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Fusion Family of Mixed Signal FPGAs
The on-chip crystal and RC oscillators work in conjunction with the integrated phase-locked loops (PLLs)
to provide clocking support to the FPGA array and on-chip resources. In addition to supporting typical
RTC uses such as watchdog timer, the Fusion RTC can control the on-chip voltage regulator to power
down the device (FPGA fabric, flash memory block, and ADC), enabling a low power standby mode.

The Fusion family offers revolutionary features, never before available in an FPGA. The nonvolatile flash
technology gives the Fusion solution the advantage of being a highly secure, low power, single-chip
solution that is Instant On. Fusion is reprogrammable and offers time-to-market benefits at an ASIC-level
unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA
design flows and tools.

Flash Advantages

Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, high performance, and ease of use. Flash-
based Fusion devices are Instant On and do not need to be loaded from an external boot PROM. 
On-board security mechanisms prevent access to the programming information and enable remote
updates of the FPGA logic that are protected with high level security. Designers can perform remote in-
system reprogramming to support future design iterations and field upgrades, with confidence that
valuable IP is highly unlikely to be compromised or copied. ISP can be performed using the 
industry-standard AES algorithm with MAC data authentication on the device. The Fusion family device
architecture mitigates the need for ASIC migration at higher user volumes. This makes the Fusion family
a cost-effective ASIC replacement solution for applications in the consumer, networking and
communications, computing, and avionics markets.

Security

As the nonvolatile, flash-based Fusion family requires no boot PROM, there is no vulnerable external
bitstream. Fusion devices incorporate FlashLock, which provides a unique combination of
reprogrammability and design security without external overhead, advantages that only an FPGA with
nonvolatile flash programming can offer. 

Fusion devices utilize a 128-bit flash-based key lock and a separate AES key to provide the highest level
of protection in the FPGA industry for programmed IP and configuration data. The FlashROM data in
Fusion devices can also be encrypted prior to loading. Additionally, the flash memory blocks can be
programmed during runtime using the industry-leading AES-128 block cipher encryption standard (FIPS
Publication 192). The AES standard was adopted by the National Institute of Standards and Technology
(NIST) in 2000 and replaces the DES standard, which was adopted in 1977. Fusion devices have a 
built-in AES decryption engine and a flash-based AES key that make Fusion devices the most
comprehensive programmable logic device security solution available today. Fusion devices with 
AES-based security provide a high level of protection for remote field updates over public networks, such
as the Internet, and are designed to ensure that valuable IP remains out of the hands of system
overbuilders, system cloners, and IP thieves. As an additional security measure, the FPGA configuration
data of a programmed Fusion device cannot be read back, although secure design verification is
possible. During design, the user controls and defines both internal and external access to the flash
memory blocks.

Security, built into the FPGA fabric, is an inherent component of the Fusion family. The flash cells are
located beneath seven metal layers, and many device design and layout techniques have been used to
make invasive attacks extremely difficult. Fusion with FlashLock and AES security is unique in being
highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with 
industry-standard security, making remote ISP possible. A Fusion device provides the best available
security for programmable logic designs.

Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based Fusion FPGAs do
not require system configuration components such as EEPROMs or microcontrollers to load device
configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system
reliability.
Revision 6 1-2



Fusion Family of Mixed Signal FPGAs
Figure 2-10 • Very-Long-Line Resources
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Device Architecture
RC Oscillator 
The RC oscillator is an on-chip free-running clock source generating a 100 MHz clock. It can be used as
a source clock for both on-chip and off-chip resources. When used in conjunction with the Fusion PLL
and CCC circuits, the RC oscillator clock source can be used to generate clocks of varying frequency
and phase.

The Fusion RC oscillator is very accurate at ±1% over commercial temperature ranges and and ±3%
over industrial temperature ranges. It is an automated clock, requiring no setup or configuration by the
user. It requires only that the power and GNDOSC pins be connected; no external components are
required. The RC oscillator can be used to drive either a PLL or another internal signal.

RC Oscillator Characteristics

Table 2-9 • Electrical Characteristics of RC Oscillator

Parameter Description Conditions Min. Typ. Max. Units

FRC

Operating Frequency 100 MHz

Accuracy Temperature: 0°C to 85°C

Voltage: 3.3 V ± 5%

1 %

Temperature: –40°C to 125°C

Voltage: 3.3 V ± 5%

3 %

Output Jitter Period Jitter (at 5 k cycles) 100 ps

Cycle–Cycle Jitter (at 5 k cycles) 100 ps

Period Jitter (at 5 k cycles) with 1 KHz / 300 mV
peak-to-peak noise on power supply

150 ps

Cycle–Cycle Jitter (at 5 k cycles) with 1 KHz /
300 mV peak-to-peak noise on power supply

150 ps

Output Duty Cycle 50 %

IDYNRC Operating Current 1 mA
2-19 Revision 6



Device Architecture
Figure 2-18 • Crystal Oscillator: RC Time Constant Values vs. Frequency (typical)
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Table 2-10 • XTLOSC Signals Descriptions

Signal Name Width Direction Function

XTL_EN* 1 Enables the crystal. Active high.

XTL_MODE* 2 Settings for the crystal clock for different frequency.

Value Modes Frequency Range

b'00 RC network 32 KHz to 4 MHz

b'01 Low gain 32 to 200 KHz

b'10 Medium gain 0.20 to 2.0 MHz

b'11 High gain 2.0 to 20.0 MHz

SELMODE 1 IN Selects the source of XTL_MODE and also enables the XTL_EN. Connect
from RTCXTLSEL from AB.

0 For normal operation or sleep mode, XTL_EN depends on
FPGA_EN, XTL_MODE depends on MODE

1 For Standby mode, XTL_EN is enabled, XTL_MODE depends on
RTC_MODE

RTC_MODE[1:0] 2 IN Settings for the crystal clock for different frequency ranges. XTL_MODE uses
RTC_MODE when SELMODE is '1'.

MODE[1:0] 2 IN Settings for the crystal clock for different frequency ranges. XTL_MODE uses
MODE when SELMODE is '0'. In Standby, MODE inputs will be 0's.

FPGA_EN* 1 IN 0 when 1.5 V is not present for VCC 1 when 1.5 V is present for VCC

XTL 1 IN Crystal Clock source

CLKOUT 1 OUT Crystal Clock output

Note: *Internal signal—does not exist in macro.
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Device Architecture
Real-Time Counter System
The RTC system enables Fusion devices to support standby and sleep modes of operation to reduce
power consumption in many applications.

• Sleep mode, typical 10 µA

• Standby mode (RTC running), typical 3 mA with 20 MHz 

The RTC system is composed of five cores:

• RTC sub-block inside Analog Block (AB) 

• Voltage Regulator and Power System Monitor (VRPSM)

• Crystal oscillator (XTLOSC); refer to the "Crystal Oscillator" section in the Fusion Clock
Resources chapter of the Fusion FPGA Fabric User Guide for more detail.

• Crystal clock; does not require instantiation in RTL

• 1.5 V voltage regulator; does not require instantiation in RTL

All cores are powered by 3.3 V supplies, so the RTC system is operational without a 1.5 V supply during
standby mode. Figure 2-27 shows their connection.

Notes:

1. Signals are hardwired internally and do not exist in the macro core.
2. User is only required to instantiate the VRPSM macro if the user wishes to specify PUPO behavior of the voltage regulator

to be different from the default, or employ user logic to shut the voltage regulator off. 

Figure 2-27 • Real-Time Counter System (not all the signals are shown for the AB macro)
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Device Architecture
Erase Page Operation
The Erase Page operation is initiated when the ERASEPAGE pin is asserted. The Erase Page operation
allows the user to erase (set user data to zero) any page within the FB. 

The use of the OVERWRITEPAGE and PAGELOSSPROTECT pins is the same for erase as for a
Program Page operation.

As with the Program Page operation, a STATUS of '01' indicates that the addressed page is not erased.

A waveform for an Erase Page operation is shown in Figure 2-37.

Erase errors include the following:

1. Attempting to erase a page that is Overwrite Protected (STATUS = '01')

2. Attempting to erase a page that is not in the Page Buffer when the Page Buffer has entered Page
Loss Protection mode (STATUS = '01')

3. The Write Count of the erased page exceeding the Write Threshold defined in the part
specification (STATUS = '11')

4. The ECC Logic determining that there is an uncorrectable error within the erased page (STATUS
= '10')

Figure 2-37 • FB Erase Page Waveform
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Device Architecture
RAM512X18 exhibits slightly different behavior from RAM4K9, as it has dedicated read and write ports.

WW and RW
These signals enable the RAM to be configured in one of the two allowable aspect ratios (Table 2-30).

WD and RD
These are the input and output data signals, and they are 18 bits wide. When a 512×9 aspect ratio is
used for write, WD[17:9] are unused and must be grounded. If this aspect ratio is used for read, then
RD[17:9] are undefined. 

WADDR and RADDR
These are read and write addresses, and they are nine bits wide. When the 256×18 aspect ratio is used
for write or read, WADDR[8] or RADDR[8] are unused and must be grounded.

WCLK and RCLK
These signals are the write and read clocks, respectively. They are both active high.

WEN and REN
These signals are the write and read enables, respectively. They are both active low by default. These
signals can be configured as active high.

RESET
This active low signal resets the output to zero, disables reads and/or writes from the SRAM block, and
clears the data hold registers when asserted. It does not reset the contents of the memory.

PIPE 
This signal is used to specify pipelined read on the output. A Low on PIPE indicates a nonpipelined read,
and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and data
appears on the output in the next clock cycle.

Clocking
The dual-port SRAM blocks are only clocked on the rising edge. SmartGen allows falling-edge-triggered
clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on
either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge or by
separate clocks, by port. 

Fusion devices support inversion (bubble pushing) throughout the FPGA architecture, including the clock
input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic or in the
HDL code will be automatically accounted for during design compile without incurring additional delay in
the clock path.

The two-port SRAM can be clocked on the rising edge or falling edge of WCLK and RCLK. 

If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion
management (bubble pushing) is automatically used within the Fusion development tools, without
performance penalty. 

Table 2-30 • Aspect Ratio Settings for WW[1:0]

WW[1:0] RW[1:0] D×W

01 01 512×9

10 10 256×18

00, 11 00, 11 Reserved
2-61 Revision 6



Fusion Family of Mixed Signal FPGAs
Care must be taken when choosing the right resistor for current measurement application. Note that
because of the 10× amplification, the maximum measurable difference between the AV and AC pads is
VAREF / 10. A larger AV-to-AC voltage drop will result in ADC saturation; that is, the digital code put out by
the ADC will stay fixed at the full scale value. Therefore, the user must select the external sense resistor
appropriately. Table 2-38 shows recommended resistor values for different current measurement ranges.
When choosing resistor values for a system, there is a trade-off between measurement accuracy and
power consumption. Choosing a large resistor will increase the voltage drop and hence increase
accuracy of the measurement; however the larger voltage drop dissipates more power (P = I2 × R).

The Current Monitor is a unipolar system, meaning that the differential voltage swing must be from 0 V to
VAREF/10. Therefore, the Current Monitor only supports differential voltage where |VAV-VAC| is greater
than 0 V. This results in the requirement that the potential of the AV pad must be larger than the potential
of the AC pad. This is straightforward for positive voltage systems. For a negative voltage system, it
means that the AV pad must be "more negative" than the AC pad. This is shown in Figure 2-73. 

In this case, both the AV pad and the AC pad are configured for negative operations and the output of the
differential amplifier still falls between 0 V and VAREF as required.  

Figure 2-72 • Positive Current Monitor

0-12 V RSENSE I

ACxAVx

CMSTBx

10 X

Current Monitor

VADC to Analog MUX
(refer Table 2-36
for MUX channel

number)

Table 2-37 • Recommended Resistor for Different Current Range Measurement

Current Range Recommended Minimum Resistor Value (Ohms)

> 5 mA – 10 mA 10 – 20 

> 10 mA – 20 mA 5 – 10 

> 20 mA – 50 mA 2.5 – 5 

> 50 mA – 100 mA 1 – 2

> 100 mA – 200 mA 0.5 – 1

> 200 mA – 500 mA 0.3 – 0.5

> 500 mA – 1 A 0.1 – 0.2

> 1 A – 2 A 0.05 – 0.1

> 2 A – 4 A 0.025 – 0.05

> 4 A – 8 A 0.0125 – 0.025

> 8 A – 12 A 0.00625 – 0.02
Revision 6 2-88



Device Architecture
Gain Error 
The gain error of an ADC indicates how well the slope of an actual transfer function matches the slope of
the ideal transfer function. Gain error is usually expressed in LSB or as a percent of full-scale (%FSR).
Gain error is the full-scale error minus the offset error (Figure 2-84).

Gain Error Drift
Gain-error drift is the variation in gain error due to a change in ambient temperature, typically expressed
in ppm/°C.

Figure 2-84 • Gain Error
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Fusion Family of Mixed Signal FPGAs
Examples
Calculating Accuracy for an Uncalibrated Analog Channel

Formula

For a given prescaler range, EQ 30 gives the output voltage.

Output Voltage = (Channel Output Offset in V) + (Input Voltage x Channel Gain)

EQ 30

where

Channel Output offset in V = Channel Input offset in LSBs x Equivalent voltage per LSB

Channel Gain Factor = 1+ (% Channel Gain / 100)

Example

Input Voltage = 5 V

Chosen Prescaler range = 8 V range

Refer to Table 2-51 on page 2-122.

Max. Output Voltage = (Max Positive input offset) + (Input Voltage x Max Positive Channel Gain)

Max. Positive input offset = (21 LSB) x (8 mV per LSB in 10-bit mode)

Max. Positive input offset = 166 mV

Max. Positive Gain Error = +3%

Max. Positive Channel Gain = 1 + (+3% / 100)

Max. Positive Channel Gain = 1.03

Max. Output Voltage = (166 mV) + (5 V x 1.03)

Max. Output Voltage = 5.316 V

Table 2-53 • Analog Channel Accuracy: Monitoring Standard Positive Voltages
Typical Conditions, TA = 25°C

Input Voltage 
(V)

Calibrated Typical Error per Positive Prescaler Setting 1 (%FSR)
Direct ADC 2,3 

(%FSR)

16 V (AT)
16 V (12 V)

(AV/AC)
8 V 

(AV/AC) 4 V (AT)
4 V 

(AV/AC)
2 V 

(AV/AC)
1 V 

(AV/AC) VAREF = 2.56 V

15 1

14 1

12 1 1

5 2 2 1

3.3 2 2 1 1 1

2.5 3 2 1 1 1 1

1.8 4 4 1 1 1 1 1

1.5 5 5 2 2 2 1 1

1.2 7 6 2 2 2 1 1

0.9 9 9 4 3 3 1 1 1

Notes:

1. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the
"Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

2. Direct ADC mode using an external VAREF of 2.56V±4.6mV, without Analog Calibration macro.

3. For input greater than 2.56 V, the ADC output will saturate. A higher VAREF or prescaler usage is recommended.
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Fusion Family of Mixed Signal FPGAs
Timing Characteristics

Table 2-55 • Analog Configuration Multiplexer (ACM) Timing
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

 Parameter  Description –2 –1 Std.  Units 

 tCLKQACM  Clock-to-Q of the ACM 19.73 22.48 26.42  ns

 tSUDACM  Data Setup time for the ACM 4.39 5.00 5.88  ns

 tHDACM  Data Hold time for the ACM 0.00 0.00 0.00  ns

 tSUAACM  Address Setup time for the ACM 4.73 5.38 6.33  ns

 tHAACM  Address Hold time for the ACM 0.00 0.00 0.00  ns

 tSUEACM  Enable Setup time for the ACM 3.93 4.48 5.27  ns

 tHEACM  Enable Hold time for the ACM 0.00 0.00 0.00  ns

 tMPWARACM Asynchronous Reset Minimum Pulse Width for the ACM 10.00 10.00 10.00  ns

 tREMARACM Asynchronous Reset Removal time for the ACM 12.98 14.79 17.38  ns

 tRECARACM Asynchronous Reset Recovery time for the ACM 12.98 14.79 17.38  ns

 tMPWCLKACM Clock Minimum Pulse Width for the ACM 45.00 45.00 45.00  ns

tFMAXCLKACM lock Maximum Frequency for the ACM 10.00 10.00 10.00 MHz
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Device Architecture
Table 2-85 • Fusion Pro I/O Attributes vs. I/O Standard Applications 
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LVTTL/LVCMOS 3.3 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 2.5 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 2.5/5.0 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 1.8 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 1.5 V 3 3 3 3 3 3 3 3 3 3

PCI (3.3 V) 3 3 3 3 3

PCI-X (3.3 V) 3 3 3 3 3 3

GTL+ (3.3 V) 3 3 3 3 3 3

GTL+ (2.5 V) 3 3 3 3 3 3

GTL (3.3 V) 3 3 3 3 3 3

GTL (2.5 V) 3 3 3 3 3 3

HSTL Class I 3 3 3 3 3 3

HSTL Class II 3 3 3 3 3 3

SSTL2 Class I and II 3 3 3 3 3 3

SSTL3 Class I and II 3 3 3 3 3 3

LVDS, BLVDS, M-LVDS 3 3 3 3 3

LVPECL 3 3 3 3
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Fusion Family of Mixed Signal FPGAs
Overview of I/O Performance
Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-86 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and 
Industrial Conditions
Applicable to Pro I/Os

I/O Standard
Drive 

Strength
Slew 
Rate

VIL VIH VOL VOH IOL IOH

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

3.3 V LVTTL /
3.3 V LVCMOS 

 12 mA  High  –0.3  0.8   2   3.6  0.4  2.4  12  12 

2.5 V LVCMOS  12 mA  High  –0.3  0.7   1.7   3.6   0.7   1.7  12  12 

1.8 V LVCMOS  12 mA  High  –0.3  0.35 * VCCI  0.65 * VCCI  3.6   0.45   VCCI – 0.45  12  12 

1.5 V LVCMOS  12 mA  High  –0.3  0.35 * VCCI  0.65 * VCCI  3.6   0.25 * VCCI  0.75 * VCCI  12  12 

3.3 V PCI  Per PCI Specification  

3.3 V PCI-X  Per PCI-X Specification  

3.3 V GTL  20 mA2  High   –0.3   VREF – 0.05   VREF + 0.05   3.6   0.4   –   20  20 

2.5 V GTL  20 mA2  High   –0.3   VREF – 0.05   VREF + 0.05   3.6   0.4   –   20  20 

3.3 V GTL+  35 mA   High   –0.3   VREF – 0.1   VREF + 0.1   3.6   0.6   –  35 35

2.5 V GTL+  33 mA   High   –0.3   VREF – 0.1   VREF + 0.1   3.6   0.6   –  33 33

HSTL (I)  8 mA   High   –0.3   VREF – 0.1   VREF + 0.1   3.6   0.4  VCCI – 0.4   8   8  

HSTL (II)  15 mA2   High   –0.3   VREF – 0.1   VREF + 0.1   3.6   0.4  VCCI – 0.4   15   15  

SSTL2 (I)  15 mA   High   –0.3   VREF – 0.2   VREF + 0.2   3.6   0.54   VCCI – 0.62  15 15

SSTL2 (II)  18 mA   High   –0.3   VREF – 0.2   VREF + 0.2   3.6   0.35   VCCI – 0.43  18 18

SSTL3 (I)  14 mA   High   –0.3   VREF – 0.2   VREF + 0.2   3.6   0.7  VCCI – 1.1  14 14

SSTL3 (II)  21 mA   High   –0.3   VREF – 0.2   VREF + 0.2   3.6   0.5  VCCI – 0.9  21 21

Notes:

1. Currents are measured at 85°C junction temperature.
2. Output drive strength is below JEDEC specification.

3. Output slew rate can be extracted by the IBIS models.

Table 2-87 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and 
Industrial Conditions
Applicable to Advanced I/Os

I/O Standard
Drive 

Strength
Slew 
Rate

VIL VIH VOL VOH IOL IOH

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

3.3 V LVTTL /
3.3 V LVCMOS 

12 mA   High   –0.3   0.8   2   3.6   0.4   2.4   12   12  

2.5 V LVCMOS  12 mA   High   –0.3   0.7   1.7  2.7  0.7   1.7   12   12  

1.8 V LVCMOS  12 mA   High   –0.3   0.35 * VCCI  0.65 * VCCI  1.9  0.45   VCCI – 0.45  12 12

1.5 V LVCMOS  12 mA   High   –0.3   0.35 * VCCI  0.65 * VCCI 1.575  0.25 * VCCI  0.75 * VCCI 12 12

 3.3 V PCI  Per PCI specifications  

 3.3 V PCI-X  Per PCI-X specifications  

Note: Currents are measured at 85°C junction temperature.
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Device Architecture
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.5 V applications. It uses a 1.5 V input buffer and push-pull output buffer.  

Table 2-126 • Minimum and Maximum DC Input and Output Levels

1.5 V 
LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

Applicable to Pro I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 6 6 39 32 10 10

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 8 8 55 66 10 10

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12 55 66 10 10

Applicable to Advanced I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 33 25 10 10

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 6 6 39 32 10 10

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 8 8 55 66 10 10

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 55 66 10 10

Applicable to Pro I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 16 13 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-122 • AC Loading

Table 2-127 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 1.5 0.75 – 35

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point
Test Point

Enable PathData Path 35 pF

R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
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Fusion Family of Mixed Signal FPGAs
Table 2-132 • 1.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.4 V
Applicable to Standard I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  Units 

2 mA  Std. 0.66 12.33 0.04 1.42 0.43 11.79 12.33 2.45 2.32  ns 

 –1 0.56 10.49 0.04 1.21 0.36 10.03 10.49 2.08 1.98  ns 

 –2 0.49 9.21 0.03 1.06 0.32 8.81 9.21 1.83 1.73  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Table 2-133 • 1.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.4 V
Applicable to Standard I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  Units 

2 mA  Std. 0.66 7.65 0.04 1.42 0.43 6.31 7.65 2.45 2.45  ns 

 –1 0.56 6.50 0.04 1.21 0.36 5.37 6.50 2.08 2.08  ns 

 –2 0.49 5.71 0.03 1.06 0.32 4.71 5.71 1.83 1.83  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Output Enable Register

Timing Characteristics

Figure 2-141 • Output Enable Register Timing Diagram
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Table 2-178 • Output Enable Register Propagation Delays
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tOECLKQ Clock-to-Q of the Output Enable Register 0.44 0.51 0.59 ns

tOESUD Data Setup Time for the Output Enable Register 0.31 0.36 0.42 ns

tOEHD Data Hold Time for the Output Enable Register 0.00 0.00 0.00 ns

tOESUE Enable Setup Time for the Output Enable Register 0.44 0.50 0.58 ns

tOEHE Enable Hold Time for the Output Enable Register 0.00 0.00 0.00 ns

tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register 0.67 0.76 0.89 ns

tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register 0.67 0.76 0.89 ns

tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 0.00 ns

tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register 0.22 0.25 0.30 ns

tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 0.00 ns

tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register 0.22 0.25 0.30 ns

tOEWCLR Asynchronous Clear Minimum Pulse Width for the Output Enable
Register

0.22 0.25 0.30 ns

tOEWPRE Asynchronous Preset Minimum Pulse Width for the Output Enable
Register

0.22 0.25 0.30 ns

tOECKMPWH Clock Minimum Pulse Width High for the Output Enable Register 0.36 0.41 0.48 ns

tOECKMPWL Clock Minimum Pulse Width Low for the Output Enable Register 0.32 0.37 0.43 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Theta-JA
Junction-to-ambient thermal resistance (JA) is determined under standard conditions specified by
JEDEC (JESD-51), but it has little relevance in actual performance of the product. It should be used with
caution but is useful for comparing the thermal performance of one package to another.

A sample calculation showing the maximum power dissipation allowed for the AFS600-FG484 package
under forced convection of 1.0 m/s and 75°C ambient temperature is as follows:

EQ 4

where  

EQ 5

The power consumption of a device can be calculated using the Microsemi power calculator. The
device's power consumption must be lower than the calculated maximum power dissipation by the
package. If the power consumption is higher than the device's maximum allowable power dissipation, a
heat sink can be attached on top of the case, or the airflow inside the system must be increased.

Theta-JB
Junction-to-board thermal resistance (JB) measures the ability of the package to dissipate heat from the
surface of the chip to the PCB. As defined by the JEDEC (JESD-51) standard, the thermal resistance
from junction to board uses an isothermal ring cold plate zone concept. The ring cold plate is simply a
means to generate an isothermal boundary condition at the perimeter. The cold plate is mounted on a
JEDEC standard board with a minimum distance of 5.0 mm away from the package edge.

Theta-JC
Junction-to-case thermal resistance (JC) measures the ability of a device to dissipate heat from the
surface of the chip to the top or bottom surface of the package. It is applicable for packages used with
external heat sinks. Constant temperature is applied to the surface in consideration and acts as a
boundary condition. This only applies to situations where all or nearly all of the heat is dissipated through
the surface in consideration. 

Calculation for Heat Sink 
For example, in a design implemented in an AFS600-FG484 package with 2.5 m/s airflow, the power
consumption value using the power calculator is 3.00 W. The user-dependent Ta and Tj are given as
follows:

From the datasheet:  

EQ 6

JA = 19.00°C/W (taken from Table 3-6 on page 3-7). 

TA = 75.00°C 

TJ = 100.00°C

TA = 70.00°C

JA = 17.00°C/W

JC = 8.28°C/W

Maximum Power Allowed
TJ(MAX) TA(MAX)–

JA
---------------------------------------------=

Maximum Power Allowed
100.00°C 75.00°C–

19.00°C/W
---------------------------------------------------- 1.3 W= =

P
TJ TA–

JA
------------------- 100°C 70°C–

17.00 W
------------------------------------ 1.76 W= = =
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DC and Power Characteristics
IPP Programming supply
current

Non-programming mode, 
VPUMP = 3.63 V

TJ = 25°C 36 80 µA

TJ = 85°C 36 80 µA

TJ = 100°C 36 80 µA

Standby mode5 or Sleep
mode6, VPUMP = 0 V

0 0 µA

ICCNVM Embedded NVM current Reset asserted, 
VCCNVM = 1.575 V

TJ = 25°C 22 80 µA

TJ = 85°C 24 80 µA

TJ = 100°C 25 80 µA

ICCPLL 1.5 V PLL quiescent current Operational standby, 
VCCPLL = 1.575 V 

TJ = 25°C 130 200 µA

TJ = 85°C 130 200 µA

TJ = 100°C 130 200 µA

Table 3-9 • AFS600 Quiescent Supply Current Characteristics (continued)

Parameter Description Conditions Temp. Min Typ Max Unit

Notes:

1. ICC is the 1.5 V power supplies, ICC and ICC15A.
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.
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Package Pin Assignments
QN108

Pin Number AFS090 Function

A1 NC

A2 GNDQ

A3 GAA2/IO52PDB3V0

A4 GND

A5 GFA1/IO47PDB3V0

A6 GEB1/IO45PDB3V0

A7 VCCOSC

A8 XTAL2

A9 GEA1/IO44PPB3V0

A10 GEA0/IO44NPB3V0

A11 GEB2/IO42PDB3V0

A12 VCCNVM

A13 VCC15A

A14 PCAP

A15 NC

A16 GNDA

A17 AV0

A18 AG0

A19 ATRTN0

A20 AT1

A21 AC1

A22 AV2

A23 AG2

A24 AT2

A25 AT3

A26 AC3

A27 GNDAQ

A28 ADCGNDREF

A29 NC

A30 GNDA

A31 PTEM

A32 GNDNVM

A33 VPUMP

A34 TCK

A35 TMS

A36 TRST

A37 GDB1/IO39PSB1V0

A38 GDC1/IO38PDB1V0

A39 GND

A40 GCB1/IO35PDB1V0

A41 GCB2/IO33PDB1V0

A42 GBA2/IO31PDB1V0

A43 NC

A44 GBA1/IO30RSB0V0

A45 GBB1/IO28RSB0V0

A46 GND

A47 VCC

A48 GBC1/IO26RSB0V0

A49 IO21RSB0V0

A50 IO19RSB0V0

A51 IO09RSB0V0

A52 GAC0/IO04RSB0V0

A53 VCCIB0

A54 GND

A55 GAB0/IO02RSB0V0

A56 GAA0/IO00RSB0V0

B1 VCOMPLA

B2 VCCIB3

B3 GAB2/IO52NDB3V0

B4 VCCIB3

B5 GFA0/IO47NDB3V0

B6 GEB0/IO45NDB3V0

B7 XTAL1

B8 GNDOSC

B9 GEC2/IO43PSB3V0

B10 GEA2/IO42NDB3V0

B11 VCC

B12 GNDNVM

B13 NCAP

B14 VCC33PMP

B15 VCC33N

B16 GNDAQ

B17 AC0

B18 AT0

B19 AG1

B20 AV1

QN108

Pin Number AFS090 Function

B21 AC2

B22 ATRTN1

B23 AG3

B24 AV3

B25 VCC33A

B26 VAREF

B27 PUB

B28 VCC33A

B29 PTBASE

B30 VCCNVM

B31 VCC

B32 TDI

B33 TDO

B34 VJTAG

B35 GDC0/IO38NDB1V
0

B36 VCCIB1

B37 GCB0/IO35NDB1V0

B38 GCC2/IO33NDB1V
0

B39 GBB2/IO31NDB1V0

B40 VCCIB1

B41 GNDQ

B42 GBA0/IO29RSB0V0

B43 VCCIB0

B44 GBB0/IO27RSB0V0

B45 GBC0/IO25RSB0V0

B46 IO20RSB0V0

B47 IO10RSB0V0

B48 GAC1/IO05RSB0V0

B49 GAB1/IO03RSB0V0

B50 VCC

B51 GAA1/IO01RSB0V0

B52 VCCPLA

QN108

Pin Number AFS090 Function
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