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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Fusion Family of Mixed Signal FPGAs
Temperature Grade Offerings

Speed Grade and Temperature Grade Matrix

Contact your local Microsemi SoC Products Group representative for device availability:

http://www.microsemi.com/index.php?option=com_content&id=137&lang=en&view=article.

Cortex-M1, Pigeon Point, and MicroBlade Fusion Device 
Information
This datasheet provides information for all Fusion (AFS), Cortex-M1 (M1), Pigeon Point (P1), and MicroBlade (U1)
devices. The remainder of the document will only list the Fusion (AFS) devices. Please apply relevant information to
M1, P1, and U1 devices when appropriate. Please note the following:

• Cortex-M1 devices are offered in the same speed grades and packages as basic Fusion devices.

• Pigeon Point devices are only offered in –2 speed grade and FG484 and FG256 packages.

• MicroBlade devices are only offered in standard speed grade and the FG256 package.

Fusion Devices AFS090 AFS250 AFS600 AFS1500

ARM Cortex-M1 Devices M1AFS250 M1AFS600 M1AFS1500

Pigeon Point Devices P1AFS600 3 P1AFS1500 3

MicroBlade Devices U1AFS250 4 U1AFS600 4 U1AFS1500 4

QN108 5 C, I – – –

QN180 5 C, I C, I – –

PQ208 – C, I C, I –

FG256 C, I C, I C, I C, I

FG484 – – C, I C, I

FG676 – – – C, I

Notes:
1. C = Commercial Temperature Range: 0°C to 85°C Junction
2. I = Industrial Temperature Range: –40°C to 100°C Junction
3. Pigeon Point devices are only offered in FG484 and FG256.
4. MicroBlade devices are only offered in FG256.
5. Package not available.

Std.1 –1 –22

C3   

I4   

Notes:
1. MicroBlade devices are only offered in standard speed grade.
2. Pigeon Point devices are only offered in –2 speed grade.
3. C = Commercial Temperature Range: 0°C to 85°C Junction
4. I = Industrial Temperature Range: –40°C to 100°C Junction
IV Revision 6
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Fusion Family of Mixed Signal FPGAs
The on-chip crystal and RC oscillators work in conjunction with the integrated phase-locked loops (PLLs)
to provide clocking support to the FPGA array and on-chip resources. In addition to supporting typical
RTC uses such as watchdog timer, the Fusion RTC can control the on-chip voltage regulator to power
down the device (FPGA fabric, flash memory block, and ADC), enabling a low power standby mode.

The Fusion family offers revolutionary features, never before available in an FPGA. The nonvolatile flash
technology gives the Fusion solution the advantage of being a highly secure, low power, single-chip
solution that is Instant On. Fusion is reprogrammable and offers time-to-market benefits at an ASIC-level
unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA
design flows and tools.

Flash Advantages

Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, high performance, and ease of use. Flash-
based Fusion devices are Instant On and do not need to be loaded from an external boot PROM. 
On-board security mechanisms prevent access to the programming information and enable remote
updates of the FPGA logic that are protected with high level security. Designers can perform remote in-
system reprogramming to support future design iterations and field upgrades, with confidence that
valuable IP is highly unlikely to be compromised or copied. ISP can be performed using the 
industry-standard AES algorithm with MAC data authentication on the device. The Fusion family device
architecture mitigates the need for ASIC migration at higher user volumes. This makes the Fusion family
a cost-effective ASIC replacement solution for applications in the consumer, networking and
communications, computing, and avionics markets.

Security

As the nonvolatile, flash-based Fusion family requires no boot PROM, there is no vulnerable external
bitstream. Fusion devices incorporate FlashLock, which provides a unique combination of
reprogrammability and design security without external overhead, advantages that only an FPGA with
nonvolatile flash programming can offer. 

Fusion devices utilize a 128-bit flash-based key lock and a separate AES key to provide the highest level
of protection in the FPGA industry for programmed IP and configuration data. The FlashROM data in
Fusion devices can also be encrypted prior to loading. Additionally, the flash memory blocks can be
programmed during runtime using the industry-leading AES-128 block cipher encryption standard (FIPS
Publication 192). The AES standard was adopted by the National Institute of Standards and Technology
(NIST) in 2000 and replaces the DES standard, which was adopted in 1977. Fusion devices have a 
built-in AES decryption engine and a flash-based AES key that make Fusion devices the most
comprehensive programmable logic device security solution available today. Fusion devices with 
AES-based security provide a high level of protection for remote field updates over public networks, such
as the Internet, and are designed to ensure that valuable IP remains out of the hands of system
overbuilders, system cloners, and IP thieves. As an additional security measure, the FPGA configuration
data of a programmed Fusion device cannot be read back, although secure design verification is
possible. During design, the user controls and defines both internal and external access to the flash
memory blocks.

Security, built into the FPGA fabric, is an inherent component of the Fusion family. The flash cells are
located beneath seven metal layers, and many device design and layout techniques have been used to
make invasive attacks extremely difficult. Fusion with FlashLock and AES security is unique in being
highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with 
industry-standard security, making remote ISP possible. A Fusion device provides the best available
security for programmable logic designs.

Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based Fusion FPGAs do
not require system configuration components such as EEPROMs or microcontrollers to load device
configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system
reliability.
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Fusion Family of Mixed Signal FPGAs
Clocking Resources
The Fusion family has a robust collection of clocking peripherals, as shown in the block diagram in
Figure 2-16. These on-chip resources enable the creation, manipulation, and distribution of many clock
signals. The Fusion integrated RC oscillator produces a 100 MHz clock source with no external
components. For systems requiring more precise clock signals, the Fusion family supports an on-chip
crystal oscillator circuit. The integrated PLLs in each Fusion device can use the RC oscillator, crystal
oscillator, or another on-chip clock signal as a source. These PLLs offer a variety of capabilities to modify
the clock source (multiply, divide, synchronize, advance, or delay). Utilizing the CCC found in the popular
ProASIC3 family, Fusion incorporates six CCC blocks. The CCCs allow access to Fusion global and local
clock distribution nets, as described in the "Global Resources (VersaNets)" section on page 2-11.

Figure 2-16 • Fusion Clocking Options

Clock Out to FPGA Core through CCC

GLINT

GNDOSC

On-ChipOff-Chip

VCCOSC

Crystal Oscillator

Clock I/OsExternal
Crystal

External
RC

Xtal Clock PLL/
CCC

GLA
To Core

CLKOUT

NGMUX
GLC

From FPGA Core

100 MHz
RC Oscillator

or

XTAL1

XTAL2
Revision 6 2-18



Device Architecture
RAM4K9 Description

Figure 2-48 • RAM4K9
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Device Architecture
DINA and DINB
These are the input data signals, and they are nine bits wide. Not all nine bits are valid in all
configurations. When a data width less than nine is specified, unused high-order signals must be
grounded (Table 2-29).

DOUTA and DOUTB
These are the nine-bit output data signals. Not all nine bits are valid in all configurations. As with DINA
and DINB, high-order bits may not be used (Table 2-29). The output data on unused pins is undefined.

Table 2-29 • Unused/Used Input and Output Data Pins for Various Supported Bus Widths

D×W
DINx/DOUTx

Unused Used

4k×1 [8:1] [0]

2k×2 [8:2] [1:0]

1k×4 [8:4] [3:0]

512×9 None [8:0]

Note: The "x" in DINx and DOUTx implies A or B.
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Device Architecture
Fusion uses a remote diode as a temperature sensor. The Fusion Temperature Monitor uses a
differential input; the AT pin and ATRTN (AT Return) pin are the differential inputs to the Temperature
Monitor. There is one Temperature Monitor in each Quad. A simplified block diagram is shown in
Figure 2-77.

The Fusion approach to measuring temperature is forcing two different currents through the diode with a
ratio of 10:1. The switch that controls the different currents is controlled by the Temperature Monitor
Strobe signal, TMSTB. Setting TMSTB to '1' will initiate a Temperature reading. The TMSTB should
remain '1' until the ADC finishes sampling the voltage from the Temperature Monitor. The minimum
sample time for the Temperature Monitor cannot be less than the minimum strobe high time minus the
setup time. Figure 2-78 shows the timing diagram.

Note: When the IEEE 1149.1 Boundary Scan EXTEST instruction is executed, the AG pad drive
strength ceases and becomes a 1 µA sink into the Fusion device. 

Figure 2-77 • Block Diagram for Temperature Monitor Circuit

Figure 2-78 • Timing Diagram for the Temperature Monitor Strobe Signal
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Fusion Family of Mixed Signal FPGAs
Table 2-57 details the settings available to control the prescaler values of the AV, AC, and AT pins. Note
that the AT pin has a reduced number of available prescaler values.

Table 2-58 details the settings available to control the MUX within each of the AV, AC, and AT circuits.
This MUX determines whether the signal routed to the ADC is the direct analog input, prescaled signal,
or output of either the Current Monitor Block or the Temperature Monitor Block.

Table 2-59 details the settings available to control the Direct Analog Input switch for the AV, AC, and AT
pins.

Table 2-60 details the settings available to control the polarity of the signals coming to the AV, AC, and AT
pins. Note that the only valid setting for the AT pin is logic 0 to support positive voltages.

Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines 
Bx[2:0]

Scaling 
Factor, Pad to 

ADC Input 

LSB for an 
8-Bit 

Conversion1 
(mV)

LSB for a 
10-Bit 

Conversion1 
(mV)

LSB for a 
12-Bit 

Conversion1 
(mV)

Full-Scale 
Voltage in 

10-Bit 
Mode2 Range Name

000 3 0.15625 64 16 4 16.368 V 16 V 

001 0.3125 32 8 2 8.184 V 8 V 

010 3 0.625 16 4 1 4.092 V 4 V 

011 1.25 8 2 0.5 2.046 V 2 V 

100 2.5 4 1 0.25 1.023 V 1 V 

101 5.0 2 0.5 0.125 0.5115 V 0.5 V 

110 10.0 1 0.25 0.0625 0.25575 V 0.25 V 

111 20.0 0.5 0.125 0.03125 0.127875 V 0.125 V 

Notes:

1. LSB voltage equivalences assume VAREF = 2.56 V.
2. Full Scale voltage for n-bit mode: ((2^n) - 1) x (LSB for a n-bit Conversion)

3. These are the only valid ranges for the Temperature Monitor Block Prescaler.

Table 2-58 • Analog Multiplexer Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[4] Control Lines Bx[3] ADC Connected To 

0 0 Prescaler 

0 1 Direct input 

1 0 Current amplifier temperature monitor 

1 1 Not valid 

Table 2-59 • Direct Analog Input Switch Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[5] Direct Input Switch 

0 Off 

1 On 

Table 2-60 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)*

Control Lines Bx[6] Input Signal Polarity 

0 Positive 

1 Negative 

Note: *The B3[6] signal for the AT pad should be kept at logic 0 to accept only positive voltages.
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Device Architecture
Table 2-73 • Maximum I/O Frequency for Single-Ended, Voltage-Referenced, and Differential I/Os;
All I/O Bank Types (maximum drive strength and high slew selected)

Specification Performance Up To

LVTTL/LVCMOS 3.3 V 200 MHz

LVCMOS 2.5 V 250 MHz

LVCMOS 1.8 V 200 MHz

LVCMOS 1.5 V 130 MHz

PCI 200 MHz

PCI-X 200 MHz

HSTL-I 300 MHz

HSTL-II 300 MHz

SSTL2-I 300 MHz

SSTL2-II 300 MHz

SSTL3-I 300 MHz

SSTL3-II 300 MHz

GTL+ 3.3 V 300 MHz

GTL+ 2.5 V 300 MHz

GTL 3.3 V 300 MHz

GTL 2.5 V 300 MHz

LVDS 350 MHz

LVPECL 300 MHz
2-137 Revision 6



Fusion Family of Mixed Signal FPGAs
5 V Output Tolerance
Fusion I/Os must be set to 3.3 V LVTTL or 3.3 V LVCMOS mode to reliably drive 5 V TTL receivers. It is
also critical that there be NO external I/O pull-up resistor to 5 V, since this resistor would pull the I/O pad
voltage beyond the 3.6 V absolute maximum value and consequently cause damage to the I/O. 

When set to 3.3 V LVTTL or 3.3 V LVCMOS mode, Fusion I/Os can directly drive signals into 5 V TTL
receivers. In fact, VOL = 0.4 V and VOH = 2.4 V in both 3.3 V LVTTL and 3.3 V LVCMOS modes exceed
the VIL = 0.8 V and VIH = 2 V level requirements of 5 V TTL receivers. Therefore, level '1' and level '0'
will be recognized correctly by 5 V TTL receivers.

Simultaneously Switching Outputs and PCB Layout
• Simultaneously switching outputs (SSOs) can produce signal integrity problems on adjacent

signals that are not part of the SSO bus. Both inductive and capacitive coupling parasitics of bond
wires inside packages and of traces on PCBs will transfer noise from SSO busses onto signals
adjacent to those busses. Additionally, SSOs can produce ground bounce noise and VCCI dip
noise. These two noise types are caused by rapidly changing currents through GND and VCCI
package pin inductances during switching activities:

• Ground bounce noise voltage = L(GND) * di/dt

• VCCI dip noise voltage = L(VCCI) * di/dt

Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The
shielding should be done both on the board and inside the package unless otherwise described. 

In-package shielding can be achieved in several ways; the required shielding will vary depending on
whether pins next to SSO bus are LVTTL/LVCMOS inputs, LVTTL/LVCMOS outputs, or
GTL/SSTL/HSTL/LVDS/LVPECL inputs and outputs. Board traces in the vicinity of the SSO bus have to
be adequately shielded from mutual coupling and inductive noise that can be generated by the SSO bus.
Also, noise generated by the SSO bus needs to be reduced inside the package. 

PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time,
maintaining signal integrity between devices.

Key issues that need to considered are as follows:

• Power and ground plane design and decoupling network design

• Transmission line reflections and terminations
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Fusion Family of Mixed Signal FPGAs
Table 2-117 • 2.5 V LVCMOS High Slew
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 2.3 V
Applicable to Standard I/Os

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ  Units 

2 mA  Std. 0.66 8.20 0.04 1.29 0.43 7.24 8.20 2.03 1.91  ns 

 –1 0.56 6.98 0.04 1.10 0.36 6.16 6.98 1.73 1.62  ns 

 –2 0.49 6.13 0.03 0.96 0.32 5.41 6.13 1.52 1.43  ns 

4 mA  Std. 0.66 8.20 0.04 1.29 0.43 7.24 8.20 2.03 1.91  ns 

 –1 0.56 6.98 0.04 1.10 0.36 6.16 6.98 1.73 1.62  ns 

 –2 0.49 6.13 0.03 0.96 0.32 5.41 6.13 1.52 1.43  ns 

6 mA  Std. 0.66 4.77 0.04 1.29 0.43 4.55 4.77 2.38 2.55  ns 

 –1 0.56 4.05 0.04 1.10 0.36 3.87 4.05 2.03 2.17  ns 

 –2 0.49 3.56 0.03 0.96 0.32 3.40 3.56 1.78 1.91  ns 

8 mA  Std. 0.66 4.77 0.04 1.29 0.43 4.55 4.77 2.38 2.55  ns 

 –1 0.56 4.05 0.04 1.10 0.36 3.87 4.05 2.03 2.17  ns 

 –2 0.49 3.56 0.03 0.96 0.32 3.40 3.56 1.78 1.91  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Device Architecture
3.3 V PCI, 3.3 V PCI-X
The Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI
Bus applications.  

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable
path characterization are described in Figure 2-123. 

AC loadings are defined per PCI/PCI-X specifications for the data path; Microsemi loading for tristate is
described in Table 2-135.

Table 2-134 • Minimum and Maximum DC Input and Output Levels

3.3 V PCI/PCI-X VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive Strength
Min.

V
Max.

V
Min.

V
Max.

V
Max.

V
Min.

V mA mA
Max.
mA3

Max.
mA3 µA4 µA4

Per PCI
specification

Per PCI curves 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-123 • AC Loading

Test Point
Enable Path

R = 1 k

Test Point
Data Path

R = 25 R to VCCI for tDP (F)
R to GND for tDP (R)

R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

10 pF for tZH / tZHS / tZL / tZLS
10 pF for tHZ / tLZ

Table 2-135 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 3.3 0.285 * VCCI for tDP(R)

0.615 * VCCI for tDP(F)

– 10

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.
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Device Architecture
IEEE 1532 Characteristics
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to
the corresponding standard selected; refer to the I/O timing characteristics in the "User I/Os" section on
page 2-132 for more details.

Timing Characteristics 

Table 2-186 • JTAG 1532
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tDISU Test Data Input Setup Time 0.50 0.57 0.67 ns

tDIHD Test Data Input Hold Time 1.00 1.13 1.33 ns

tTMSSU Test Mode Select Setup Time 0.50 0.57 0.67 ns

tTMDHD Test Mode Select Hold Time 1.00 1.13 1.33 ns

tTCK2Q Clock to Q (data out) 6.00 6.80 8.00 ns

tRSTB2Q Reset to Q (data out) 20.00 22.67 26.67 ns

FTCKMAX TCK Maximum Frequency 25.00 22.00 19.00 MHz

tTRSTREM ResetB Removal Time 0.00 0.00 0.00 ns

tTRSTREC ResetB Recovery Time 0.20 0.23 0.27 ns

tTRSTMPW ResetB Minimum Pulse TBD TBD TBD ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Fusion Family of Mixed Signal FPGAs
Table 3-3 • Input Resistance of Analog Pads

Pads Pad Configuration Prescaler Range Input Resistance to Ground

AV, AC Analog Input (direct input to ADC) – 2 k (typical)

– > 10 M

Analog Input (positive prescaler) +16 V to +2 V 1 M (typical)

+1 V to +0.125 V > 10 M

Analog Input (negative prescaler) –16 V to –2 V 1 M (typical)

–1 V to –0.125 V > 10 M

Digital input +16 V to +2 V 1 M (typical)

Current monitor +16 V to +2 V 1 M (typical)

–16 V to –2 V 1 M (typical)

AT Analog Input (direct input to ADC) – 1 M (typical)

Analog Input (positive prescaler) +16 V, +4 V 1 M (typical)

Digital input +16 V, +4 V 1 M (typical)

Temperature monitor +16 V, +4 V > 10 M

Table 3-4 • Overshoot and Undershoot Limits 1

VCCI 
Average VCCI–GND Overshoot or Undershoot 

Duration as a Percentage of Clock Cycle2
Maximum Overshoot/ 

Undershoot2

 2.7 V or less 10% 1.4 V

5% 1.49 V

 3.0 V 10% 1.1 V

5% 1.19 V

 3.3 V 10% 0.79 V

5% 0.88 V

 3.6 V 10% 0.45 V

5% 0.54 V

Notes:

1. Based on reliability requirements at a junction temperature of 85°C.
2. The duration is allowed at one cycle out of six clock cycle. If the overshoot/undershoot occurs at one out of two cycles,

the maximum overshoot/undershoot has to be reduced by 0.15 V.
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Fusion Family of Mixed Signal FPGAs
Theta-JA
Junction-to-ambient thermal resistance (JA) is determined under standard conditions specified by
JEDEC (JESD-51), but it has little relevance in actual performance of the product. It should be used with
caution but is useful for comparing the thermal performance of one package to another.

A sample calculation showing the maximum power dissipation allowed for the AFS600-FG484 package
under forced convection of 1.0 m/s and 75°C ambient temperature is as follows:

EQ 4

where  

EQ 5

The power consumption of a device can be calculated using the Microsemi power calculator. The
device's power consumption must be lower than the calculated maximum power dissipation by the
package. If the power consumption is higher than the device's maximum allowable power dissipation, a
heat sink can be attached on top of the case, or the airflow inside the system must be increased.

Theta-JB
Junction-to-board thermal resistance (JB) measures the ability of the package to dissipate heat from the
surface of the chip to the PCB. As defined by the JEDEC (JESD-51) standard, the thermal resistance
from junction to board uses an isothermal ring cold plate zone concept. The ring cold plate is simply a
means to generate an isothermal boundary condition at the perimeter. The cold plate is mounted on a
JEDEC standard board with a minimum distance of 5.0 mm away from the package edge.

Theta-JC
Junction-to-case thermal resistance (JC) measures the ability of a device to dissipate heat from the
surface of the chip to the top or bottom surface of the package. It is applicable for packages used with
external heat sinks. Constant temperature is applied to the surface in consideration and acts as a
boundary condition. This only applies to situations where all or nearly all of the heat is dissipated through
the surface in consideration. 

Calculation for Heat Sink 
For example, in a design implemented in an AFS600-FG484 package with 2.5 m/s airflow, the power
consumption value using the power calculator is 3.00 W. The user-dependent Ta and Tj are given as
follows:

From the datasheet:  

EQ 6

JA = 19.00°C/W (taken from Table 3-6 on page 3-7). 

TA = 75.00°C 

TJ = 100.00°C

TA = 70.00°C

JA = 17.00°C/W

JC = 8.28°C/W

Maximum Power Allowed
TJ(MAX) TA(MAX)–

JA
---------------------------------------------=

Maximum Power Allowed
100.00°C 75.00°C–

19.00°C/W
---------------------------------------------------- 1.3 W= =

P
TJ TA–

JA
------------------- 100°C 70°C–

17.00 W
------------------------------------ 1.76 W= = =
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Fusion Family of Mixed Signal FPGAs
Power per I/O Pin

Table 3-12 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings 

VCCI (V) 
Static Power
PDC7 (mW)1 

Dynamic Power
PAC9 (µW/MHz)2

Applicable to Pro I/O Banks

Single-Ended 

3.3 V LVTTL/LVCMOS  3.3 – 17.39

3.3 V LVTTL/LVCMOS – Schmitt trigger  3.3 – 25.51 

2.5 V LVCMOS  2.5 – 5.76

2.5 V LVCMOS – Schmitt trigger  2.5 – 7.16

1.8 V LVCMOS  1.8 – 2.72

1.8 V LVCMOS – Schmitt trigger  1.8 – 2.80

1.5 V LVCMOS (JESD8-11)  1.5 – 2.08

1.5 V LVCMOS (JESD8-11) – Schmitt trigger  1.5 – 2.00

3.3 V PCI  3.3 – 18.82

3.3 V PCI – Schmitt trigger  3.3 – 20.12

3.3 V PCI-X  3.3 – 18.82

3.3 V PCI-X – Schmitt trigger  3.3 – 20.12

Voltage-Referenced 

3.3 V GTL 3.3 2.90 8.23

2.5 V GTL 2.5 2.13 4.78

3.3 V GTL+ 3.3 2.81 4.14

2.5 V GTL+ 2.5 2.57 3.71

HSTL (I) 1.5 0.17 2.03

HSTL (II) 1.5 0.17 2.03

SSTL2 (I) 2.5 1.38 4.48

SSTL2 (II) 2.5 1.38 4.48

SSTL3 (I) 3.3 3.21 9.26

SSTL3 (II) 3.3 3.21 9.26

Differential

LVDS 2.5 2.26 1.50

LVPECL 3.3 5.71 2.17

Notes:

1. PDC7 is the static power (where applicable) measured on VCCI.
2. PAC9 is the total dynamic power measured on VCC and VCCI.
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Package Pin Assignments
QN180

Pin Number AFS090 Function AFS250 Function

A1 GNDQ GNDQ

A2 VCCIB3 VCCIB3

A3 GAB2/IO52NDB3V0 IO74NDB3V0

A4 GFA2/IO51NDB3V0 IO71NDB3V0

A5 GFC2/IO50NDB3V0 IO69NPB3V0

A6 VCCIB3 VCCIB3

A7 GFA1/IO47PPB3V0 GFB1/IO67PPB3V0

A8 GEB0/IO45NDB3V0 NC

A9 XTAL1 XTAL1

A10 GNDOSC GNDOSC

A11 GEC2/IO43PPB3V0 GEA1/IO61PPB3V0

A12 IO43NPB3V0 GEA0/IO61NPB3V0

A13 NC VCCIB3

A14 GNDNVM GNDNVM

A15 PCAP PCAP

A16 VCC33PMP VCC33PMP

A17 NC NC

A18 AV0 AV0

A19 AG0 AG0

A20 ATRTN0 ATRTN0

A21 AG1 AG1

A22 AC1 AC1

A23 AV2 AV2

A24 AT2 AT2

A25 AT3 AT3

A26 AC3 AC3

A27 AV4 AV4

A28 AC4 AC4

A29 AT4 AT4

A30 NC AG5

A31 NC AV5

A32 ADCGNDREF ADCGNDREF

A33 VCC33A VCC33A

A34 GNDA GNDA

A35 PTBASE PTBASE

A36 VCCNVM VCCNVM

A37 VPUMP VPUMP

A38 TDI TDI

A39 TDO TDO

A40 VJTAG VJTAG

A41 GDB1/IO39PPB1V0 GDA1/IO54PPB1V0

A42 GDC1/IO38PDB1V0 GDB1/IO53PDB1V0

A43 VCC VCC

A44 GCB0/IO35NPB1V0 GCB0/IO48NPB1V0

A45 GCC1/IO34PDB1V0 GCC1/IO47PDB1V0

A46 VCCIB1 VCCIB1

A47 GBC2/IO32PPB1V0 GBB2/IO41PPB1V0

A48 VCCIB1 VCCIB1

A49 NC NC

A50 GBA0/IO29RSB0V0 GBB1/IO37RSB0V0

A51 VCCIB0 VCCIB0

A52 GBB0/IO27RSB0V0 GBC0/IO34RSB0V0

A53 GBC1/IO26RSB0V0 IO33RSB0V0

A54 IO24RSB0V0 IO29RSB0V0

A55 IO21RSB0V0 IO26RSB0V0

A56 VCCIB0 VCCIB0

A57 IO15RSB0V0 IO21RSB0V0

A58 IO10RSB0V0 IO13RSB0V0

A59 IO07RSB0V0 IO10RSB0V0

A60 GAC0/IO04RSB0V0 IO06RSB0V0

A61 GAB1/IO03RSB0V0 GAC1/IO05RSB0V0

A62 VCC VCC

A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0

A64 NC NC

B1 VCOMPLA VCOMPLA

B2 GAA2/IO52PDB3V0 GAC2/IO74PDB3V0

B3 GAC2/IO51PDB3V0 GFA2/IO71PDB3V0

B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0

B5 VCC VCC

B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0

B7 GEB1/IO45PDB3V0 NC

B8 VCCOSC VCCOSC

QN180

Pin Number AFS090 Function AFS250 Function
4-4 Revision 6



Fusion Family of Mixed Signal FPGAs
B9 XTAL2 XTAL2

B10 GEA0/IO44NDB3V0 GFA0/IO66NDB3V0

B11 GEB2/IO42PDB3V0 IO60NDB3V0

B12 VCC VCC

B13 VCCNVM VCCNVM

B14 VCC15A VCC15A

B15 NCAP NCAP

B16 VCC33N VCC33N

B17 GNDAQ GNDAQ

B18 AC0 AC0

B19 AT0 AT0

B20 AT1 AT1

B21 AV1 AV1

B22 AC2 AC2

B23 ATRTN1 ATRTN1

B24 AG3 AG3

B25 AV3 AV3

B26 AG4 AG4

B27 ATRTN2 ATRTN2

B28 NC AC5

B29 VCC33A VCC33A

B30 VAREF VAREF

B31 PUB PUB

B32 PTEM PTEM

B33 GNDNVM GNDNVM

B34 VCC VCC

B35 TCK TCK

B36 TMS TMS

B37 TRST TRST

B38 GDB2/IO41PSB1V0 GDA2/IO55PSB1V0

B39 GDC0/IO38NDB1V0 GDB0/IO53NDB1V0

B40 VCCIB1 VCCIB1

B41 GCA1/IO36PDB1V0 GCA1/IO49PDB1V0

B42 GCC0/IO34NDB1V0 GCC0/IO47NDB1V0

B43 GCB2/IO33PSB1V0 GBC2/IO42PSB1V0

B44 VCC VCC

QN180

Pin Number AFS090 Function AFS250 Function

B45 GBA2/IO31PDB1V0 GBA2/IO40PDB1V0

B46 GNDQ GNDQ

B47 GBA1/IO30RSB0V0 GBA0/IO38RSB0V0

B48 GBB1/IO28RSB0V0 GBC1/IO35RSB0V0

B49 VCC VCC

B50 GBC0/IO25RSB0V0 IO31RSB0V0

B51 IO23RSB0V0 IO28RSB0V0

B52 IO20RSB0V0 IO25RSB0V0

B53 VCC VCC

B54 IO11RSB0V0 IO14RSB0V0

B55 IO08RSB0V0 IO11RSB0V0

B56 GAC1/IO05RSB0V0 IO08RSB0V0

B57 VCCIB0 VCCIB0

B58 GAB0/IO02RSB0V0 GAC0/IO04RSB0V0

B59 GAA0/IO00RSB0V0 GAA1/IO01RSB0V0

B60 VCCPLA VCCPLA

C1 NC NC

C2 NC VCCIB3

C3 GND GND

C4 NC GFC2/IO69PPB3V0

C5 GFC1/IO49PDB3V0 GFC1/IO68PDB3V0

C6 GFA0/IO47NPB3V0 GFB0/IO67NPB3V0

C7 VCCIB3 NC

C8 GND GND

C9 GEA1/IO44PDB3V0 GFA1/IO66PDB3V0

C10 GEA2/IO42NDB3V0 GEC2/IO60PDB3V0

C11 NC GEA2/IO58PSB3V0

C12 NC NC

C13 GND GND

C14 NC NC

C15 NC NC

C16 GNDA GNDA

C17 NC NC

C18 NC NC

C19 NC NC

C20 NC NC

QN180

Pin Number AFS090 Function AFS250 Function
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Fusion Family of Mixed Signal FPGAs
E13 VCCIB1 VCCIB1 VCCIB2 VCCIB2

E14 GCC2/IO33NDB1V0 IO42NDB1V0 IO32NDB2V0 IO46NDB2V0

E15 GCB2/IO33PDB1V0 GBC2/IO42PDB1V0 GBC2/IO32PDB2V0 GBC2/IO46PDB2V0

E16 GND GND GND GND

F1 NC NC IO79NDB4V0 IO111NDB4V0

F2 NC NC IO79PDB4V0 IO111PDB4V0

F3 GFB1/IO48PPB3V0 IO72NDB3V0 IO76NDB4V0 IO112NDB4V0

F4 GFC0/IO49NDB3V0 IO72PDB3V0 IO76PDB4V0 IO112PDB4V0

F5 NC NC IO82PSB4V0 IO120PSB4V0

F6 GFC1/IO49PDB3V0 GAC2/IO74PPB3V0 GAC2/IO83PPB4V0 GAC2/IO123PPB4V0

F7 NC IO09RSB0V0 IO04PPB0V0 IO05PPB0V1

F8 NC IO19RSB0V0 IO08NDB0V1 IO11NDB0V1

F9 NC NC IO20PDB1V0 IO27PDB1V1

F10 NC IO29RSB0V0 IO23NDB1V1 IO37NDB1V2

F11 NC IO43NDB1V0 IO36NDB2V0 IO50NDB2V0

F12 NC IO43PDB1V0 IO36PDB2V0 IO50PDB2V0

F13 NC IO44NDB1V0 IO39NDB2V0 IO59NDB2V0

F14 NC GCA2/IO44PDB1V0 GCA2/IO39PDB2V0 GCA2/IO59PDB2V0

F15 GCC1/IO34PDB1V0 GCB2/IO45PDB1V0 GCB2/IO40PDB2V0 GCB2/IO60PDB2V0

F16 GCC0/IO34NDB1V0 IO45NDB1V0 IO40NDB2V0 IO60NDB2V0

G1 GEC0/IO46NPB3V0 IO70NPB3V0 IO74NPB4V0 IO109NPB4V0

G2 VCCIB3 VCCIB3 VCCIB4 VCCIB4

G3 GEC1/IO46PPB3V0 GFB2/IO70PPB3V0 GFB2/IO74PPB4V0 GFB2/IO109PPB4V0

G4 GFA1/IO47PDB3V0 GFA2/IO71PDB3V0 GFA2/IO75PDB4V0 GFA2/IO110PDB4V0

G5 GND GND GND GND

G6 GFA0/IO47NDB3V0 IO71NDB3V0 IO75NDB4V0 IO110NDB4V0

G7 GND GND GND GND

G8 VCC VCC VCC VCC

G9 GND GND GND GND

G10 VCC VCC VCC VCC

G11 GDA1/IO37NDB1V0 GCC0/IO47NDB1V0 GCC0/IO43NDB2V0 GCC0/IO62NDB2V0

G12 GND GND GND GND

G13 IO37PDB1V0 GCC1/IO47PDB1V0 GCC1/IO43PDB2V0 GCC1/IO62PDB2V0

G14 GCB0/IO35NPB1V0 IO46NPB1V0 IO41NPB2V0 IO61NPB2V0

G15 VCCIB1 VCCIB1 VCCIB2 VCCIB2

G16 GCB1/IO35PPB1V0 GCC2/IO46PPB1V0 GCC2/IO41PPB2V0 GCC2/IO61PPB2V0

H1 GEB1/IO45PDB3V0 GFC2/IO69PDB3V0 GFC2/IO73PDB4V0 GFC2/IO108PDB4V0

H2 GEB0/IO45NDB3V0 IO69NDB3V0 IO73NDB4V0 IO108NDB4V0

FG256

Pin Number AFS090 Function AFS250 Function AFS600 Function AFS1500 Function
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L17 VCCIB2 VCCIB2

L18 IO46PDB2V0 IO69PDB2V0

L19 GCA1/IO45PDB2V0 GCA1/IO64PDB2V0

L20 VCCIB2 VCCIB2

L21 GCC0/IO43NDB2V0 GCC0/IO62NDB2V0

L22 GCC1/IO43PDB2V0 GCC1/IO62PDB2V0

M1 NC IO103PDB4V0

M2 XTAL1 XTAL1

M3 VCCIB4 VCCIB4

M4 GNDOSC GNDOSC

M5 GFC0/IO72NDB4V0 GFC0/IO107NDB4V0

M6 VCCIB4 VCCIB4

M7 GFB0/IO71NDB4V0 GFB0/IO106NDB4V0

M8 VCCIB4 VCCIB4

M9 VCC VCC

M10 GND GND

M11 VCC VCC

M12 GND GND

M13 VCC VCC

M14 GND GND

M15 VCCIB2 VCCIB2

M16 IO48NDB2V0 IO70NDB2V0

M17 VCCIB2 VCCIB2

M18 IO46NDB2V0 IO69NDB2V0

M19 GCA0/IO45NDB2V0 GCA0/IO64NDB2V0

M20 VCCIB2 VCCIB2

M21 GCB0/IO44NDB2V0 GCB0/IO63NDB2V0

M22 GCB1/IO44PDB2V0 GCB1/IO63PDB2V0

N1 NC IO103NDB4V0

N2 GND GND

N3 IO68PDB4V0 IO101PDB4V0

N4 NC IO100NPB4V0

N5 GND GND

N6 NC IO99PDB4V0

N7 NC IO97PDB4V0

FG484

Pin 
Number AFS600 Function AFS1500 Function

N8 GND GND

N9 GND GND

N10 VCC VCC

N11 GND GND

N12 VCC VCC

N13 GND GND

N14 VCC VCC

N15 GND GND

N16 GDB2/IO56PDB2V0 GDB2/IO83PDB2V0

N17 NC IO78PDB2V0

N18 GND GND

N19 IO47NDB2V0 IO72NDB2V0

N20 IO47PDB2V0 IO72PDB2V0

N21 GND GND

N22 IO49PDB2V0 IO71PDB2V0

P1 GFA1/IO70PDB4V0 GFA1/IO105PDB4V0

P2 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0

P3 IO68NDB4V0 IO101NDB4V0

P4 IO65PDB4V0 IO96PDB4V0

P5 IO65NDB4V0 IO96NDB4V0

P6 NC IO99NDB4V0

P7 NC IO97NDB4V0

P8 VCCIB4 VCCIB4

P9 VCC VCC

P10 GND GND

P11 VCC VCC

P12 GND GND

P13 VCC VCC

P14 GND GND

P15 VCCIB2 VCCIB2

P16 IO56NDB2V0 IO83NDB2V0

P17 NC IO78NDB2V0

P18 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0

P19 GDB1/IO53PDB2V0 GDB1/IO80PDB2V0

P20 IO51NDB2V0 IO73NDB2V0

FG484

Pin 
Number AFS600 Function AFS1500 Function
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