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Fusion Family of Mixed Signal FPGAs
Advanced Architecture
The proprietary Fusion architecture provides granularity comparable to standard-cell ASICs. The Fusion
device consists of several distinct and programmable architectural features, including the following
(Figure 1-1 on page 1-5):

• Embedded memories

– Flash memory blocks

– FlashROM 

– SRAM and FIFO

• Clocking resources

– PLL and CCC

– RC oscillator

– Crystal oscillator

– No-Glitch MUX (NGMUX)

• Digital I/Os with advanced I/O standards

• FPGA VersaTiles

• Analog components 

– ADC

– Analog I/Os supporting voltage, current, and temperature monitoring 

– 1.5 V on-board voltage regulator 

– Real-time counter 

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
lookup table (LUT) equivalent or a D-flip-flop or latch (with or without enable) by programming the
appropriate flash switch interconnections. This versatility allows efficient use of the FPGA fabric. The
VersaTile capability is unique to the Microsemi families of flash-based FPGAs. VersaTiles and larger
functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core
utilization is possible for virtually any design. 

In addition, extensive on-chip programming circuitry allows for rapid (3.3 V) single-voltage programming
of Fusion devices via an IEEE 1532 JTAG interface.

Unprecedented Integration

Integrated Analog Blocks and Analog I/Os
Fusion devices offer robust and flexible analog mixed signal capability in addition to the high-
performance flash FPGA fabric and flash memory block. The many built-in analog peripherals include a
configurable 32:1 input analog MUX, up to 10 independent MOSFET gate driver outputs, and a
configurable ADC. The ADC supports 8-, 10-, and 12-bit modes of operation with a cumulative sample
rate up to 600 k samples per second (Ksps), differential nonlinearity (DNL) < 1.0 LSB, and Total
Unadjusted Error (TUE) of 0.72 LSB in 10-bit mode. The TUE is used for characterization of the
conversion error and includes errors from all sources, such as offset and linearity. Internal bandgap
circuitry offers 1% voltage reference accuracy with the flexibility of utilizing an external reference voltage.
The ADC channel sampling sequence and sampling rate are programmable and implemented in the
FPGA logic using Designer and Libero SoC software tool support.

Two channels of the 32-channel ADCMUX are dedicated. Channel 0 is connected internally to VCC and
can be used to monitor core power supply. Channel 31 is connected to an internal temperature diode
which can be used to monitor device temperature. The 30 remaining channels can be connected to
external analog signals. The exact number of I/Os available for external connection signals is device-
dependent (refer to the "Fusion Family" table on page I for details). 
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Device Architecture
VersaNet Global Networks and Spine Access 
The Fusion architecture contains a total of 18 segmented global networks that can access the
VersaTiles, SRAM, and I/O tiles on the Fusion device. There are 6 chip (main) global networks that
access the entire device and 12 quadrant networks (3 in each quadrant). Each device has a total of 18
globals. These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets,
including clock signals. In addition, these highly segmented global networks offer users the flexibility to
create low-skew local networks using spines for up to 180 internal/external clocks (in an AFS1500
device) or other high-fanout nets in Fusion devices. Optimal usage of these low-skew networks can
result in significant improvement in design performance on Fusion devices. 

The nine spines available in a vertical column reside in global networks with two separate regions of
scope: the quadrant global network, which has three spines, and the chip (main) global network, which
has six spines. Note that there are three quadrant spines in each quadrant of the device. There are four
quadrant global network regions per device (Figure 2-12 on page 2-12). 

The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-11. Each
spine in a vertical column of a chip (main) global network is further divided into two equal-length spine
segments: one in the top and one in the bottom half of the die. 

Each spine and its associated ribs cover a certain area of the Fusion device (the "scope" of the spine;
see Figure 2-11 on page 2-11). Each spine is accessed by the dedicated global network MUX tree
architecture, which defines how a particular spine is driven—either by the signal on the global network
from a CCC, for example, or another net defined by the user (Figure 2-13). Quadrant spines can be
driven from user I/Os on the north and south sides of the die, via analog I/Os configured as direct digital
inputs. The ability to drive spines in the quadrant global networks can have a significant effect on system
performance for high-fanout inputs to a design. 

Details of the chip (main) global network spine-selection MUX are presented in Figure 2-13. The spine
drivers for each spine are located in the middle of the die. 

Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner
CCC or from the I/Os on the north and south sides of the device. For details on using spines in Fusion
devices, see the application note Using Global Resources in Actel Fusion Devices.

Figure 2-13 • Spine-Selection MUX of Global Tree
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Fusion Family of Mixed Signal FPGAs
Clock Aggregation
Clock aggregation allows for multi-spine clock domains. A MUX tree provides the necessary flexibility to
allow long lines or I/Os to access domains of one, two, or four global spines. Signal access to the clock
aggregation system is achieved through long-line resources in the central rib, and also through local
resources in the north and south ribs, allowing I/Os to feed directly into the clock system. As Figure 2-14
indicates, this access system is contiguous.

There is no break in the middle of the chip for north and south I/O VersaNet access. This is different from
the quadrant clocks, located in these ribs, which only reach the middle of the rib. Refer to the Using
Global Resources in Actel Fusion Devices application note.

Figure 2-14 • Clock Aggregation Tree Architecture
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Fusion Family of Mixed Signal FPGAs
Modes of Operation

Standby Mode
Standby mode allows periodic power-up and power-down of the FPGA fabric. In standby mode, the real-
time counter and crystal block are ON. The FPGA is not powered by disabling the 1.5 V voltage
regulator. The 1.5 V voltage regulator can be enabled when the preset count is matched. Refer to the
"Real-Time Counter (part of AB macro)" section for details. To enter standby mode, the RTC must be first
configured and enabled. Then VRPSM is shut off by deasserting the VRPU signal. The 1.5 V voltage
regulator is then disabled, and shuts off the 1.5 V output.

Sleep Mode
In sleep mode, the real-time counter and crystal blocks are OFF. The 1.5 V voltage regulator inside the
VRPSM can only be enabled by the PUB or TRST pin. Refer to the "Voltage Regulator and Power
System Monitor (VRPSM)" section on page 2-36 for details on power-up and power-down of the 1.5 V
voltage regulator.

Standby and Sleep Mode Circuit Implementation
For extra power savings, VJTAG and VPUMP should be at the same voltage as VCC, floated or ground,
during standby and sleep modes. Note that when VJTAG is not powered, the 1.5 V voltage regulator
cannot be enabled through TRST. 

VPUMP and VJTAG can be controlled through an external switch. Microsemi recommends ADG839,
ADG849, or ADG841 as possible switches. Figure 2-28 shows the implementation for controlling
VPUMP. The IN signal of the switch can be connected to PTBASE of the Fusion device. VJTAG can be
controlled in same manner.

Figure 2-28 • Implementation to Control VPUMP
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Fusion Family of Mixed Signal FPGAs
Flash Memory Block Pin Names

Table 2-19 • Flash Memory Block Pin Names 

Interface Name Width Direction Description

ADDR[17:0] 18 In Byte offset into the FB. Byte-based address.

AUXBLOCK 1 In When asserted, the page addressed is used to access the auxiliary
block within that page.

BUSY 1 Out When asserted, indicates that the FB is performing an operation.

CLK 1 In User interface clock. All operations and status are synchronous to the
rising edge of this clock.

DATAWIDTH[1:0] 2 In Data width

00 = 1 byte in RD/WD[7:0]
01 = 2 bytes in RD/WD[15:0]
1x = 4 bytes in RD/WD[31:0]

DISCARDPAGE 1 In When asserted, the contents of the Page Buffer are discarded so that
a new page write can be started.

ERASEPAGE 1 In When asserted, the address page is to be programmed with all zeros.
ERASEPAGE must transition synchronously with the rising edge of
CLK.

LOCKREQUEST 1 In When asserted, indicates to the JTAG controller that the FPGA
interface is accessing the FB.

OVERWRITEPAGE 1 In When asserted, the page addressed is overwritten with the contents of
the Page Buffer if the page is writable.

OVERWRITEPROTECT 1 In When asserted, all program operations will set the overwrite protect bit
of the page being programmed.

PAGESTATUS 1 In When asserted with REN, initiates a read page status operation.

PAGELOSSPROTECT 1 In When asserted, a modified Page Buffer must be programmed or
discarded before accessing a new page.

PIPE 1 In Adds a pipeline stage to the output for operation above 50 MHz.

PROGRAM 1 In When asserted, writes the contents of the Page Buffer into the FB
page addressed.

RD[31:0] 32 Out Read data; data will be valid from the first non-busy cycle (BUSY = 0)
after REN has been asserted.

READNEXT 1 In When asserted with REN, initiates a read-next operation.

REN 1 In When asserted, initiates a read operation.

RESET 1 In When asserted, resets the state of the FB (active low).

SPAREPAGE 1 In When asserted, the sector addressed is used to access the spare
page within that sector.
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Device Architecture
The AEMPTY flag is asserted when the difference between the write address and the read address is
less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY
flag will be asserted when a read causes the difference between the write address and the read address
to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be
configured with different read and write widths; in this case, the AFVAL setting is based on the number of
write data entries and the AEVAL setting is based on the number of read data entries. For aspect ratios of
512×9 and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The number
of words must be multiplied by 8 and 16, instead of 9 and 18. The SmartGen tool automatically uses the
proper values. To avoid halfwords being written or read, which could happen if different read and write
aspect ratios are specified, the FIFO will assert FULL or EMPTY as soon as at least a minimum of one
word cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read,
the FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not
completely empty, because in this case, a complete word cannot be read. The same is applicable in the
full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The
FULL flag will remain asserted because a complete word cannot be written at this point.
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Device Architecture
Figure 2-59 • FIFO Reset

Figure 2-60 • FIFO EMPTY Flag and AEMPTY Flag Assertion
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Fusion Family of Mixed Signal FPGAs
The diode’s voltage is measured at each current level and the temperature is calculated based on EQ 7.

EQ 7

where

ITMSLO is the current when the Temperature Strobe is Low, typically 100 µA

ITMSHI is the current when the Temperature Strobe is High, typically 10 µA

VTMSLO is diode voltage while Temperature Strobe is Low

VTMSHI is diode voltage while Temperature Strobe is High

n is the non-ideality factor of the diode-connected transistor. It is typically 1.004 for the Microsemi-
recommended transistor type 2N3904. 

K = 1.3806 x 10-23 J/K is the Boltzman constant

Q = 1.602 x 10-19 C is the charge of a proton

When ITMSLO / ITMSHI = 10, the equation can be simplified as shown in EQ 8.

EQ 8

In the Fusion TMB, the ideality factor n for 2N3904 is 1.004 and V is amplified 12.5 times by an internal
amplifier; hence the voltage before entering the ADC is as given in EQ 9.

EQ 9

This means the temperature to voltage relationship is 2.5 mV per degree Kelvin. The unique design of
Fusion has made the Temperature Monitor System simple for the user. When the 10-bit mode ADC is
used, each LSB represents 1 degree Kelvin, as shown in EQ 10. That is, e. 25°C is equal to 293°K and is
represented by decimal 293 counts from the ADC.

EQ 10

If 8-bit mode is used for the ADC resolution, each LSB represents 4 degrees Kelvin; however, the
resolution remains as 1 degree Kelvin per LSB, even for 12-bit mode, due to the Temperature Monitor
design. An example of the temperature data format for 10-bit mode is shown in Table 2-38.

VTMSLO VTMSHI– n
kT
q
------- ln

ITMSLO

ITMSHI
----------------- 

 =

V VTMSLO VTMSHI– 1.986 10
4– nT= =

VADC V 12.5 2.5 mV K T = =

1K 2.5 mV
2

10

2.56 V
----------------- 1 LSB= =

Table 2-38 • Temperature Data Format

Temperature Temperature (K) Digital Output (ADC 10-bit mode)

–40°C 233 00 1110 1001

–20°C 253 00 1111 1101

0°C 273 01 0001 0001

1°C 274 01 0001 0010

10 °C 283 01 0001 1011

25°C 298 01 0010 1010

50 °C 323 01 0100 0011

85 °C 358 01 0110 0110
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Fusion Family of Mixed Signal FPGAs
Table 2-50 • ADC Characteristics in Direct Input Mode 
Commercial Temperature Range Conditions, TJ = 85°C (unless noted otherwise),
Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter Description Condition Min. Typ. Max. Units

Direct Input using Analog Pad AV, AC, AT

VINADC Input Voltage (Direct Input) Refer to Table 3-2 on
page 3-3

CINADC Input Capacitance Channel not selected 7 pF

Channel selected but not
sampling

8 pF

Channel selected and
sampling

18 pF

ZINADC Input Impedance 8-bit mode 2 k

10-bit mode 2 k

12-bit mode 2 k

Analog Reference Voltage VAREF

VAREF Accuracy TJ = 25°C 2.537 2.56 2.583 V

Temperature Drift of
Internal Reference

65 ppm / °C

External Reference 2.527 VCC33A + 0.05 V

ADC Accuracy (using external reference) 1,2

DC Accuracy

TUE Total Unadjusted Error 8-bit mode 0.29 LSB

10-bit mode 0.72 LSB

12-bit mode 1.8 LSB

INL Integral Non-Linearity 8-bit mode 0.20 0.25 LSB

10-bit mode 0.32 0.43 LSB

12-bit mode 1.71 1.80 LSB

DNL Differential Non-Linearity
(no missing code)

8-bit mode 0.20 0.24 LSB

10-bit mode 0.60 0.65 LSB

12-bit mode 2.40 2.48 LSB

Offset Error 8-bit mode 0.01 0.17 LSB

10-bit mode 0.05 0.20 LSB

12-bit mode 0.20 0.40 LSB

Gain Error 8-bit mode 0.0004 0.003 LSB

10-bit mode 0.002 0.011 LSB

12-bit mode 0.007 0.044 LSB

Gain Error (with internal
reference)

All modes 2 % FSR

Notes:

1. Accuracy of the external reference is 2.56 V ± 4.6 mV.
2. Data is based on characterization.

3. The sample rate is time-shared among active analog inputs.
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Fusion Family of Mixed Signal FPGAs
Examples
Calculating Accuracy for an Uncalibrated Analog Channel

Formula

For a given prescaler range, EQ 30 gives the output voltage.

Output Voltage = (Channel Output Offset in V) + (Input Voltage x Channel Gain)

EQ 30

where

Channel Output offset in V = Channel Input offset in LSBs x Equivalent voltage per LSB

Channel Gain Factor = 1+ (% Channel Gain / 100)

Example

Input Voltage = 5 V

Chosen Prescaler range = 8 V range

Refer to Table 2-51 on page 2-122.

Max. Output Voltage = (Max Positive input offset) + (Input Voltage x Max Positive Channel Gain)

Max. Positive input offset = (21 LSB) x (8 mV per LSB in 10-bit mode)

Max. Positive input offset = 166 mV

Max. Positive Gain Error = +3%

Max. Positive Channel Gain = 1 + (+3% / 100)

Max. Positive Channel Gain = 1.03

Max. Output Voltage = (166 mV) + (5 V x 1.03)

Max. Output Voltage = 5.316 V

Table 2-53 • Analog Channel Accuracy: Monitoring Standard Positive Voltages
Typical Conditions, TA = 25°C

Input Voltage 
(V)

Calibrated Typical Error per Positive Prescaler Setting 1 (%FSR)
Direct ADC 2,3 

(%FSR)

16 V (AT)
16 V (12 V)

(AV/AC)
8 V 

(AV/AC) 4 V (AT)
4 V 

(AV/AC)
2 V 

(AV/AC)
1 V 

(AV/AC) VAREF = 2.56 V

15 1

14 1

12 1 1

5 2 2 1

3.3 2 2 1 1 1

2.5 3 2 1 1 1 1

1.8 4 4 1 1 1 1 1

1.5 5 5 2 2 2 1 1

1.2 7 6 2 2 2 1 1

0.9 9 9 4 3 3 1 1 1

Notes:

1. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the
"Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User Guide.

2. Direct ADC mode using an external VAREF of 2.56V±4.6mV, without Analog Calibration macro.

3. For input greater than 2.56 V, the ADC output will saturate. A higher VAREF or prescaler usage is recommended.
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Device Architecture
Temporary overshoots are allowed according to Table 3-4 on page 3-4.

Solution 2
The board-level design must ensure that the reflected waveform at the pad does not exceed limits
provided in Table 3-4 on page 3-4. This is a long-term reliability requirement. 

This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used
for clamping, and the voltage must be limited by the external resistors and Zener, as shown in Figure 2-
104. Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

Figure 2-103 • Solution 1 

Figure 2-104 • Solution 2
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Device Architecture
Figure 2-114 • Naming Conventions of Fusion Devices with Four I/O Banks
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Device Architecture
Table 2-130 • 1.5 V LVCMOS Low Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.66 12.78 0.04 1.31 0.43 12.81 12.78 3.40 2.64 15.05 15.02  ns 

 –1 0.56 10.87 0.04 1.11 0.36 10.90 10.87 2.89 2.25 12.80 12.78  ns 

 –2 0.49 9.55 0.03 0.98 0.32 9.57 9.55 2.54 1.97 11.24 11.22  ns 

4 mA  Std. 0.66 10.01 0.04 1.31 0.43 10.19 9.55 3.75 3.27 12.43 11.78  ns 

 –1 0.56 8.51 0.04 1.11 0.36 8.67 8.12 3.19 2.78 10.57 10.02  ns 

 –2 0.49 7.47 0.03 0.98 0.32 7.61 7.13 2.80 2.44 9.28 8.80  ns 

8 mA  Std. 0.66 9.33 0.04 1.31 0.43 9.51 8.89 3.83 3.43 11.74 11.13  ns 

 –1 0.56 7.94 0.04 1.11 0.36 8.09 7.56 3.26 2.92 9.99 9.47  ns 

 –2 0.49 6.97 0.03 0.98 0.32 7.10 6.64 2.86 2.56 8.77 8.31  ns 

12 mA  Std. 0.66 8.91 0.04 1.31 0.43 9.07 8.89 3.95 4.05 11.31 11.13  ns 

 –1 0.56 7.58 0.04 1.11 0.36 7.72 7.57 3.36 3.44 9.62 9.47  ns 

 –2 0.49 6.65 0.03 0.98 0.32 6.78 6.64 2.95 3.02 8.45 8.31  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Table 2-131 • 1.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.4 V
Applicable to Advanced I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.66 8.36 0.04 1.44 0.43 6.82 8.36 3.39 2.77 9.06 10.60  ns 

 –1 0.56 7.11 0.04 1.22 0.36 5.80 7.11 2.88 2.35 7.71 9.02  ns 

 –2 0.49 6.24 0.03 1.07 0.32 5.10 6.24 2.53 2.06 6.76 7.91  ns 

4 mA  Std. 0.66 5.31 0.04 1.44 0.43 4.85 5.31 3.74 3.40 7.09 7.55  ns 

 –1 0.56 4.52 0.04 1.22 0.36 4.13 4.52 3.18 2.89 6.03 6.42  ns 

 –2 0.49 3.97 0.03 1.07 0.32 3.62 3.97 2.79 2.54 5.29 5.64  ns 

8 mA  Std. 0.66 4.67 0.04 1.44 0.43 4.55 4.67 3.82 3.56 6.78 6.90  ns 

 –1 0.56 3.97 0.04 1.22 0.36 3.87 3.97 3.25 3.03 5.77 5.87  ns 

 –2 0.49 3.49 0.03 1.07 0.32 3.40 3.49 2.85 2.66 5.07 5.16  ns 

12 mA  Std. 0.66 4.08 0.04 1.44 0.43 4.15 3.58 3.94 4.20 6.39 5.81  ns 

 –1 0.56 3.47 0.04 1.22 0.36 3.53 3.04 3.36 3.58 5.44 4.95  ns 

 –2 0.49 3.05 0.03 1.07 0.32 3.10 2.67 2.95 3.14 4.77 4.34  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
I/O Register Specifications
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-137 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset
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Device Architecture
User-Defined Supply Pins

VREF I/O Voltage Reference

Reference voltage for I/O minibanks. Both AFS600 and AFS1500 (north bank only) support Microsemi
Pro I/O. These I/O banks support voltage reference standard I/O. The VREF pins are configured by the
user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated as the voltage
reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and
(II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its
minibank.

VAREF Analog Reference Voltage

The Fusion device can be configured to generate a 2.56 V internal reference voltage that can be used by
the ADC. While using the internal reference, the reference voltage is output on the VAREF pin for use as
a system reference. If a different reference voltage is required, it can be supplied by an external source
and applied to this pin. The valid range of values that can be supplied to the ADC is 1.0 V to 3.3 V. When
VAREF is internally generated by the Fusion device, a bypass capacitor must be connected from this pin
to ground. The value of the bypass capacitor should be between 3.3 µF and 22 µF, which is based on the
needs of the individual designs. The choice of the capacitor value has an impact on the settling time it
takes the VAREF signal to reach the required specification of 2.56 V to initiate valid conversions by the
ADC. If the lower capacitor value is chosen, the settling time required for VAREF to achieve 2.56 V will
be shorter than when selecting the larger capacitor value. The above range of capacitor values supports
the accuracy specification of the ADC, which is detailed in the datasheet. Designers choosing the smaller
capacitor value will not obtain as much margin in the accuracy as that achieved with a larger capacitor
value. Depending on the capacitor value selected in the Analog System Builder, a tool in Libero SoC, an
automatic delay circuit will be generated using logic tiles available within the FPGA to ensure that VAREF
has achieved the 2.56 V value. Microsemi recommends customers use 10 µF as the value of the bypass
capacitor. Designers choosing to use an external VAREF need to ensure that a stable and clean VAREF
source is supplied to the VAREF pin before initiating conversions by the ADC. Designers should also
make sure that the ADCRESET signal is deasserted before initiating valid conversions.2 

If the user connects VAREF to external 3.3 V on their board, the internal VAREF driving OpAmp tries to
bring the pin down to the nominal 2.56 V until the device is programmed and up/functional. Under this
scenario, it is recommended to connect an external 3.3 V supply through a ~1 KOhm resistor to limit
current, along with placing a 10-100nF capacitor between VAREF and GNDA.

User Pins

I/O User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are
compatible with the I/O standard selected. Unused I/O pins are configured as inputs with pull-up
resistors.

During programming, I/Os become tristated and weakly pulled up to VCCI. With the VCCI and VCC
supplies continuously powered up, when the device transitions from programming to operating mode, the
I/Os get instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

• Output buffer is disabled (with tristate value of high impedance)

• Input buffer is disabled (with tristate value of high impedance)

• Weak pull-up is programmed

Axy Analog Input/Output

Analog I/O pin, where x is the analog pad type (C = current pad, G = Gate driver pad, T = Temperature
pad, V = Voltage pad) and y is the Analog Quad number (0 to 9). There is a minimum 1 M to ground on
AV, AC, and AT. This pin can be left floating when it is unused.

2. The ADC is functional with an external reference down to 1V, however to meet the performance parameters highlighted in the
datasheet refer to the VAREF specification in Table 3-2 on page 3-3.
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Fusion Family of Mixed Signal FPGAs
Methodology
Total Power Consumption—PTOTAL

Operating Mode, Standby Mode, and Sleep Mode

PTOTAL = PSTAT + PDYN

PSTAT is the total static power consumption.

PDYN is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

Operating Mode

PSTAT = PDC1 + (NNVM-BLOCKS * PDC4) + PDC5+ (NQUADS * PDC6) + (NINPUTS * PDC7) + 
(NOUTPUTS * PDC8) + (NPLLS * PDC9)

NNVM-BLOCKS is the number of NVM blocks available in the device.

NQUADS is the number of Analog Quads used in the design.

NINPUTS is the number of I/O input buffers used in the design.

NOUTPUTS is the number of I/O output buffers used in the design.

NPLLS is the number of PLLs available in the device.

Standby Mode

PSTAT = PDC2

Sleep Mode

PSTAT = PDC3

Total Dynamic Power Consumption—PDYN

Operating Mode

PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL + PNVM+ 
PXTL-OSC + PRC-OSC + PAB

Standby Mode

PDYN = PXTL-OSC

Sleep Mode

PDYN = 0 W

Global Clock Dynamic Contribution—PCLOCK

Operating Mode

PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK

NSPINE is the number of global spines used in the user design—guidelines are provided in the
"Spine Architecture" section of the Global Resources chapter in the Fusion and Extended
Temperature Fusion FPGA Fabric User's Guide.

NROW is the number of VersaTile rows used in the design—guidelines are provided in the "Spine
Architecture" section of the Global Resources chapter in the Fusion and Extended Temperature
Fusion FPGA Fabric User's Guide.

FCLK is the global clock signal frequency.

NS-CELL is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Sleep Mode

PCLOCK = 0 W

Sequential Cells Dynamic Contribution—PS-CELL

Operating Mode
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DC and Power Characteristics
RC Oscillator Dynamic Contribution—PRC-OSC

Operating Mode

PRC-OSC = PAC19

Standby Mode and Sleep Mode

PRC-OSC = 0 W

Analog System Dynamic Contribution—PAB

Operating Mode

PAB = PAC20

Standby Mode and Sleep Mode

PAB = 0 W

Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the
toggle rate of a net is 100%, this means that the net switches at half the clock frequency. Below are some
examples:

• The average toggle rate of a shift register is 100%, as all flip-flop outputs toggle at half of the clock
frequency.

• The average toggle rate of an 8-bit counter is 25%:

– Bit 0 (LSB) = 100%

– Bit 1 = 50%

– Bit 2 = 25%

– …

– Bit 7 (MSB) = 0.78125%

– Average toggle rate = (100% + 50% + 25% + 12.5% + . . . 0.78125%) / 8.

Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled. When
non-tristate output buffers are used, the enable rate should be 100%.

Table 3-16 • Toggle Rate Guidelines Recommended for Power Calculation

Component Definition Guideline 

1 Toggle rate of VersaTile outputs 10% 

2 I/O buffer toggle rate 10% 

Table 3-17 • Enable Rate Guidelines Recommended for Power Calculation

Component Definition Guideline 

1 I/O output buffer enable rate 100% 

2 RAM enable rate for read operations 12.5% 

3 RAM enable rate for write operations 12.5% 

4 NVM enable rate for read operations 0% 
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4 – Package Pin Assignments

QN108

Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/default.aspx.

Note: The die attach paddle center of the package is tied to ground (GND).

A1

B41 B52

A44 A56

B26 B14

A28 A15

A14

B1

B13

A43

A29

B40

B27

Pin A1 Mark
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Fusion Family of Mixed Signal FPGAs
R21 IO72NDB2V0

R22 IO72PDB2V0

R23 GND

R24 IO71PDB2V0

R25 VCCIB2

R26 IO67NDB2V0

T1 GND

T2 NC

T3 GFA1/IO105PDB4V0

T4 GFA0/IO105NDB4V0

T5 IO101NDB4V0

T6 IO96PDB4V0

T7 IO96NDB4V0

T8 IO99NDB4V0

T9 IO97NDB4V0

T10 VCCIB4

T11 VCC

T12 GND

T13 VCC

T14 GND

T15 VCC

T16 GND

T17 VCCIB2

T18 IO83NDB2V0

T19 IO78NDB2V0

T20 GDA1/IO81PDB2V0

T21 GDB1/IO80PDB2V0

T22 IO73NDB2V0

T23 IO73PDB2V0

T24 IO71NDB2V0

T25 NC

T26 GND

U1 NC

U2 NC

U3 IO102PDB4V0

U4 IO102NDB4V0

FG676

Pin Number AFS1500 Function

U5 VCCIB4

U6 IO91PDB4V0

U7 IO91NDB4V0

U8 IO92PDB4V0

U9 GND

U10 GND

U11 VCC33A

U12 GNDA

U13 VCC33A

U14 GNDA

U15 VCC33A

U16 GNDA

U17 VCC

U18 GND

U19 IO74NDB2V0

U20 GDA0/IO81NDB2V0

U21 GDB0/IO80NDB2V0

U22 VCCIB2

U23 IO75NDB2V0

U24 IO75PDB2V0

U25 NC

U26 NC

V1 NC

V2 VCCIB4

V3 IO100PPB4V0

V4 GND

V5 IO95PDB4V0

V6 IO95NDB4V0

V7 VCCIB4

V8 IO92NDB4V0

V9 GNDNVM

V10 GNDA

V11 NC

V12 AV4

V13 NC

V14 AV5

FG676

Pin Number AFS1500 Function

V15 AC5

V16 NC

V17 GNDA

V18 IO77PPB2V0

V19 IO74PDB2V0

V20 VCCIB2

V21 IO82NDB2V0

V22 GDA2/IO82PDB2V0

V23 GND

V24 GDC1/IO79PDB2V0

V25 VCCIB2

V26 NC

W1 GND

W2 IO94PPB4V0

W3 IO98PDB4V0

W4 IO98NDB4V0

W5 GEC1/IO90PDB4V0

W6 GEC0/IO90NDB4V0

W7 GND

W8 VCCNVM

W9 VCCIB4

W10 VCC15A

W11 GNDA

W12 AC4

W13 VCC33A

W14 GNDA

W15 AG5

W16 GNDA

W17 PUB

W18 VCCIB2

W19 TDI

W20 GND

W21 IO84NDB2V0

W22 GDC2/IO84PDB2V0

W23 IO77NPB2V0

W24 GDC0/IO79NDB2V0

FG676

Pin Number AFS1500 Function
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5 – Datasheet Information

List of Changes
The following table lists critical changes that were made in each revision of the Fusion datasheet.

Revision Changes Page

Revision 6
(March 2014)

Note added for the discontinuance of QN108 and QN180 packages to the "Package
I/Os: Single-/Double-Ended (Analog)" table and the "Temperature Grade Offerings"
table (SAR 55113, PDN 1306).

II and IV

Updated details about page programming time in the "Program Operation" section
(SAR 49291).

2-46

ADC_START changed to ADCSTART in the "ADC Operation" section (SAR 44104). 2-104

Revision 5
(January 2014)

Calibrated offset values (AFS090, AFS250) of the external temperature monitor in
Table 2-49 • Analog Channel Specifications have been updated (SAR 51464).

2-117

Specifications for the internal temperature monitor in
Table 2-49 • Analog Channel Specifications have been updated (SAR 50870).

2-117

Revision 4
(January 2013)

The "Product Ordering Codes" section has been updated to mention "Y" as "Blank"
mentioning "Device Does Not Include License to Implement IP Based on the
Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43177).

III

The note in Table 2-12 • Fusion CCC/PLL Specification referring the reader to
SmartGen was revised to refer instead to the online help associated with the core
(SAR 42563).

2-28

Table 2-49 • Analog Channel Specifications was modified to update the uncalibrated
offset values (AFS250) of the external and internal temperature monitors (SAR
43134).

2-117

In Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3),
changed the column heading from 'Full-Scale Voltage' to 'Full Scale Voltage in 10-Bit
Mode', and added and updated Notes as required (SAR 20812).

2-130

The values for the Speed Grade (-1 and Std.) for FDDRIMAX (Table 2-180 • Input
DDR Propagation Delays) and values for the Speed Grade (-2 and Std.) for
FDDOMAX (Table 2-182 • Output DDR Propagation Delays) had been inadvertently
interchanged. This has been rectified (SAR 38514).

2-220, 
2-222

Added description about what happens if a user connects VAREF to an external 3.3
V on their board to the "VAREF Analog Reference Voltage" section (SAR 35188).

2-225

Added a note to Table 3-2 • Recommended Operating Conditions1 (SAR 43429):
The programming temperature range supported is Tambient = 0°C to 85°C.

3-3

Added the Package Thermal details for AFS600-PQ208 and AFS250-PQ208 to
Table 3-6 • Package Thermal Resistance (SAR 37816). Deleted the Die Size column
from the table (SAR 43503).

3-7

Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip
(SoC) throughout the document (SAR 42495).

Live at Power-Up (LAPU) has been replaced with ’Instant On’.

NA

Revision 3
(August 2012)

Microblade U1AFS250 and U1AFS1500 devices were added to the product tables. I – IV

A sentence pertaining to the analog I/Os was added to the "Specifying I/O States
During Programming" section (SAR 34831).
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