_TXN, RxD, RX	I/O	VDD_IO	DRV4	TTL		
PSC3_2	USB_TXP, BitClk, RTS	I/O	VDD_IO	DRV4	TTL		
PSC3_3	USB_RXD, Frame, SS, CTS	I/O	VDD_IO	DRV4	TTL		
PSC3_4	USB_RXP, CD	I/O	VDD_IO	DRV4	TTL		
PSC3_5	USB_RXN	I/O	VDD_IO	DRV4	TTL		
PSC3_6	USB_PRTPWR, Mclk, MOSI	I/O	VDD_IO	DRV4	TTL		
PSC3_7	USB_SPEED. MISO	I/O	VDD_IO	DRV4	TTL		
PSC3_8	USB_SUPEND, SS	I/O	VDD_IO	DRV4	TTL		
PSC3_9	USB_OVRCNT, SCK	I/O	VDD_IO	DRV4	TTL		
GPIO/TIMER							
GPIO_WKUP_6	MEM_CS1	I/O	VDD_MEM_IO	DRV16_MEM	TTL	PULLUP_MEM	
GPIO_WKUP_7		I/O	VDD_IO	DRV8	TTL		
TIMER_0		I/O	VDD_IO	DRV4	TTL		

Table 52. MPC5200 Pinout Listing (continued)

Figure 54. PORRESET vs. JTAG_TRST

5.4.1.2 Connecting JTAG_TRST

The wiring of the JTAG_TRST depends on the existence of a board-related debug interface (see Table 53 below).

Normally this interface is implemented, using a COP (common on-chip processor) connector. The COP allows a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the MPC5200.

5.4.2 G2_LE COP/BDM Interface

There are two possibilities to connect the JTAG interface: using it with a COP connector and without a COP connector.

5.4.2.1 Boards interfacing the JTAG port via a COP connector

The MPC5200 functional pin interface and internal logic provides access to the embedded G2_LE processor core through the Freescale (formerly Motorola) standard COP/BDM interface. Table 53 gives the COP/BDM interface signals. The pin order shown reflects only the COP/BDM connector order.

BDM Pin #	MPC5200 I/O Pin	BDM Connector	Internal PullUp/Down	External PullUp/Down	I/O ¹
16	—	GND	_	_	—
15	TEST_SEL_0	ckstp_out	_	_	I
14	—	KEY		_	—
13	HRESET	hreset		10k Pull-Up	0
12	—	GND	—	—	—
11	SRESET	sreset		10k Pull-Up	0
10	—	N/C	—	_	—
9	JTAG_TMS	tms	100k Pull-Up	10k Pull-Up	0

Table 53. COP/BDM Interface Signals

6 Ordering Information

Part Number	Speed	Ambient Temp	Qualification
MPC5200BV400	400	0C to 70C	Commercial
MPC5200CBV266	266	-40C to 85C	Industrial
MPC5200CBV400	400	-40C to 85C	Industrial
SPC5200CBV400	400	-40C to 85C	Automotive - AEC

Table 54. Ordering Information

7 Document Revision History

Table 55 provides a revision history for this hardware specification.

Table 55. Document Revision History

Rev. No.	Substantive Change(s)
0.1	First Preliminary release with some TBD's in spec tables (6/2003)
0.2	Added AC specs for missing modules, power-on sequence, misc other updates (7/2003)
0.2.1	Corrected maximum core operating frequency (7/2003)
0.3	Added Memory Interface Timing values, misc other updates (8/2003)
1.0	Added Information about JTAG_TRST (11/2003)
2.0	Added Power Numbers (Section 3.1.5), updated Oscillator and PLL Characteristics (Section 3.2), updated SDRAM AC Characteristics (Section 3.3.5)
3.0	Change to Freescale brand and format (8/2004)
4.0	Updates to LPC timing, DDR SDRAM timing, JTAG section, replaced TBD's (1/2005)
	Rev 4 has been regenerated with the new Freescale appearance guidelines, the title was changed and the reference to www.mobilegt.com in the first paragraph (Note) was changed to www. freescale.com (3/2006).

For more detailed information, refer to the following documentation:

- [1] MPC5200 User Manual MPC5200UM
- [2] PowerPC Microprocessor Family: The Programming Environments for 32-bit Microprocessors, Rev. 2: MPCFPE32B/AD
- [3] G2 Core Reference Manual, Rev. 0: G2CORERM/D
- [4] PCI Local Bus Specification, Revision 2.2, December 18, 1998
- [5] ANSI ATA-4 Specification
- [6] IEEE 802.3 Specification (ETHERNET)

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

MPC5200 Rev. 4, 01/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM Corp. and used under license. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005, 2006. All rights reserved.

