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Device Architecture
RC Oscillator 
The RC oscillator is an on-chip free-running clock source generating a 100 MHz clock. It can be used as
a source clock for both on-chip and off-chip resources. When used in conjunction with the Fusion PLL
and CCC circuits, the RC oscillator clock source can be used to generate clocks of varying frequency
and phase.

The Fusion RC oscillator is very accurate at ±1% over commercial temperature ranges and and ±3%
over industrial temperature ranges. It is an automated clock, requiring no setup or configuration by the
user. It requires only that the power and GNDOSC pins be connected; no external components are
required. The RC oscillator can be used to drive either a PLL or another internal signal.

RC Oscillator Characteristics

Table 2-9 • Electrical Characteristics of RC Oscillator

Parameter Description Conditions Min. Typ. Max. Units

FRC

Operating Frequency 100 MHz

Accuracy Temperature: 0°C to 85°C

Voltage: 3.3 V ± 5%

1 %

Temperature: –40°C to 125°C

Voltage: 3.3 V ± 5%

3 %

Output Jitter Period Jitter (at 5 k cycles) 100 ps

Cycle–Cycle Jitter (at 5 k cycles) 100 ps

Period Jitter (at 5 k cycles) with 1 KHz / 300 mV
peak-to-peak noise on power supply

150 ps

Cycle–Cycle Jitter (at 5 k cycles) with 1 KHz /
300 mV peak-to-peak noise on power supply

150 ps

Output Duty Cycle 50 %

IDYNRC Operating Current 1 mA
2-19 Revision 6



Fusion Family of Mixed Signal FPGAs
Flash Memory Block Pin Names

Table 2-19 • Flash Memory Block Pin Names 

Interface Name Width Direction Description

ADDR[17:0] 18 In Byte offset into the FB. Byte-based address.

AUXBLOCK 1 In When asserted, the page addressed is used to access the auxiliary
block within that page.

BUSY 1 Out When asserted, indicates that the FB is performing an operation.

CLK 1 In User interface clock. All operations and status are synchronous to the
rising edge of this clock.

DATAWIDTH[1:0] 2 In Data width

00 = 1 byte in RD/WD[7:0]
01 = 2 bytes in RD/WD[15:0]
1x = 4 bytes in RD/WD[31:0]

DISCARDPAGE 1 In When asserted, the contents of the Page Buffer are discarded so that
a new page write can be started.

ERASEPAGE 1 In When asserted, the address page is to be programmed with all zeros.
ERASEPAGE must transition synchronously with the rising edge of
CLK.

LOCKREQUEST 1 In When asserted, indicates to the JTAG controller that the FPGA
interface is accessing the FB.

OVERWRITEPAGE 1 In When asserted, the page addressed is overwritten with the contents of
the Page Buffer if the page is writable.

OVERWRITEPROTECT 1 In When asserted, all program operations will set the overwrite protect bit
of the page being programmed.

PAGESTATUS 1 In When asserted with REN, initiates a read page status operation.

PAGELOSSPROTECT 1 In When asserted, a modified Page Buffer must be programmed or
discarded before accessing a new page.

PIPE 1 In Adds a pipeline stage to the output for operation above 50 MHz.

PROGRAM 1 In When asserted, writes the contents of the Page Buffer into the FB
page addressed.

RD[31:0] 32 Out Read data; data will be valid from the first non-busy cycle (BUSY = 0)
after REN has been asserted.

READNEXT 1 In When asserted with REN, initiates a read-next operation.

REN 1 In When asserted, initiates a read operation.

RESET 1 In When asserted, resets the state of the FB (active low).

SPAREPAGE 1 In When asserted, the sector addressed is used to access the spare
page within that sector.
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Device Architecture
SRAM and FIFO
All Fusion devices have SRAM blocks along the north side of the device. Additionally, AFS600 and
AFS1500 devices have an SRAM block on the south side of the device. To meet the needs of high-
performance designs, the memory blocks operate strictly in synchronous mode for both read and write
operations. The read and write clocks are completely independent, and each may operate at any desired
frequency less than or equal to 350 MHz. The following configurations are available:

• 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—two read, two write or one read, one write)

• 512×9, 256×18 (two-port RAM—one read and one write)

• Sync write, sync pipelined/nonpipelined read

The Fusion SRAM memory block includes dedicated FIFO control logic to generate internal addresses
and external flag logic (FULL, EMPTY, AFULL, AEMPTY). 

During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In
FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by
internal MUXes. Refer to Figure 2-47 for more information about the implementation of the embedded
FIFO controller.

The Fusion architecture enables the read and write sizes of RAMs to be organized independently,
allowing for bus conversion. This is done with the WW (write width) and RW (read width) pins. The
different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1. For example, the write size can
be set to 256×18 and the read size to 512×9.

Both the write and read widths for the RAM blocks can be specified independently with the WW (write
width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and
4k×1.

Refer to the allowable RW and WW values supported for each of the RAM macro types in Table 2-27 on
page 2-58.

When a width of one, two, or four is selected, the ninth bit is unused. For example, when writing 9-bit
values and reading 4-bit values, only the first four bits and the second four bits of each 9-bit value are
addressable for read operations. The ninth bit is not accessible.
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Device Architecture
Figure 2-54 • One Port Write / Other Port Read Same

Figure 2-55 • RAM Reset. Applicable to both RAM4K9 and RAM512x18.
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Fusion Family of Mixed Signal FPGAs
TUE – Total Unadjusted Error
TUE is a comprehensive specification that includes linearity errors, gain error, and offset error. It is the
worst-case deviation from the ideal device performance. TUE is a static specification (Figure 2-87).

ADC Operation 
Once the ADC has powered up and been released from reset, ADCRESET, the ADC will initiate a
calibration routine designed to provide optimal ADC performance. The Fusion ADC offers a robust
calibration scheme to reduce integrated offset and linearity errors. The offset and linearity errors of the
main capacitor array are compensated for with an 8-bit calibration capacitor array. The offset/linearity
error calibration is carried out in two ways. First, a power-up calibration is carried out when the ADC
comes out of reset. This is initiated by the CALIBRATE output of the Analog Block macro and is a fixed
number of ADC_CLK cycles (3,840 cycles), as shown in Figure 2-89 on page 2-111. In this mode, the
linearity and offset errors of the capacitors are calibrated. 

To further compensate for drift and temperature-dependent effects, every conversion is followed by post-
calibration of either the offset or a bit of the main capacitor array. The post-calibration ensures that, over
time and with temperature, the ADC remains consistent. 

After both calibration and the setting of the appropriate configurations, as explained above, the ADC is
ready for operation. Setting the ADCSTART signal high for one clock period will initiate the sample and
conversion of the analog signal on the channel as configured by CHNUMBER[4:0]. The status signals
SAMPLE and BUSY will show when the ADC is sampling and converting (Figure 2-91 on page 2-112).
Both SAMPLE and BUSY will initially go high. After the ADC has sampled and held the analog signal,
SAMPLE will go low. After the entire operation has completed and the analog signal is converted, BUSY
will go low and DATAVALID will go high. This indicates that the digital result is available on the
RESULT[11:0] pins.

DATAVALID will remain high until a subsequent ADCSTART is issued. The DATAVALID goes low on the
rising edge of SYSCLK as shown in Figure 2-90 on page 2-112. The RESULT signals will be kept
constant until the ADC finishes the subsequent sample. The next sampled RESULT will be available
when DATAVALID goes high again. It is ideal to read the RESULT when DATAVALID is '1'. The RESULT
is latched and remains unchanged until the next DATAVLAID rising edge.

Figure 2-87 • Total Unadjusted Error (TUE)
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Fusion Family of Mixed Signal FPGAs
Figure 2-96 • Temperature Reading Noise When Averaging is Used
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Fusion Family of Mixed Signal FPGAs
Figure 2-102 • DDR Output Support in Fusion Devices
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Fusion Family of Mixed Signal FPGAs
Solution 3
The board-level design must ensure that the reflected waveform at the pad does not exceed limits
provided in Table 3-4 on page 3-4. This is a long-term reliability requirement. 

This scheme will also work for a 3.3 V PCI/PCIX configuration, but the internal diode should not be used
for clamping, and the voltage must be limited by the bus switch, as shown in Figure 2-105. Relying on the
diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

Solution 4

Figure 2-105 • Solution 3

Figure 2-106 • Solution 4
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Device Architecture
Table 2-83 • Fusion Pro I/O Supported Standards and Corresponding VREF and VTT Voltages

I/O Standard
Input/Output Supply 
Voltage (VCCI_TYP)

Input Reference Voltage 
(VREF_TYP)

Board Termination Voltage 
(VTT_TYP)

LVTTL/LVCMOS 3.3 V 3.30 V – –

LVCMOS 2.5 V 2.50 V – –

LVCMOS 2.5 V / 5.0 V
Input

2.50 V – –

LVCMOS 1.8 V 1.80 V – –

LVCMOS 1.5 V 1.50 V – –

PCI 3.3 V 3.30 V – –

PCI-X 3.3 V 3.30 V – –

GTL+ 3.3 V 3.30 V 1.00 V 1.50 V

GTL+ 2.5 V 2.50 V 1.00 V 1.50 V

GTL 3.3 V 3.30 V 0.80 V 1.20 V

GTL 2.5 V 2.50 V 0.80 V 1.20 V

HSTL Class I 1.50 V 0.75 V 0.75 V

HSTL Class II 1.50 V 0.75 V 0.75 V

SSTL3 Class I 3.30 V 1.50 V 1.50 V

SSTL3 Class II 3.30 V 1.50 V 1.50 V

SSTL2 Class I 2.50 V 1.25 V 1.25 V

SSTL2 Class II 2.50 V 1.25 V 1.25 V

LVDS, BLVDS, M-LVDS 2.50 V – –

LVPECL 3.30 V – –
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Fusion Family of Mixed Signal FPGAs
User I/O Characteristics

Timing Model

Figure 2-115 • Timing Model
Operating Conditions: –2 Speed, Commercial Temperature Range (TJ = 70°C), 
Worst-Case VCC = 1.425 V
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Fusion Family of Mixed Signal FPGAs
Table 2-117 • 2.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 2.3 V
Applicable to Standard I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  Units 

2 mA  Std. 0.66 8.20 0.04 1.29 0.43 7.24 8.20 2.03 1.91  ns 

 –1 0.56 6.98 0.04 1.10 0.36 6.16 6.98 1.73 1.62  ns 

 –2 0.49 6.13 0.03 0.96 0.32 5.41 6.13 1.52 1.43  ns 

4 mA  Std. 0.66 8.20 0.04 1.29 0.43 7.24 8.20 2.03 1.91  ns 

 –1 0.56 6.98 0.04 1.10 0.36 6.16 6.98 1.73 1.62  ns 

 –2 0.49 6.13 0.03 0.96 0.32 5.41 6.13 1.52 1.43  ns 

6 mA  Std. 0.66 4.77 0.04 1.29 0.43 4.55 4.77 2.38 2.55  ns 

 –1 0.56 4.05 0.04 1.10 0.36 3.87 4.05 2.03 2.17  ns 

 –2 0.49 3.56 0.03 0.96 0.32 3.40 3.56 1.78 1.91  ns 

8 mA  Std. 0.66 4.77 0.04 1.29 0.43 4.55 4.77 2.38 2.55  ns 

 –1 0.56 4.05 0.04 1.10 0.36 3.87 4.05 2.03 2.17  ns 

 –2 0.49 3.56 0.03 0.96 0.32 3.40 3.56 1.78 1.91  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
Table 2-121 • 1.8 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.7 V
Applicable to Pro I/Os

Drive 
Strength

 
Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS

 
Units

2 mA  Std. 0.66 12.10 0.04 1.45 1.91 0.43 9.59 12.10 2.78 1.64 11.83 14.34  ns 

 –1 0.56 10.30 0.04 1.23 1.62 0.36 8.16 10.30 2.37 1.39 10.06 12.20  ns 

 –2 0.49 9.04 0.03 1.08 1.42 0.32 7.16 9.04 2.08 1.22 8.83 10.71  ns 

4 mA  Std. 0.66 7.05 0.04 1.45 1.91 0.43 6.20 7.05 3.25 2.86 8.44 9.29  ns 

 –1 0.56 6.00 0.04 1.23 1.62 0.36 5.28 6.00 2.76 2.44 7.18 7.90  ns 

 –2 0.49 5.27 0.03 1.08 1.42 0.32 4.63 5.27 2.43 2.14 6.30 6.94  ns 

8 mA  Std. 0.66 4.52 0.04 1.45 1.91 0.43 4.47 4.52 3.57 3.47 6.70 6.76  ns 

 –1 0.56 3.85 0.04 1.23 1.62 0.36 3.80 3.85 3.04 2.95 5.70 5.75  ns 

 –2 0.49 3.38 0.03 1.08 1.42 0.32 3.33 3.38 2.66 2.59 5.00 5.05  ns 

12 mA  Std. 0.66 4.12 0.04 1.45 1.91 0.43 4.20 3.99 3.63 3.62 6.43 6.23  ns 

 –1 0.56 3.51 0.04 1.23 1.62 0.36 3.57 3.40 3.09 3.08 5.47 5.30  ns 

 –2 0.49 3.08 0.03 1.08 1.42 0.32 3.14 2.98 2.71 2.71 4.81 4.65  ns 

16 mA  Std. 0.66 3.80 0.04 1.45 1.91 0.43 3.87 3.09 3.73 4.24 6.10 5.32  ns 

 –1 0.56 3.23 0.04 1.23 1.62 0.36 3.29 2.63 3.18 3.60 5.19 4.53  ns 

 –2 0.49 2.83 0.03 1.08 1.42 0.32 2.89 2.31 2.79 3.16 4.56 3.98  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
2-189 Revision 6



Device Architecture
Table 2-174 • Parameter Definitions and Measuring Nodes

Parameter 
Name Parameter Definition

Measuring Nodes 
(from, to)*

tOCLKQ Clock-to-Q of the Output Data Register H, DOUT

tOSUD Data Setup Time for the Output Data Register F, H

tOHD Data Hold Time for the Output Data Register F, H

tOSUE Enable Setup Time for the Output Data Register G, H

tOHE Enable Hold Time for the Output Data Register G, H

tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register L,DOUT

tOREMPRE Asynchronous Preset Removal Time for the Output Data Register L, H

tORECPRE Asynchronous Preset Recovery Time for the Output Data Register L, H

tOECLKQ Clock-to-Q of the Output Enable Register H, EOUT

tOESUD Data Setup Time for the Output Enable Register J, H

tOEHD Data Hold Time for the Output Enable Register J, H

tOESUE Enable Setup Time for the Output Enable Register K, H

tOEHE Enable Hold Time for the Output Enable Register K, H

tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register I, EOUT

tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register I, H

tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register I, H

tICLKQ Clock-to-Q of the Input Data Register A, E

tISUD Data Setup Time for the Input Data Register C, A

tIHD Data Hold Time for the Input Data Register C, A

tISUE Enable Setup Time for the Input Data Register B, A

tIHE Enable Hold Time for the Input Data Register B, A

tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register D, E

tIREMPRE Asynchronous Preset Removal Time for the Input Data Register D, A

tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register D, A

Note: *See Figure 2-137 on page 2-212 for more information.
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Fusion Family of Mixed Signal FPGAs
Theta-JA
Junction-to-ambient thermal resistance (JA) is determined under standard conditions specified by
JEDEC (JESD-51), but it has little relevance in actual performance of the product. It should be used with
caution but is useful for comparing the thermal performance of one package to another.

A sample calculation showing the maximum power dissipation allowed for the AFS600-FG484 package
under forced convection of 1.0 m/s and 75°C ambient temperature is as follows:

EQ 4

where  

EQ 5

The power consumption of a device can be calculated using the Microsemi power calculator. The
device's power consumption must be lower than the calculated maximum power dissipation by the
package. If the power consumption is higher than the device's maximum allowable power dissipation, a
heat sink can be attached on top of the case, or the airflow inside the system must be increased.

Theta-JB
Junction-to-board thermal resistance (JB) measures the ability of the package to dissipate heat from the
surface of the chip to the PCB. As defined by the JEDEC (JESD-51) standard, the thermal resistance
from junction to board uses an isothermal ring cold plate zone concept. The ring cold plate is simply a
means to generate an isothermal boundary condition at the perimeter. The cold plate is mounted on a
JEDEC standard board with a minimum distance of 5.0 mm away from the package edge.

Theta-JC
Junction-to-case thermal resistance (JC) measures the ability of a device to dissipate heat from the
surface of the chip to the top or bottom surface of the package. It is applicable for packages used with
external heat sinks. Constant temperature is applied to the surface in consideration and acts as a
boundary condition. This only applies to situations where all or nearly all of the heat is dissipated through
the surface in consideration. 

Calculation for Heat Sink 
For example, in a design implemented in an AFS600-FG484 package with 2.5 m/s airflow, the power
consumption value using the power calculator is 3.00 W. The user-dependent Ta and Tj are given as
follows:

From the datasheet:  

EQ 6

JA = 19.00°C/W (taken from Table 3-6 on page 3-7). 

TA = 75.00°C 

TJ = 100.00°C

TA = 70.00°C

JA = 17.00°C/W

JC = 8.28°C/W

Maximum Power Allowed
TJ(MAX) TA(MAX)–

JA
---------------------------------------------=

Maximum Power Allowed
100.00°C 75.00°C–

19.00°C/W
---------------------------------------------------- 1.3 W= =

P
TJ TA–

JA
------------------- 100°C 70°C–

17.00 W
------------------------------------ 1.76 W= = =
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Fusion Family of Mixed Signal FPGAs
Table 3-13 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings1 

CLOAD (pF) VCCI (V) 
Static Power
PDC8 (mW)2 

Dynamic Power
PAC10 (µW/MHz)3

Applicable to Pro I/O Banks

Single-Ended 

3.3 V LVTTL/LVCMOS 35 3.3 – 474.70 

2.5 V LVCMOS 35 2.5 – 270.73 

1.8 V LVCMOS 35 1.8 – 151.78 

1.5 V LVCMOS (JESD8-11) 35 1.5 – 104.55 

3.3 V PCI 10 3.3 – 204.61 

3.3 V PCI-X 10 3.3 – 204.61 

Voltage-Referenced 

3.3 V GTL 10 3.3 – 24.08

2.5 V GTL 10 2.5 – 13.52

3.3 V GTL+ 10 3.3 – 24.10

2.5 V GTL+ 10 2.5 – 13.54

HSTL (I) 20 1.5 7.08 26.22

HSTL (II) 20 1.5 13.88 27.22

SSTL2 (I) 30 2.5 16.69 105.56

SSTL2 (II) 30 2.5 25.91 116.60

SSTL3 (I) 30 3.3 26.02 114.87

SSTL3 (II) 30 3.3 42.21 131.76

Differential 

LVDS – 2.5 7.70 89.62

LVPECL – 3.3 19.42 168.02

Applicable to Advanced I/O Banks

Single-Ended 

3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 468.67

2.5 V LVCMOS 35 2.5 – 267.48

1.8 V LVCMOS 35 1.8 – 149.46

1.5 V LVCMOS (JESD8-11) 35 1.5 – 103.12

3.3 V PCI 10 3.3 – 201.02

3.3 V PCI-X 10 3.3 – 201.02

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.
2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.
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DC and Power Characteristics
Static Power Consumption of Various Internal Resources 

Power Calculation Methodology
This section describes a simplified method to estimate power consumption of an application. For more
accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

• The number of PLLs as well as the number and the frequency of each output clock generated

• The number of combinatorial and sequential cells used in the design

• The internal clock frequencies

• The number and the standard of I/O pins used in the design

• The number of RAM blocks used in the design

• The number of NVM blocks used in the design

• The number of Analog Quads used in the design

• Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 3-16 on
page 3-27.

• Enable rates of output buffers—guidelines are provided for typical applications in Table 3-17 on
page 3-27.

• Read rate and write rate to the RAM—guidelines are provided for typical applications in
Table 3-17 on page 3-27. 

• Read rate to the NVM blocks

The calculation should be repeated for each clock domain defined in the design.

Table 3-15 • Different Components Contributing to the Static Power Consumption in Fusion Devices

Parameter Definition
Power 
Supply

Device-Specific Static Contributions

UnitsAFS1500 AFS600 AFS250 AFS090

PDC1 Core static power contribution in
operating mode

VCC 1.5 V 18 7.5 4.50 3.00 mW

PDC2 Device static power contribution in
standby mode

VCC33A 3.3 V 0.66 mW

PDC3 Device static power contribution in
sleep mode

VCC33A 3.3 V 0.03 mW

PDC4 NVM static power contribution VCC 1.5 V 1.19 mW

PDC5 Analog Block static power
contribution of ADC

VCC33A 3.3 V 8.25 mW

PDC6 Analog Block static power
contribution per Quad

VCC33A 3.3 V 3.3 mW

PDC7 Static contribution per input pin –
standard dependent contribution

VCCI See Table 3-12 on page 3-18

PDC8 Static contribution per input pin –
standard dependent contribution

VCCI See Table 3-13 on page 3-20

PDC9 Static contribution for PLL VCC 1.5 V 2.55 mW
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DC and Power Characteristics
RC Oscillator Dynamic Contribution—PRC-OSC

Operating Mode

PRC-OSC = PAC19

Standby Mode and Sleep Mode

PRC-OSC = 0 W

Analog System Dynamic Contribution—PAB

Operating Mode

PAB = PAC20

Standby Mode and Sleep Mode

PAB = 0 W

Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the
toggle rate of a net is 100%, this means that the net switches at half the clock frequency. Below are some
examples:

• The average toggle rate of a shift register is 100%, as all flip-flop outputs toggle at half of the clock
frequency.

• The average toggle rate of an 8-bit counter is 25%:

– Bit 0 (LSB) = 100%

– Bit 1 = 50%

– Bit 2 = 25%

– …

– Bit 7 (MSB) = 0.78125%

– Average toggle rate = (100% + 50% + 25% + 12.5% + . . . 0.78125%) / 8.

Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled. When
non-tristate output buffers are used, the enable rate should be 100%.

Table 3-16 • Toggle Rate Guidelines Recommended for Power Calculation

Component Definition Guideline 

1 Toggle rate of VersaTile outputs 10% 

2 I/O buffer toggle rate 10% 

Table 3-17 • Enable Rate Guidelines Recommended for Power Calculation

Component Definition Guideline 

1 I/O output buffer enable rate 100% 

2 RAM enable rate for read operations 12.5% 

3 RAM enable rate for write operations 12.5% 

4 NVM enable rate for read operations 0% 
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Fusion Family of Mixed Signal FPGAs
Power Consumption
Table 3-18 • Power Consumption 

Parameter Description Condition Min. Typical Max. Units

Crystal Oscillator

ISTBXTAL Standby Current of Crystal
Oscillator

10 µA

IDYNXTAL Operating Current RC 0.6 mA

0.032–0.2 0.19 mA

0.2–2.0 0.6 mA

2.0–20.0 0.6 mA

RC Oscillator

IDYNRC Operating Current 1 mA

ACM

Operating Current (fixed
clock)

200 µA/MHz

Operating Current (user
clock)

30 µA

NVM System

NVM Array Operating Power Idle 795 µA

Read 
operation 

See
Table 3-15 on 

page 3-23.

 See
Table 3-15 on 

page 3-23.

Erase 900 µA

Write 900 µA

PNVMCTRL NVM Controller Operating
Power

20 µW/MHz
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Package Pin Assignments
H3 XTAL2 XTAL2 XTAL2 XTAL2

H4 XTAL1 XTAL1 XTAL1 XTAL1

H5 GNDOSC GNDOSC GNDOSC GNDOSC

H6 VCCOSC VCCOSC VCCOSC VCCOSC

H7 VCC VCC VCC VCC

H8 GND GND GND GND

H9 VCC VCC VCC VCC

H10 GND GND GND GND

H11 GDC0/IO38NDB1V0 IO51NDB1V0 IO47NDB2V0 IO69NDB2V0

H12 GDC1/IO38PDB1V0 IO51PDB1V0 IO47PDB2V0 IO69PDB2V0

H13 GDB1/IO39PDB1V0 GCA1/IO49PDB1V0 GCA1/IO45PDB2V0 GCA1/IO64PDB2V0

H14 GDB0/IO39NDB1V0 GCA0/IO49NDB1V0 GCA0/IO45NDB2V0 GCA0/IO64NDB2V0

H15 GCA0/IO36NDB1V0 GCB0/IO48NDB1V0 GCB0/IO44NDB2V0 GCB0/IO63NDB2V0

H16 GCA1/IO36PDB1V0 GCB1/IO48PDB1V0 GCB1/IO44PDB2V0 GCB1/IO63PDB2V0

J1 GEA0/IO44NDB3V0 GFA0/IO66NDB3V0 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0

J2 GEA1/IO44PDB3V0 GFA1/IO66PDB3V0 GFA1/IO70PDB4V0 GFA1/IO105PDB4V0

J3 IO43NDB3V0 GFB0/IO67NDB3V0 GFB0/IO71NDB4V0 GFB0/IO106NDB4V0

J4 GEC2/IO43PDB3V0 GFB1/IO67PDB3V0 GFB1/IO71PDB4V0 GFB1/IO106PDB4V0

J5 NC GFC0/IO68NDB3V0 GFC0/IO72NDB4V0 GFC0/IO107NDB4V0

J6 NC GFC1/IO68PDB3V0 GFC1/IO72PDB4V0 GFC1/IO107PDB4V0

J7 GND GND GND GND

J8 VCC VCC VCC VCC

J9 GND GND GND GND

J10 VCC VCC VCC VCC

J11 GDC2/IO41NPB1V0 IO56NPB1V0 IO56NPB2V0 IO83NPB2V0

J12 NC GDB0/IO53NPB1V0 GDB0/IO53NPB2V0 GDB0/IO80NPB2V0

J13 NC GDA1/IO54PDB1V0 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0

J14 GDA0/IO40PDB1V0 GDC1/IO52PPB1V0 GDC1/IO52PPB2V0 GDC1/IO79PPB2V0

J15 NC IO50NPB1V0 IO51NSB2V0 IO77NSB2V0

J16 GDA2/IO40NDB1V0 GDC0/IO52NPB1V0 GDC0/IO52NPB2V0 GDC0/IO79NPB2V0

K1 NC IO65NPB3V0 IO67NPB4V0 IO92NPB4V0

K2 VCCIB3 VCCIB3 VCCIB4 VCCIB4

K3 NC IO65PPB3V0 IO67PPB4V0 IO92PPB4V0

K4 NC IO64PDB3V0 IO65PDB4V0 IO96PDB4V0

K5 GND GND GND GND

K6 NC IO64NDB3V0 IO65NDB4V0 IO96NDB4V0

K7 VCC VCC VCC VCC

K8 GND GND GND GND

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
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Package Pin Assignments
L17 VCCIB2 VCCIB2

L18 IO46PDB2V0 IO69PDB2V0

L19 GCA1/IO45PDB2V0 GCA1/IO64PDB2V0

L20 VCCIB2 VCCIB2

L21 GCC0/IO43NDB2V0 GCC0/IO62NDB2V0

L22 GCC1/IO43PDB2V0 GCC1/IO62PDB2V0

M1 NC IO103PDB4V0

M2 XTAL1 XTAL1

M3 VCCIB4 VCCIB4

M4 GNDOSC GNDOSC

M5 GFC0/IO72NDB4V0 GFC0/IO107NDB4V0

M6 VCCIB4 VCCIB4

M7 GFB0/IO71NDB4V0 GFB0/IO106NDB4V0

M8 VCCIB4 VCCIB4

M9 VCC VCC

M10 GND GND

M11 VCC VCC

M12 GND GND

M13 VCC VCC

M14 GND GND

M15 VCCIB2 VCCIB2

M16 IO48NDB2V0 IO70NDB2V0

M17 VCCIB2 VCCIB2

M18 IO46NDB2V0 IO69NDB2V0

M19 GCA0/IO45NDB2V0 GCA0/IO64NDB2V0

M20 VCCIB2 VCCIB2

M21 GCB0/IO44NDB2V0 GCB0/IO63NDB2V0

M22 GCB1/IO44PDB2V0 GCB1/IO63PDB2V0

N1 NC IO103NDB4V0

N2 GND GND

N3 IO68PDB4V0 IO101PDB4V0

N4 NC IO100NPB4V0

N5 GND GND

N6 NC IO99PDB4V0

N7 NC IO97PDB4V0

FG484

Pin 
Number AFS600 Function AFS1500 Function

N8 GND GND

N9 GND GND

N10 VCC VCC

N11 GND GND

N12 VCC VCC

N13 GND GND

N14 VCC VCC

N15 GND GND

N16 GDB2/IO56PDB2V0 GDB2/IO83PDB2V0

N17 NC IO78PDB2V0

N18 GND GND

N19 IO47NDB2V0 IO72NDB2V0

N20 IO47PDB2V0 IO72PDB2V0

N21 GND GND

N22 IO49PDB2V0 IO71PDB2V0

P1 GFA1/IO70PDB4V0 GFA1/IO105PDB4V0

P2 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0

P3 IO68NDB4V0 IO101NDB4V0

P4 IO65PDB4V0 IO96PDB4V0

P5 IO65NDB4V0 IO96NDB4V0

P6 NC IO99NDB4V0

P7 NC IO97NDB4V0

P8 VCCIB4 VCCIB4

P9 VCC VCC

P10 GND GND

P11 VCC VCC

P12 GND GND

P13 VCC VCC

P14 GND GND

P15 VCCIB2 VCCIB2

P16 IO56NDB2V0 IO83NDB2V0

P17 NC IO78NDB2V0

P18 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0

P19 GDB1/IO53PDB2V0 GDB1/IO80PDB2V0

P20 IO51NDB2V0 IO73NDB2V0

FG484

Pin 
Number AFS600 Function AFS1500 Function
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