

E·XFI

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	
Number of Logic Elements/Cells	- ·
Total RAM Bits	27648
Number of I/O	75
Number of Gates	90000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/afs090-1fg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Fusion Device Family Overview

Introduction	1-1
General Description	1-1
Unprecedented Integration	1-4
Related Documents	1-10

Device Architecture

Fusion Stack Architecture	
Core Architecture	
Clocking Resources	
Real-Time Counter System	
Embedded Memories	
Analog Block	
Analog Configuration MUX	
User I/Os	
Pin Descriptions	
Security	

DC and Power Characteristics

General Specifications	3-1
Calculating Power Dissipation	3-10
Power Consumption	3-32

Package Pin Assignments

QN108	 	 	 	 	 	 	 	 	 		 	 . 4-	1						
QN180																			
PQ208																			
FG256																			
FG484																			
FG676	 	 	 	 	 	 	 •••	 	 • • •	 	 	 • •	 • •	 	 	•••	 	 4-2	7

Datasheet Information

List of Changes	
Datasheet Categories	
Safety Critical, Life Support, and High-Reliability Applications Policy	/

The on-chip crystal and RC oscillators work in conjunction with the integrated phase-locked loops (PLLs) to provide clocking support to the FPGA array and on-chip resources. In addition to supporting typical RTC uses such as watchdog timer, the Fusion RTC can control the on-chip voltage regulator to power down the device (FPGA fabric, flash memory block, and ADC), enabling a low power standby mode.

The Fusion family offers revolutionary features, never before available in an FPGA. The nonvolatile flash technology gives the Fusion solution the advantage of being a highly secure, low power, single-chip solution that is Instant On. Fusion is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, high performance, and ease of use. Flashbased Fusion devices are Instant On and do not need to be loaded from an external boot PROM.

On-board security mechanisms prevent access to the programming information and enable remote updates of the FPGA logic that are protected with high level security. Designers can perform remote insystem reprogramming to support future design iterations and field upgrades, with confidence that valuable IP is highly unlikely to be compromised or copied. ISP can be performed using the

industry-standard AES algorithm with MAC data authentication on the device. The Fusion family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the Fusion family a cost-effective ASIC replacement solution for applications in the consumer, networking and communications, computing, and avionics markets.

Security

As the nonvolatile, flash-based Fusion family requires no boot PROM, there is no vulnerable external bitstream. Fusion devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

Fusion devices utilize a 128-bit flash-based key lock and a separate AES key to provide the highest level of protection in the FPGA industry for programmed IP and configuration data. The FlashROM data in Fusion devices can also be encrypted prior to loading. Additionally, the flash memory blocks can be programmed during runtime using the industry-leading AES-128 block cipher encryption standard (FIPS Publication 192). The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the DES standard, which was adopted in 1977. Fusion devices have a

built-in AES decryption engine and a flash-based AES key that make Fusion devices the most comprehensive programmable logic device security solution available today. Fusion devices with

AES-based security provide a high level of protection for remote field updates over public networks, such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. As an additional security measure, the FPGA configuration data of a programmed Fusion device cannot be read back, although secure design verification is possible. During design, the user controls and defines both internal and external access to the flash memory blocks.

Security, built into the FPGA fabric, is an inherent component of the Fusion family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. Fusion with FlashLock and AES security is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with

industry-standard security, making remote ISP possible. A Fusion device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based Fusion FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

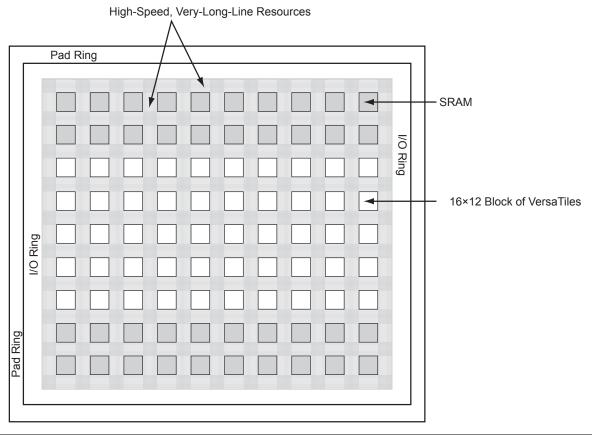
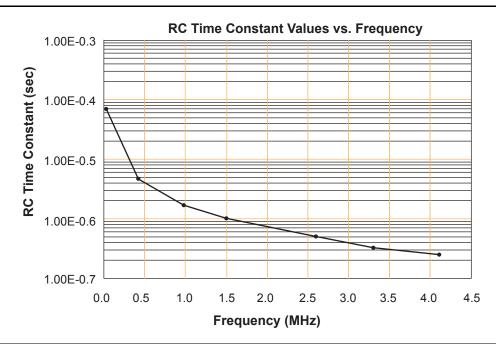


Figure 2-10 • Very-Long-Line Resources

RC Oscillator

The RC oscillator is an on-chip free-running clock source generating a 100 MHz clock. It can be used as a source clock for both on-chip and off-chip resources. When used in conjunction with the Fusion PLL and CCC circuits, the RC oscillator clock source can be used to generate clocks of varying frequency and phase.


The Fusion RC oscillator is very accurate at $\pm 1\%$ over commercial temperature ranges and and $\pm 3\%$ over industrial temperature ranges. It is an automated clock, requiring no setup or configuration by the user. It requires only that the power and GNDOSC pins be connected; no external components are required. The RC oscillator can be used to drive either a PLL or another internal signal.

RC Oscillator Characteristics

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
	Operating Frequency			100		MHz
	Accuracy	Temperature: 0°C to 85°C Voltage: 3.3 V ± 5%		1		%
		Temperature: –40°C to 125°C Voltage: 3.3 V ± 5%		3		%
F _{RC}	Output Jitter	Period Jitter (at 5 k cycles)		100		ps
· KC		Cycle–Cycle Jitter (at 5 k cycles)		100		ps
		Period Jitter (at 5 k cycles) with 1 KHz / 300 mV peak-to-peak noise on power supply		150		ps
		Cycle–Cycle Jitter (at 5 k cycles) with 1 KHz / 300 mV peak-to-peak noise on power supply		150		ps
	Output Duty Cycle			50		%
I _{DYNRC}	Operating Current			1		mA

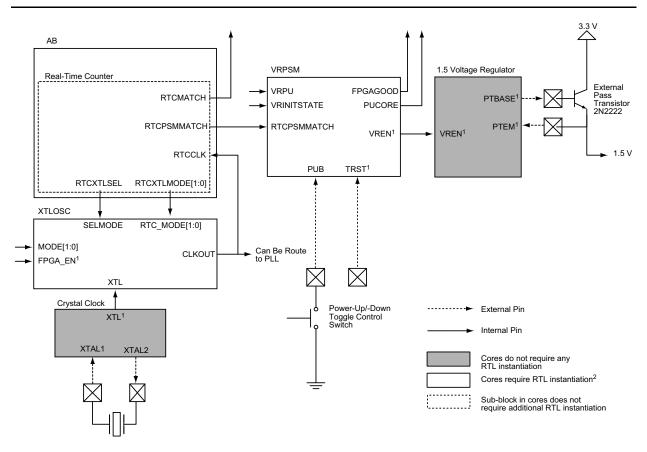
Table 2-9 • Electrical Characteristics of RC Oscillator

Signal Name	Width	Direction	Function								
XTL_EN*	1		Enables the crystal. Active high.								
XTL_MODE*	2		Settings for the crystal clock for different frequency.								
			Value	Modes Frequency Ran							
			b'00	RC network	32 KHz to 4 MHz						
			b'01	Low gain	32 to 200 KHz						
			b'10	Medium gain	0.20 to 2.0 MHz						
			b'11	High gain 2.0 to 20.0 MH:							
SELMODE	1	IN	Selects the source of XTL_MODE and also enables the XTL_EN. Connect from RTCXTLSEL from AB.								
			0	For normal operation or slo FPGA_EN, XTL_MODE depe	eep mode, XTL_EN depends on nds on MODE						
			1	For Standby mode, XTL_EN is RTC_MODE	s enabled, XTL_MODE depends on						
RTC_MODE[1:0]	2	IN	•	the crystal clock for different fi E when SELMODE is '1'.	requency ranges. XTL_MODE uses						
MODE[1:0]	2	IN		Settings for the crystal clock for different frequency ranges. XTL_MODE uses MODE when SELMODE is '0'. In Standby, MODE inputs will be 0's.							
FPGA_EN*	1	IN	0 when 1.5	0 when 1.5 V is not present for VCC 1 when 1.5 V is present for VCC							
XTL	1	IN	Crystal Cloo	Crystal Clock source							
CLKOUT	1	OUT	Crystal Cloo	ck output							

Table 2-10 • XTLOSC Signals Descriptions

Note: *Internal signal—does not exist in macro.

Real-Time Counter System


The RTC system enables Fusion devices to support standby and sleep modes of operation to reduce power consumption in many applications.

- Sleep mode, typical 10 µA
- Standby mode (RTC running), typical 3 mA with 20 MHz

The RTC system is composed of five cores:

- RTC sub-block inside Analog Block (AB)
- Voltage Regulator and Power System Monitor (VRPSM)
- Crystal oscillator (XTLOSC); refer to the "Crystal Oscillator" section in the Fusion Clock Resources chapter of the *Fusion FPGA Fabric User Guide* for more detail.
- Crystal clock; does not require instantiation in RTL
- 1.5 V voltage regulator; does not require instantiation in RTL

All cores are powered by 3.3 V supplies, so the RTC system is operational without a 1.5 V supply during standby mode. Figure 2-27 shows their connection.

Notes:

- 1. Signals are hardwired internally and do not exist in the macro core.
- 2. User is only required to instantiate the VRPSM macro if the user wishes to specify PUPO behavior of the voltage regulator to be different from the default, or employ user logic to shut the voltage regulator off.

Figure 2-27 • Real-Time Counter System (not all the signals are shown for the AB macro)

Erase Page Operation

The Erase Page operation is initiated when the ERASEPAGE pin is asserted. The Erase Page operation allows the user to erase (set user data to zero) any page within the FB.

The use of the OVERWRITEPAGE and PAGELOSSPROTECT pins is the same for erase as for a Program Page operation.

As with the Program Page operation, a STATUS of '01' indicates that the addressed page is not erased.

A waveform for an Erase Page operation is shown in Figure 2-37.

Erase errors include the following:

- 1. Attempting to erase a page that is Overwrite Protected (STATUS = '01')
- 2. Attempting to erase a page that is not in the Page Buffer when the Page Buffer has entered Page Loss Protection mode (STATUS = '01')
- 3. The Write Count of the erased page exceeding the Write Threshold defined in the part specification (STATUS = '11')
- 4. The ECC Logic determining that there is an uncorrectable error within the erased page (STATUS = '10')

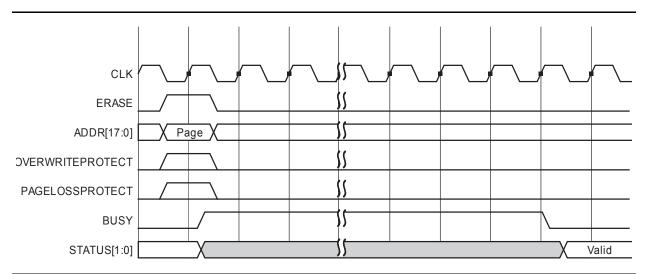


Figure 2-37 • FB Erase Page Waveform

RAM512X18 exhibits slightly different behavior from RAM4K9, as it has dedicated read and write ports.

WW and RW

These signals enable the RAM to be configured in one of the two allowable aspect ratios (Table 2-30).

Table 2-30 • Aspect Ratio Settings for WW[1:0]

WW[1:0]	RW[1:0]	D×W
01	01	512×9
10	10	256×18
00, 11	00, 11	Reserved

WD and RD

These are the input and output data signals, and they are 18 bits wide. When a 512×9 aspect ratio is used for write, WD[17:9] are unused and must be grounded. If this aspect ratio is used for read, then RD[17:9] are undefined.

WADDR and RADDR

These are read and write addresses, and they are nine bits wide. When the 256×18 aspect ratio is used for write or read, WADDR[8] or RADDR[8] are unused and must be grounded.

WCLK and RCLK

These signals are the write and read clocks, respectively. They are both active high.

WEN and REN

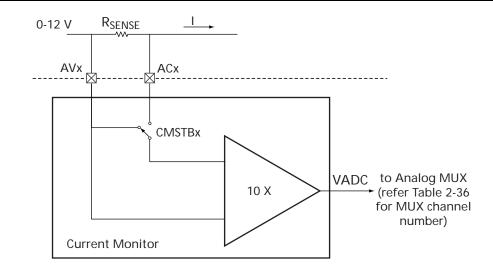
These signals are the write and read enables, respectively. They are both active low by default. These signals can be configured as active high.

RESET

This active low signal resets the output to zero, disables reads and/or writes from the SRAM block, and clears the data hold registers when asserted. It does not reset the contents of the memory.

PIPE

This signal is used to specify pipelined read on the output. A Low on PIPE indicates a nonpipelined read, and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and data appears on the output in the next clock cycle.


Clocking

The dual-port SRAM blocks are only clocked on the rising edge. SmartGen allows falling-edge-triggered clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge or by separate clocks, by port.

Fusion devices support inversion (bubble pushing) throughout the FPGA architecture, including the clock input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic or in the HDL code will be automatically accounted for during design compile without incurring additional delay in the clock path.

The two-port SRAM can be clocked on the rising edge or falling edge of WCLK and RCLK.

If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion management (bubble pushing) is automatically used within the Fusion development tools, without performance penalty.

Figure 2-72 • Positive Current Monitor

Care must be taken when choosing the right resistor for current measurement application. Note that because of the 10× amplification, the maximum measurable difference between the AV and AC pads is V_{AREF} / 10. A larger AV-to-AC voltage drop will result in ADC saturation; that is, the digital code put out by the ADC will stay fixed at the full scale value. Therefore, the user must select the external sense resistor appropriately. Table 2-38 shows recommended resistor values for different current measurement ranges. When choosing resistor values for a system, there is a trade-off between measurement accuracy and power consumption. Choosing a large resistor will increase the voltage drop and hence increase accuracy of the measurement; however the larger voltage drop dissipates more power (P = I² × R).

The Current Monitor is a unipolar system, meaning that the differential voltage swing must be from 0 V to $V_{AREF}/10$. Therefore, the Current Monitor only supports differential voltage where $|V_{AV}-V_{AC}|$ is greater than 0 V. This results in the requirement that the potential of the AV pad must be larger than the potential of the AC pad. This is straightforward for positive voltage systems. For a negative voltage system, it means that the AV pad must be "more negative" than the AC pad. This is shown in Figure 2-73.

In this case, both the AV pad and the AC pad are configured for negative operations and the output of the differential amplifier still falls between 0 V and V_{AREF} as required.

Current Range	Recommended Minimum Resistor Value (Ohms)
> 5 mA – 10 mA	10 – 20
> 10 mA – 20 mA	5 – 10
> 20 mA – 50 mA	2.5 – 5
> 50 mA – 100 mA	1-2
> 100 mA – 200 mA	0.5 – 1
> 200 mA – 500 mA	0.3 – 0.5
> 500 mA – 1 A	0.1 – 0.2
> 1 A – 2 A	0.05 – 0.1
> 2 A – 4 A	0.025 – 0.05
> 4 A – 8 A	0.0125 – 0.025
> 8 A – 12 A	0.00625 – 0.02

Table 2-37 • Recommended Resistor for Different Current Range Measurement

Gain Error

The gain error of an ADC indicates how well the slope of an actual transfer function matches the slope of the ideal transfer function. Gain error is usually expressed in LSB or as a percent of full-scale (%FSR). Gain error is the full-scale error minus the offset error (Figure 2-84).

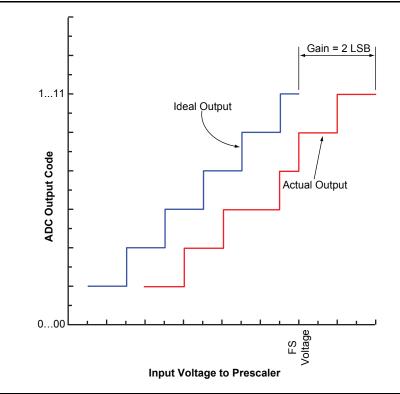


Figure 2-84 • Gain Error

Gain Error Drift

Gain-error drift is the variation in gain error due to a change in ambient temperature, typically expressed in ppm/°C.

Calit	Calibrated Typical Error per Positive Prescaler Setting ¹ (%FSR)													
16 V (AT)	16 V (12 V) (AV/AC)	8 V (AV/AC)	4 V (AT)	4 V (AV/AC)	2 V (AV/AC)	1 V (AV/AC)	VAREF = 2.56 V							
1														
1														
1	1													
2	2	1												
2	2	1	1	1										
3	2	1	1	1			1							
4	4	1	1	1	1		1							
5	5	2	2	2	1		1							
7	6	2	2	2	1		1							
9	9	4	3	3	1	1	1							
	16 V (AT) 1 1 1 2 2 3 4 5 7	16 V (AT) 16 V (12 V) (AV/AC) 1 1 1 1 1 1 2 2 2 2 3 2 4 4 5 5 7 6	16 V (AT) 16 V (12 V) (AV/AC) 8 V (AV/AC) 1 1 1 1 1 1 1 1 2 2 3 2 4 4 5 5 7 6	16 V (AT) 16 V (12 V) (AV/AC) 8 V (AV/AC) 4 V (AT) 1 - <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							

Table 2-53 • Analog Channel Accuracy: Monitoring Standard Positive VoltagesTypical Conditions, $T_A = 25^{\circ}C$

Notes:

1. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

2. Direct ADC mode using an external VAREF of 2.56V±4.6mV, without Analog Calibration macro.

3. For input greater than 2.56 V, the ADC output will saturate. A higher VAREF or prescaler usage is recommended.

Examples

Calculating Accuracy for an Uncalibrated Analog Channel

Formula

For a given prescaler range, EQ 30 gives the output voltage.

Output Voltage = (Channel Output Offset in V) + (Input Voltage x Channel Gain)

EQ 30

where

Channel Output offset in V = Channel Input offset in LSBs x Equivalent voltage per LSB Channel Gain Factor = 1 + (% Channel Gain / 100)

Example

Input Voltage = 5 V Chosen Prescaler range = 8 V range Refer to Table 2-51 on page 2-122.

Max. Output Voltage = (Max Positive input offset) + (Input Voltage x Max Positive Channel Gain)

Max. Positive input offset = (21 LSB) x (8 mV per LSB in 10-bit mode) Max. Positive input offset = 166 mV Max. Positive Gain Error = +3% Max. Positive Channel Gain = 1 + (+3% / 100) Max. Positive Channel Gain = 1.03 Max. Output Voltage = (166 mV) + (5 V x 1.03) Max. Output Voltage = **5.316 V**

Timing Characteristics

Table 2-55 • Analog Configuration Multiplexer (ACM) TimingCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{CLKQACM}	Clock-to-Q of the ACM	19.73	22.48	26.42	ns
t _{SUDACM}	Data Setup time for the ACM	4.39	5.00	5.88	ns
t _{HDACM}	Data Hold time for the ACM	0.00	0.00	0.00	ns
t _{SUAACM}	Address Setup time for the ACM	4.73	5.38	6.33	ns
t _{HAACM}	Address Hold time for the ACM	0.00	0.00	0.00	ns
t _{SUEACM}	Enable Setup time for the ACM	3.93	4.48	5.27	ns
t _{HEACM}	Enable Hold time for the ACM	0.00	0.00	0.00	ns
t _{MPWARACM}	Asynchronous Reset Minimum Pulse Width for the ACM	10.00	10.00	10.00	ns
t _{REMARACM}	Asynchronous Reset Removal time for the ACM	12.98	14.79	17.38	ns
t _{RECARACM}	Asynchronous Reset Recovery time for the ACM	12.98	14.79	17.38	ns
t _{MPWCLKACM}	Clock Minimum Pulse Width for the ACM	45.00	45.00	45.00	ns
t _{FMAXCLKACM}	lock Maximum Frequency for the ACM	10.00	10.00	10.00	MHz

Table 2-85 • Fusion Pro I/O Attributes vs. I/O Standard Applications

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (all macros with OE)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER	⇔ IN_DELAY (input only)	IN_DELAY_VAL (input only)	SCHMITT_TRIGGER (input only)	HOT_SWAPPABLE
LVTTL/LVCMOS 3.3 V	3	3	3	3	3	3		3	3	3
LVCMOS 2.5 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 2.5/5.0 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 1.8 V	3	3	3	3	3	3	3	3	3	3
LVCMOS 1.5 V	3	3	3	3	3	3	3	3	3	3
PCI (3.3 V)			3		3	3	3	3		
PCI-X (3.3 V)	3		3		3	3	3	3		
GTL+ (3.3 V)			3		3	3	3	3		3
GTL+ (2.5 V)			3		3	3	3	3		3
GTL (3.3 V)			3		3	3	3	3		3
GTL (2.5 V)			3		3	3	3	3		3
HSTL Class I			3		3	3	3	3		3
HSTL Class II			3		3	3	3	3		3
SSTL2 Class I and II			3		3	3	3	3		3
SSTL3 Class I and II			3		3	3	3	3		3
LVDS, BLVDS, M-LVDS			3			3	3	3		3
LVPECL						3	3	3		3

Overview of I/O Performance Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-86 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions Applicable to Pro I/Os

			VIL	VIH		VOL	VOH	IOL	IOH
Drive Strength	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
12 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	12	12
12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12
				Per PCI Spec	ification				
				Per PCI-X Spe	cification				
20 mA ²	High	-0.3	VREF-0.05	VREF + 0.05	3.6	0.4	-	20	20
20 mA ²	High	-0.3	VREF-0.05	VREF + 0.05	3.6	0.4	_	20	20
35 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35
33 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	33	33
8 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	8	8
15 mA ²	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	15	15
15 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI-0.62	15	15
18 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.35	VCCI-0.43	18	18
14 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14
21 mA	High	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.5	VCCI – 0.9	21	21
	Strength 12 mA 12 mA 12 mA 12 mA 12 mA 20 mA ² 20 mA ² 20 mA ² 35 mA 33 mA 8 mA 15 mA ² 15 mA 18 mA	StrengthRate12 mAHigh12 mAHigh12 mAHigh12 mAHigh12 mAHigh20 mA2High20 mA2High35 mAHigh33 mAHigh15 mA2High15 mA4High15 mA4High15 mA4High15 mA4High18 mAHigh14 mAHigh	Strength Rate V 12 mA High -0.3 20 mA ² High -0.3 20 mA ² High -0.3 35 mA High -0.3 35 mA High -0.3 33 mA High -0.3 15 mA ² High -0.3 15 mA High -0.3 18 mA High -0.3 14 mA High -0.3	Drive Strength Slew Rate Min. V Max. V 12 mA High -0.3 0.8 12 mA High -0.3 0.7 12 mA High -0.3 0.7 12 mA High -0.3 0.35 * VCCI 12 mA High -0.3 VREF - 0.15 20 mA ² High -0.3 VREF - 0.15 20 mA ² High -0.3 VREF - 0.11 35 mA High -0.3 VREF - 0.11 33 mA High -0.3 VREF - 0.12 15 mA ² High -0.3 VREF - 0.2 18 mA High -0.3 VREF - 0.2 18 mA High -0.3 VREF - 0.2 14 mA High -0.3 VREF - 0	Drive Strength Slew Rate Min. V Max. V Min. V 12 mA High -0.3 0.8 2 12 mA High -0.3 0.7 1.7 12 mA High -0.3 $0.35 * VCCI$ $0.65 * VCCI$ 12 mA High -0.3 $0.35 * VCCI$ $0.65 * VCCI$ 12 mA High -0.3 $0.35 * VCCI$ $0.65 * VCCI$ 12 mA High -0.3 $0.35 * VCCI$ $0.65 * VCCI$ 12 mA High -0.3 $0.35 * VCCI$ $0.65 * VCCI$ 12 mA High -0.3 $0.35 * VCCI$ $0.65 * VCCI$ 12 mA High -0.3 $VREF - 0.05$ $VREF + 0.05$ 20 mA ² High -0.3 $VREF - 0.1$ $VREF + 0.1$ 33 mA High -0.3 $VREF - 0.1$ $VREF + 0.1$ 33 mA High -0.3 $VREF - 0.1$ $VREF + 0.1$ 15 mA High -0.3 $VREF - 0.2$ $VREF + 0.2$	Drive StrengthSlew RateMin. VMax. VMin. VMax. V12 mAHigh -0.3 0.8 2 3.6 12 mAHigh -0.3 0.7 1.7 3.6 12 mAHigh -0.3 0.7 1.7 3.6 12 mAHigh -0.3 $0.35 * VCCI$ $0.65 * VCCI$ 3.6 12 mAHigh -0.3 $0.35 * VCCI$ $0.65 * VCCI$ 3.6 12 mAHigh -0.3 $0.35 * VCCI$ $0.65 * VCCI$ 3.6 12 mAHigh -0.3 $0.35 * VCCI$ $0.65 * VCCI$ 3.6 20 mA2High -0.3 VREF -0.15 $VREF + 0.15$ 3.6 20 mA2High -0.3 VREF -0.15 VREF $+0.15$ 3.6 20 mA2High -0.3 VREF -0.1 VREF $+0.11$ 3.6 35 mAHigh -0.3 VREF -0.1 VREF $+0.11$ 3.6 35 mAHigh -0.3 VREF -0.1 VREF $+0.11$ 3.6 35 mAHigh -0.3 VREF -0.1 VREF $+0.11$ 3.6 15 mA2High -0.3 VREF -0.2 VREF $+0.12$ 3.6 15 mAHigh -0.3 VREF -0.2 VREF $+0.2$ 3.6 18 mAHigh -0.3 VREF -0.2 VREF $+0.2$ 3.6 14 mAHigh -0.3 VREF -0.2 VREF $+0.2$ 3.6	Drive StrengthSlew RateMin. VMax. VMin. VMax. VMax. V12 mAHigh -0.3 -0.3 0.8 2 3.6 0.4 12 mAHigh -0.3 0.7 1.7 3.6 0.7 12 mAHigh -0.3 $0.35 * VCCI$ $0.65 * VCCI$ 3.6 0.45 12 mAHigh -0.3 $0.35 * VCCI$ $0.65 * VCCI$ 3.6 $0.25 * VCCI$ 12 mAHigh -0.3 $0.35 * VCCI$ $0.65 * VCCI$ 3.6 $0.25 * VCCI$ 12 mAHigh -0.3 $0.35 * VCCI$ $0.65 * VCCI$ 3.6 $0.25 * VCCI$ 20 mA2High -0.3 0.3 VREF-0.05 3.6 0.4 20 mA2High -0.3VREF-0.05VREF + 0.05 3.6 0.4 20 mA2High -0.3VREF-0.1VREF + 0.1 3.6 0.4 35 mAHigh -0.3VREF-0.1VREF + 0.1 3.6 0.6 33 mAHigh -0.3VREF-0.1VREF + 0.1 3.6 0.4 15 mA2High -0.3VREF-0.2VREF + 0.1 3.6 0.4 15 mAHigh -0.3VREF-0.2VREF + 0.2 3.6 0.35 14 mAHigh -0.3 VREF-0.2VREF + 0.2 3.6 0.35	Drive Strength Slew Rate Min. V Max. V Min. V Max. V Max. V	Drive StrengthSiev RateMin. VMax. VMax. VMax. VMax. VMax. VMax. NMax.

Notes:

1. Currents are measured at 85°C junction temperature.

2. Output drive strength is below JEDEC specification.

3. Output slew rate can be extracted by the IBIS models.

Table 2-87 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions Applicable to Advanced I/Os

				VIL	VIH		VOL	VOH	IOL	IOH	
I/O Standard	Drive Strength	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12	
2.5 V LVCMOS	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	
1.8 V LVCMOS	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI-0.45	12	12	
1.5 V LVCMOS	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12	
3.3 V PCI				Per PCI specifications							
3.3 V PCI-X			Per PCI-X specifications								

Note: Currents are measured at 85°C junction temperature.

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and push-pull output buffer.

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Applicable [•]	to Pro I	/O Banks			•							•
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10
Applicable	to Adva	inced I/O Ban	ks		•	•		•				
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	33	25	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	6	6	39	32	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	8	8	55	66	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12	55	66	10	10
Applicable [•]	to Pro I	/O Banks										
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	16	13	10	10
Notes:												

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

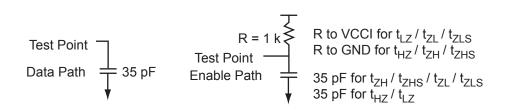


Figure 2-122 • AC Loading

Table 2-127 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	1.5	0.75	-	35

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Table 2-132 • 1.5 V LVCMOS Low SlewCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,Worst-Case VCCI = 1.4 VApplicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	12.33	0.04	1.42	0.43	11.79	12.33	2.45	2.32	ns
	-1	0.56	10.49	0.04	1.21	0.36	10.03	10.49	2.08	1.98	ns
	-2	0.49	9.21	0.03	1.06	0.32	8.81	9.21	1.83	1.73	ns

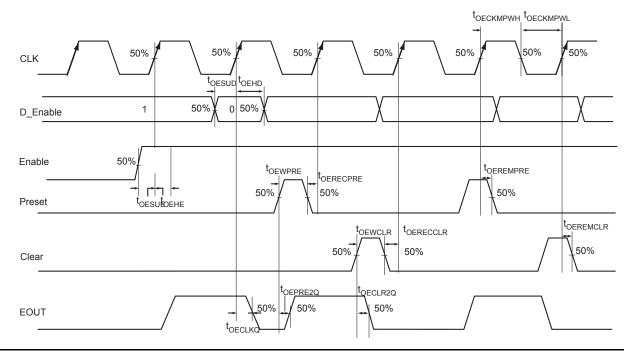

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-133 • 1.5 V LVCMOS High Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.65	0.04	1.42	0.43	6.31	7.65	2.45	2.45	ns
	-1	0.56	6.50	0.04	1.21	0.36	5.37	6.50	2.08	2.08	ns
	-2	0.49	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Output Enable Register

Timing Characteristics

Table 2-178 • Output Enable Register Propagation DelaysCommercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.44	0.51	0.59	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.31	0.36	0.42	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.44	0.50	0.58	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.36	0.41	0.48	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.32	0.37	0.43	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Theta-JA

Junction-to-ambient thermal resistance (θ_{JA}) is determined under standard conditions specified by JEDEC (JESD-51), but it has little relevance in actual performance of the product. It should be used with caution but is useful for comparing the thermal performance of one package to another.

A sample calculation showing the maximum power dissipation allowed for the AFS600-FG484 package under forced convection of 1.0 m/s and 75°C ambient temperature is as follows:

Maximum Power Allowed =
$$\frac{T_{J(MAX)} - T_{A(MAX)}}{\theta_{JA}}$$

EQ 4

where

 θ_{JA} = 19.00°C/W (taken from Table 3-6 on page 3-7).

 $T_A = 75.00^{\circ}C$

Maximum Power Allowed =
$$\frac{100.00^{\circ}C - 75.00^{\circ}C}{19.00^{\circ}C/W} = 1.3 W$$

EQ 5

The power consumption of a device can be calculated using the Microsemi power calculator. The device's power consumption must be lower than the calculated maximum power dissipation by the package. If the power consumption is higher than the device's maximum allowable power dissipation, a heat sink can be attached on top of the case, or the airflow inside the system must be increased.

Theta-JB

Junction-to-board thermal resistance (θ_{JB}) measures the ability of the package to dissipate heat from the surface of the chip to the PCB. As defined by the JEDEC (JESD-51) standard, the thermal resistance from junction to board uses an isothermal ring cold plate zone concept. The ring cold plate is simply a means to generate an isothermal boundary condition at the perimeter. The cold plate is mounted on a JEDEC standard board with a minimum distance of 5.0 mm away from the package edge.

Theta-JC

Junction-to-case thermal resistance (θ_{JC}) measures the ability of a device to dissipate heat from the surface of the chip to the top or bottom surface of the package. It is applicable for packages used with external heat sinks. Constant temperature is applied to the surface in consideration and acts as a boundary condition. This only applies to situations where all or nearly all of the heat is dissipated through the surface in consideration.

Calculation for Heat Sink

For example, in a design implemented in an AFS600-FG484 package with 2.5 m/s airflow, the power consumption value using the power calculator is 3.00 W. The user-dependent T_a and T_j are given as follows:

 $T_{J} = 100.00^{\circ}C$

 $T_A = 70.00^{\circ}C$

From the datasheet:

 $\theta_{JA} = 17.00^{\circ}C/W$ $\theta_{JC} = 8.28^{\circ}C/W$

$$P = \frac{T_J - T_A}{\theta_{JA}} = \frac{100^{\circ}C - 70^{\circ}C}{17.00 \text{ W}} = 1.76 \text{ W}$$

EQ 6

Parameter	Description	Conditions	Temp.	Min	Тур	Мах	Unit
IPP	Programming supply	Non-programming mode,	T _J = 25°C		36	80	μA
	current	VPUMP = 3.63 V	T _J = 85°C		36	80	μA
			T _J = 100°C		36	80	μA
		Standby mode ⁵ or Sleep mode ⁶ , VPUMP = 0 V			0	0	μA
ICCNVM	Embedded NVM current	Reset asserted,	T _J = 25°C		22	80	μA
		VCCNVM = 1.575 V	T _J = 85°C		24	80	μA
			T _J = 100°C		25	80	μA
ICCPLL	1.5 V PLL quiescent current	Operational standby,	T _J = 25°C		130	200	μA
		VCCPLL = 1.575 V	T _J = 85°C		130	200	μA
			T _J = 100°C		130	200	μA

Table 3-9 • AFS600 Quiescent Supply Current Characteristics (continued)

Notes:

- 1. ICC is the 1.5 V power supplies, ICC and ICC15A.
- 2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.
- 3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.
- 4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.
- 5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.
- 6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.

Package Pin Assignments

	QN108		QN108		QN108
Pin Number	AFS090 Function	Pin Number	AFS090 Function	Pin Number	AFS090 Function
A1	NC	A39	GND	B21	AC2
A2	GNDQ	A40	GCB1/IO35PDB1V0	B22	ATRTN1
A3	GAA2/IO52PDB3V0	A41	GCB2/IO33PDB1V0	B23	AG3
A4	GND	A42	GBA2/IO31PDB1V0	B24	AV3
A5	GFA1/IO47PDB3V0	A43	NC	B25	VCC33A
A6	GEB1/IO45PDB3V0	A44	GBA1/IO30RSB0V0	B26	VAREF
A7	VCCOSC	A45	GBB1/IO28RSB0V0	B27	PUB
A8	XTAL2	A46	GND	B28	VCC33A
A9	GEA1/IO44PPB3V0	A47	VCC	B29	PTBASE
A10	GEA0/IO44NPB3V0	A48	GBC1/IO26RSB0V0	B30	VCCNVM
A11	GEB2/IO42PDB3V0	A49	IO21RSB0V0	B31	VCC
A12	VCCNVM	A50	IO19RSB0V0	B32	TDI
A13	VCC15A	A51	IO09RSB0V0	B33	TDO
A14	PCAP	A52	GAC0/IO04RSB0V0	B34	VJTAG
A15	NC	A53	VCCIB0	B35	GDC0/IO38NDB1V
A16	GNDA	A54	GND		0
A17	AV0	A55	GAB0/IO02RSB0V0	B36	VCCIB1
A18	AG0	A56	GAA0/IO00RSB0V0	B37	GCB0/IO35NDB1V0
A19	ATRTN0	B1	VCOMPLA	B38	GCC2/IO33NDB1V 0
A20	AT1	B2	VCCIB3	B39	GBB2/IO31NDB1V0
A21	AC1	B3	GAB2/IO52NDB3V0	B39 B40	VCCIB1
A22	AV2	B4	VCCIB3	B40 B41	GNDQ
A23	AG2	B5	GFA0/IO47NDB3V0	B41 B42	GNDQ GBA0/IO29RSB0V0
A24	AT2	B6	GEB0/IO45NDB3V0	B42 B43	VCCIB0
A25	AT3	B7	XTAL1	B43 B44	GBB0/IO27RSB0V0
A26	AC3	B8	GNDOSC	B44 B45	
A27	GNDAQ	B9	GEC2/IO43PSB3V0	-	GBC0/IO25RSB0V0
A28	ADCGNDREF	B10	GEA2/IO42NDB3V0	B46	IO20RSB0V0
A29	NC	B11	VCC	B47	IO10RSB0V0
A30	GNDA	B12	GNDNVM	B48	GAC1/IO05RSB0V0
A31	PTEM	B13	NCAP	B49	GAB1/IO03RSB0V0
A32	GNDNVM	B14	VCC33PMP	B50	
A33	VPUMP	B15	VCC33N	B51	GAA1/IO01RSB0V0
A34	ТСК	B16	GNDAQ	B52	VCCPLA
A35	TMS	B17	AC0		
A36	TRST	B18	AT0		
A37	GDB1/IO39PSB1V0	B19	AG1		
A38	GDC1/IO38PDB1V0	B20	AV1		