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Fusion Family of Mixed Signal FPGAs
The on-chip crystal and RC oscillators work in conjunction with the integrated phase-locked loops (PLLs)
to provide clocking support to the FPGA array and on-chip resources. In addition to supporting typical
RTC uses such as watchdog timer, the Fusion RTC can control the on-chip voltage regulator to power
down the device (FPGA fabric, flash memory block, and ADC), enabling a low power standby mode.

The Fusion family offers revolutionary features, never before available in an FPGA. The nonvolatile flash
technology gives the Fusion solution the advantage of being a highly secure, low power, single-chip
solution that is Instant On. Fusion is reprogrammable and offers time-to-market benefits at an ASIC-level
unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA
design flows and tools.

Flash Advantages

Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, high performance, and ease of use. Flash-
based Fusion devices are Instant On and do not need to be loaded from an external boot PROM. 
On-board security mechanisms prevent access to the programming information and enable remote
updates of the FPGA logic that are protected with high level security. Designers can perform remote in-
system reprogramming to support future design iterations and field upgrades, with confidence that
valuable IP is highly unlikely to be compromised or copied. ISP can be performed using the 
industry-standard AES algorithm with MAC data authentication on the device. The Fusion family device
architecture mitigates the need for ASIC migration at higher user volumes. This makes the Fusion family
a cost-effective ASIC replacement solution for applications in the consumer, networking and
communications, computing, and avionics markets.

Security

As the nonvolatile, flash-based Fusion family requires no boot PROM, there is no vulnerable external
bitstream. Fusion devices incorporate FlashLock, which provides a unique combination of
reprogrammability and design security without external overhead, advantages that only an FPGA with
nonvolatile flash programming can offer. 

Fusion devices utilize a 128-bit flash-based key lock and a separate AES key to provide the highest level
of protection in the FPGA industry for programmed IP and configuration data. The FlashROM data in
Fusion devices can also be encrypted prior to loading. Additionally, the flash memory blocks can be
programmed during runtime using the industry-leading AES-128 block cipher encryption standard (FIPS
Publication 192). The AES standard was adopted by the National Institute of Standards and Technology
(NIST) in 2000 and replaces the DES standard, which was adopted in 1977. Fusion devices have a 
built-in AES decryption engine and a flash-based AES key that make Fusion devices the most
comprehensive programmable logic device security solution available today. Fusion devices with 
AES-based security provide a high level of protection for remote field updates over public networks, such
as the Internet, and are designed to ensure that valuable IP remains out of the hands of system
overbuilders, system cloners, and IP thieves. As an additional security measure, the FPGA configuration
data of a programmed Fusion device cannot be read back, although secure design verification is
possible. During design, the user controls and defines both internal and external access to the flash
memory blocks.

Security, built into the FPGA fabric, is an inherent component of the Fusion family. The flash cells are
located beneath seven metal layers, and many device design and layout techniques have been used to
make invasive attacks extremely difficult. Fusion with FlashLock and AES security is unique in being
highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with 
industry-standard security, making remote ISP possible. A Fusion device provides the best available
security for programmable logic designs.

Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based Fusion FPGAs do
not require system configuration components such as EEPROMs or microcontrollers to load device
configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system
reliability.
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Fusion Family of Mixed Signal FPGAs
Clock Conditioning Circuits
In Fusion devices, the CCCs are used to implement frequency division, frequency multiplication, phase
shifting, and delay operations.

The CCCs are available in six chip locations—each of the four chip corners and the middle of the east
and west chip sides.

Each CCC can implement up to three independent global buffers (with or without programmable delay),
or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to three
global outputs. Unused global outputs of a PLL can be used to implement independent global buffers, up
to a maximum of three global outputs for a given CCC.

A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, and 
CLKC-GLC) of a given CCC.

A PLL macro uses the CLKA CCC input to drive its reference clock. It uses the GLA and, optionally, the
GLB and GLC global outputs to drive the global networks. A PLL macro can also drive the YB and YC
regular core outputs. The GLB (or GLC) global output cannot be reused if the YB (or YC) output is used
(Figure 2-19). Refer to the "PLL Macro" section on page 2-27 for more information.

Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

• 3 dedicated single-ended I/Os using a hardwired connection

• 2 dedicated differential I/Os using a hardwired connection

• The FPGA core

The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or
through an asynchronous interface. This asynchronous interface is dynamically accessible from inside
the Fusion device to permit changes of parameters (such as divide ratios) during device operation. To
increase the versatility and flexibility of the clock conditioning system, the CCC configuration is
determined either by the user during the design process, with configuration data being stored in flash
memory as part of the device programming procedure, or by writing data into a dedicated shift register
during normal device operation. This latter mode allows the user to dynamically reconfigure the CCC
without the need for core programming. The shift register is accessed through a simple serial interface.
Refer to the "UJTAG Applications in Microsemi’s Low-Power Flash Devices" chapter of the Fusion FPGA
Fabric User Guide and the "CCC and PLL Characteristics" section on page 2-28 for more information.
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Fusion Family of Mixed Signal FPGAs
Modes of Operation

Standby Mode
Standby mode allows periodic power-up and power-down of the FPGA fabric. In standby mode, the real-
time counter and crystal block are ON. The FPGA is not powered by disabling the 1.5 V voltage
regulator. The 1.5 V voltage regulator can be enabled when the preset count is matched. Refer to the
"Real-Time Counter (part of AB macro)" section for details. To enter standby mode, the RTC must be first
configured and enabled. Then VRPSM is shut off by deasserting the VRPU signal. The 1.5 V voltage
regulator is then disabled, and shuts off the 1.5 V output.

Sleep Mode
In sleep mode, the real-time counter and crystal blocks are OFF. The 1.5 V voltage regulator inside the
VRPSM can only be enabled by the PUB or TRST pin. Refer to the "Voltage Regulator and Power
System Monitor (VRPSM)" section on page 2-36 for details on power-up and power-down of the 1.5 V
voltage regulator.

Standby and Sleep Mode Circuit Implementation
For extra power savings, VJTAG and VPUMP should be at the same voltage as VCC, floated or ground,
during standby and sleep modes. Note that when VJTAG is not powered, the 1.5 V voltage regulator
cannot be enabled through TRST. 

VPUMP and VJTAG can be controlled through an external switch. Microsemi recommends ADG839,
ADG849, or ADG841 as possible switches. Figure 2-28 shows the implementation for controlling
VPUMP. The IN signal of the switch can be connected to PTBASE of the Fusion device. VJTAG can be
controlled in same manner.

Figure 2-28 • Implementation to Control VPUMP
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Device Architecture
SRAM Characteristics
Timing Waveforms      

Figure 2-50 • RAM Read for Flow-Through Output. Applicable to both RAM4K9 and RAM512x18.

Figure 2-51 • RAM Read for Pipelined Output. Applicable to both RAM4K9 and RAM512x18.
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Fusion Family of Mixed Signal FPGAs
FIFO Characteristics
Timing Waveforms      

Figure 2-57 • FIFO Read

Figure 2-58 • FIFO Write
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Device Architecture
GDON0 to GDON9 10 Input Control to power MOS – 1 per quad Analog Quad

TMSTB0 to TMSTB9 10 Input Temperature monitor strobe – 1 per
quad; active high

Analog Quad

DAVOUT0, DACOUT0, DATOUT0
to
DAVOUT9, DACOUT9, DATOUT9

30 Output Digital outputs – 3 per quad Analog Quad

DENAV0, DENAC0, DENAT0 to
DENAV9, DENAC9, DENAT9

30 Input Digital input enables – 3 per quad Analog Quad

AV0 1 Input Analog Quad 0 Analog Quad

AC0 1 Input Analog Quad

AG0 1 Output Analog Quad

AT0 1 Input Analog Quad

ATRETURN01 1 Input Temperature monitor return shared by
Analog Quads 0 and 1

Analog Quad

AV1 1 Input Analog Quad 1 Analog Quad

AC1 1 Input Analog Quad

AG1 1 Output Analog Quad

AT1 1 Input Analog Quad

AV2 1 Input Analog Quad 2 Analog Quad

AC2 1 Input Analog Quad

AG2 1 Output Analog Quad

AT2 1 Input Analog Quad

ATRETURN23 1 Input Temperature monitor return shared by
Analog Quads 2 and 3

Analog Quad

AV3 1 Input Analog Quad 3 Analog Quad

AC3 1 Input Analog Quad

AG3 1 Output Analog Quad

AT3 1 Input Analog Quad

AV4 1 Input Analog Quad 4 Analog Quad

AC4 1 Input Analog Quad

AG4 1 Output Analog Quad

AT4 1 Input Analog Quad

ATRETURN45 1 Input Temperature monitor return shared by
Analog Quads 4 and 5

Analog Quad

AV5 1 Input Analog Quad 5 Analog Quad

AC5 1 Input Analog Quad

AG5 1 Output Analog Quad

AT5 1 Input Analog Quad

AV6 1 Input Analog Quad 6 Analog Quad

AC6 1 Input Analog Quad

Table 2-36 • Analog Block Pin Description (continued)

Signal Name
Number 
of Bits Direction Function

Location of 
Details
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Fusion Family of Mixed Signal FPGAs
Temperature Monitor
The final pin in the Analog Quad is the Analog Temperature (AT) pin. The AT pin is used to implement an
accurate temperature monitor in conjunction with an external diode-connected bipolar transistor
(Figure 2-76). For improved temperature measurement accuracy, it is important to use the ATRTN pin for
the return path of the current sourced by the AT pin. Each ATRTN pin is shared between two adjacent
Analog Quads. Additionally, if not used for temperature monitoring, the AT pin can provide functionality
similar to that of the AV pad. However, in this mode only positive voltages can be applied to the AT pin,
and only two prescaler factors are available (16 V and 4 V ranges—refer to Table 2-57 on page 2-130). 

Figure 2-76 • Temperature Monitor Quad
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Device Architecture
Offset Error
Offset error indicates how well the actual transfer function matches the ideal transfer function at a single
point. For an ideal ADC, the first transition occurs at 0.5 LSB above zero. The offset voltage is measured
by applying an analog input such that the ADC outputs all zeroes and increases until the first transition
occurs (Figure 2-86).

Resolution
ADC resolution is the number of bits used to represent an analog input signal. To more accurately
replicate the analog signal, resolution needs to be increased. 

Sampling Rate
Sampling rate or sample frequency, specified in samples per second (sps), is the rate at which an ADC
acquires (samples) the analog input. 

SNR – Signal-to-Noise Ratio
SNR is the ratio of the amplitude of the desired signal to the amplitude of the noise signals at a given
point in time. For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR
(EQ 14) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual
error). The ideal, theoretical minimum ADC noise is caused by quantization error only and results directly
from the ADC’s resolution (N bits):

EQ 14

SINAD – Signal-to-Noise and Distortion
SINAD is the ratio of the rms amplitude to the mean value of the root-sum-square of the all other spectral
components, including harmonics, but excluding DC. SINAD is a good indication of the overall dynamic
performance of an ADC because it includes all components which make up noise and distortion. 

Total Harmonic Distortion
THD measures the distortion content of a signal, and is specified in decibels relative to the carrier (dBc).
THD is the ratio of the RMS sum of the selected harmonics of the input signal to the fundamental itself.
Only harmonics within the Nyquist limit are included in the measurement.

Figure 2-86 • Offset Error
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Fusion Family of Mixed Signal FPGAs
TUE – Total Unadjusted Error
TUE is a comprehensive specification that includes linearity errors, gain error, and offset error. It is the
worst-case deviation from the ideal device performance. TUE is a static specification (Figure 2-87).

ADC Operation 
Once the ADC has powered up and been released from reset, ADCRESET, the ADC will initiate a
calibration routine designed to provide optimal ADC performance. The Fusion ADC offers a robust
calibration scheme to reduce integrated offset and linearity errors. The offset and linearity errors of the
main capacitor array are compensated for with an 8-bit calibration capacitor array. The offset/linearity
error calibration is carried out in two ways. First, a power-up calibration is carried out when the ADC
comes out of reset. This is initiated by the CALIBRATE output of the Analog Block macro and is a fixed
number of ADC_CLK cycles (3,840 cycles), as shown in Figure 2-89 on page 2-111. In this mode, the
linearity and offset errors of the capacitors are calibrated. 

To further compensate for drift and temperature-dependent effects, every conversion is followed by post-
calibration of either the offset or a bit of the main capacitor array. The post-calibration ensures that, over
time and with temperature, the ADC remains consistent. 

After both calibration and the setting of the appropriate configurations, as explained above, the ADC is
ready for operation. Setting the ADCSTART signal high for one clock period will initiate the sample and
conversion of the analog signal on the channel as configured by CHNUMBER[4:0]. The status signals
SAMPLE and BUSY will show when the ADC is sampling and converting (Figure 2-91 on page 2-112).
Both SAMPLE and BUSY will initially go high. After the ADC has sampled and held the analog signal,
SAMPLE will go low. After the entire operation has completed and the analog signal is converted, BUSY
will go low and DATAVALID will go high. This indicates that the digital result is available on the
RESULT[11:0] pins.

DATAVALID will remain high until a subsequent ADCSTART is issued. The DATAVALID goes low on the
rising edge of SYSCLK as shown in Figure 2-90 on page 2-112. The RESULT signals will be kept
constant until the ADC finishes the subsequent sample. The next sampled RESULT will be available
when DATAVALID goes high again. It is ideal to read the RESULT when DATAVALID is '1'. The RESULT
is latched and remains unchanged until the next DATAVLAID rising edge.

Figure 2-87 • Total Unadjusted Error (TUE)
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Device Architecture
ADC Input Multiplexer
At the input to the Fusion ADC is a 32:1 multiplexer. Of the 32 input channels, up to 30 are user
definable. Two of these channels are hardwired internally. Channel 31 connects to an internal
temperature diode so the temperature of the Fusion device itself can be monitored. Channel 0 is wired to
the FPGA’s 1.5 V VCC supply, enabling the Fusion device to monitor its own power supply. Doing this
internally makes it unnecessary to use an analog I/O to support these functions. The balance of the MUX
inputs are connected to Analog Quads (see the "Analog Quad" section on page 2-80). Table 2-40 defines
which Analog Quad inputs are associated with which specific analog MUX channels. The number of
Analog Quads present is device-dependent; refer to the family list in the "Fusion Family" table on page I
of this datasheet for the number of quads per device. Regardless of the number of quads populated in a
device, the internal connections to both VCC and the internal temperature diode remain on Channels 0
and 31, respectively. To sample the internal temperature monitor, it must be strobed (similar to the AT
pads). The TMSTBINT pin on the Analog Block macro is the control for strobing the internal temperature
measurement diode.

To determine which channel is selected for conversion, there is a five-pin interface on the Analog Block,
CHNUMBER[4:0], defined in Table 2-39.

Table 2-40 shows the correlation between the analog MUX input channels and the analog input pins. 

Table 2-39 • Channel Selection

Channel Number CHNUMBER[4:0]

0 00000

1 00001

2 00010

3 00011

.

.

.

.

.

.

30 11110

31 11111

Table 2-40 • Analog MUX Channels

Analog MUX Channel Signal Analog Quad Number

0 Vcc_analog

1 AV0

Analog Quad 02 AC0

3 AT0

4 AV1

Analog Quad 15 AC1

6 AT1

7 AV2

Analog Quad 28 AC2

9 AT2

10 AV3

Analog Quad 311 AC3

12 AT3

13 AV4

Analog Quad 414 AC4

15 AT4
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Fusion Family of Mixed Signal FPGAs
Table 2-57 details the settings available to control the prescaler values of the AV, AC, and AT pins. Note
that the AT pin has a reduced number of available prescaler values.

Table 2-58 details the settings available to control the MUX within each of the AV, AC, and AT circuits.
This MUX determines whether the signal routed to the ADC is the direct analog input, prescaled signal,
or output of either the Current Monitor Block or the Temperature Monitor Block.

Table 2-59 details the settings available to control the Direct Analog Input switch for the AV, AC, and AT
pins.

Table 2-60 details the settings available to control the polarity of the signals coming to the AV, AC, and AT
pins. Note that the only valid setting for the AT pin is logic 0 to support positive voltages.

Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines 
Bx[2:0]

Scaling 
Factor, Pad to 

ADC Input 

LSB for an 
8-Bit 

Conversion1 
(mV)

LSB for a 
10-Bit 

Conversion1 
(mV)

LSB for a 
12-Bit 

Conversion1 
(mV)

Full-Scale 
Voltage in 

10-Bit 
Mode2 Range Name

000 3 0.15625 64 16 4 16.368 V 16 V 

001 0.3125 32 8 2 8.184 V 8 V 

010 3 0.625 16 4 1 4.092 V 4 V 

011 1.25 8 2 0.5 2.046 V 2 V 

100 2.5 4 1 0.25 1.023 V 1 V 

101 5.0 2 0.5 0.125 0.5115 V 0.5 V 

110 10.0 1 0.25 0.0625 0.25575 V 0.25 V 

111 20.0 0.5 0.125 0.03125 0.127875 V 0.125 V 

Notes:

1. LSB voltage equivalences assume VAREF = 2.56 V.
2. Full Scale voltage for n-bit mode: ((2^n) - 1) x (LSB for a n-bit Conversion)

3. These are the only valid ranges for the Temperature Monitor Block Prescaler.

Table 2-58 • Analog Multiplexer Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[4] Control Lines Bx[3] ADC Connected To 

0 0 Prescaler 

0 1 Direct input 

1 0 Current amplifier temperature monitor 

1 1 Not valid 

Table 2-59 • Direct Analog Input Switch Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[5] Direct Input Switch 

0 Off 

1 On 

Table 2-60 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)*

Control Lines Bx[6] Input Signal Polarity 

0 Positive 

1 Negative 

Note: *The B3[6] signal for the AT pad should be kept at logic 0 to accept only positive voltages.
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User I/Os

Introduction
Fusion devices feature a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V,
and 3.3 V) through a bank-selectable voltage. Table 2-68, Table 2-69, Table 2-70, and Table 2-71 on
page 2-135 show the voltages and the compatible I/O standards. I/Os provide programmable slew rates,
drive strengths, weak pull-up, and weak pull-down circuits. 3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant.
See the "5 V Input Tolerance" section on page 2-144 for possible implementations of 5 V tolerance. 

All I/Os are in a known state during power-up, and any power-up sequence is allowed without current
impact. Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial
and Industrial)" section on page 3-5 for more information. In low power standby or sleep mode (VCC is
OFF, VCC33A is ON, VCCI is ON) or when the resource is not used, digital inputs are tristated, digital
outputs are tristated, and digital bibufs (input/output) are tristated.

I/O Tile

The Fusion I/O tile provides a flexible, programmable structure for implementing a large number of I/O
standards. In addition, the registers available in the I/O tile in selected I/O banks can be used to support
high-performance register inputs and outputs, with register enable if desired (Figure 2-99 on
page 2-133). The registers can also be used to support the JESD-79C DDR standard within the I/O
structure (see the "Double Data Rate (DDR) Support" section on page 2-139 for more information).

As depicted in Figure 2-100 on page 2-138, all I/O registers share one CLR port. The output register and
output enable register share one CLK port. Refer to the "I/O Registers" section on page 2-138 for more
information.

I/O Banks and I/O Standards Compatibility
The digital I/Os are grouped into I/O voltage banks. There are three digital I/O banks on the AFS090 and
AFS250 devices and four digital I/O banks on the AFS600 and AFS1500 devices. Figure 2-113 on
page 2-158 and Figure 2-114 on page 2-159 show the bank configuration by device. The north side of
the I/O in the AFS600 and AFS1500 devices comprises two banks of Pro I/Os. The Pro I/Os support a
wide number of voltage-referenced I/O standards in addition to the multitude of single-ended and
differential I/O standards common throughout all Microsemi digital I/Os. Each I/O voltage bank has
dedicated I/O supply and ground voltages (VCCI/GNDQ for input buffers and VCCI/GND for output
buffers). Because of these dedicated supplies, only I/Os with compatible standards can be assigned to
the same I/O voltage bank. Table 2-69 and Table 2-70 on page 2-134 show the required voltage
compatibility values for each of these voltages.

For more information about I/O and global assignments to I/O banks, refer to the specific pin table of the
device in the "Package Pin Assignments" on page 4-1 and the "User I/O Naming Convention" section on
page 2-158.

Each Pro I/O bank is divided into minibanks. Any user I/O in a VREF minibank (a minibank is the region
of scope of a VREF pin) can be configured as a VREF pin (Figure 2-99 on page 2-133). Only one VREF
pin is needed to control the entire VREF minibank. The location and scope of the VREF minibanks can
be determined by the I/O name. For details, see the "User I/O Naming Convention" section on
page 2-158.

Table 2-70 on page 2-134 shows the I/O standards supported by Fusion devices and the corresponding
voltage levels.

I/O standards are compatible if the following are true:

• Their VCCI values are identical.

• If both of the standards need a VREF, their VREF values must be identical (Pro I/O only).
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Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-90 • Summary of AC Measuring Points
Applicable to All I/O Bank Types

Standard
Input Reference Voltage 

(VREF_TYP)
Board Termination Voltage 

(VTT_REF)
Measuring Trip Point 

(Vtrip)

3.3 V LVTTL / 3.3 V LVCMOS – – 1.4 V

2.5 V LVCMOS – – 1.2 V

1.8 V LVCMOS – –  0.90 V

1.5 V LVCMOS – –  0.75 V

3.3 V PCI – – 0.285 * VCCI (RR)

0.615 * VCCI (FF))

3.3 V PCI-X – – 0.285 * VCCI (RR)

0.615 * VCCI (FF)

3.3 V GTL 0.8 V 1.2 V VREF

2.5 V GTL 0.8 V 1.2 V VREF

3.3 V GTL+ 1.0 V 1.5 V VREF

2.5 V GTL+ 1.0 V 1.5 V VREF

HSTL (I) 0.75 V 0.75 V VREF

HSTL (II) 0.75 V 0.75 V VREF

SSTL2 (I) 1.25 V 1.25 V VREF

SSTL2 (II) 1.25 V 1.25 V VREF

SSTL3 (I) 1.5 V 1.485 V VREF

SSTL3 (II) 1.5 V 1.485 V VREF

LVDS – – Cross point

LVPECL – – Cross point

Table 2-91 • I/O AC Parameter Definitions

Parameter Definition

tDP Data to Pad delay through the Output Buffer

tPY Pad to Data delay through the Input Buffer with Schmitt trigger disabled

tDOUT Data to Output Buffer delay through the I/O interface

tEOUT Enable to Output Buffer Tristate Control delay through the I/O interface

tDIN Input Buffer to Data delay through the I/O interface

tPYS Pad to Data delay through the Input Buffer with Schmitt trigger enabled

tHZ Enable to Pad delay through the Output Buffer—High to Z 

tZH Enable to Pad delay through the Output Buffer—Z to High

tLZ Enable to Pad delay through the Output Buffer—Low to Z

tZL Enable to Pad delay through the Output Buffer—Z to Low

tZHS Enable to Pad delay through the Output Buffer with delayed enable—Z to High

tZLS Enable to Pad delay through the Output Buffer with delayed enable—Z to Low
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Timing Characteristics  

Table 2-136 • 3.3 V PCI/PCI-X
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 3.0 V
Applicable to Pro I/Os

Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 2.81 0.04 1.05 1.67 0.43 2.86 2.00 3.28 3.61 5.09 4.23 ns

 –1 0.56 2.39 0.04 0.89 1.42 0.36 2.43 1.70 2.79 3.07 4.33 3.60 ns

 –2 0.49 2.09 0.03 0.78 1.25 0.32 2.13 1.49 2.45 2.70 3.80 3.16 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.

Table 2-137 • 3.3 V PCI/PCI-X
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 3.0 V
Applicable to Advanced I/Os

Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 2.68 0.04 0.86 0.43 2.73 1.95 3.21 3.58 4.97 4.19 0.66 ns

 –1 0.56 2.28 0.04 0.73 0.36 2.32 1.66 2.73 3.05 4.22 3.56 0.56 ns

 –2 0.49 2.00 0.03 0.65 0.32 2.04 1.46 2.40 2.68 3.71 3.13 0.49 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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HSTL Class II
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).
Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output
buffer.

Timing Characteristics

Table 2-153 • Minimum and Maximum DC Input and Output Levels

HSTL Class II VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive Strength
Min.

V
Max.

V
Min.

V
Max.

V
Max.

V
Min.

V mA mA
Max.
mA3

Max.
mA3 µA4 µA4

15 mA3 –0.3 VREF – 0.1 VREF + 0.1 3.6 0.4 VCCI – 0.4 15 15 55 66 10 10

Note:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Output drive strength is below JEDEC specification.

Figure 2-129 • AC Loading

Table 2-154 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)

VREF – 0.1 VREF + 0.1 0.75 0.75 0.75 20

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point

20 pF

25

HSTL
Class II

VTT

Table 2-155 • HSTL Class II
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 1.4 V, VREF = 0.75 V

Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 3.02 0.04 2.12 0.43 3.08 2.71 5.32 4.95 ns

 –1 0.56 2.57 0.04 1.81 0.36 2.62 2.31 4.52 4.21 ns

 –2 0.49 2.26 0.03 1.59 0.32 2.30 2.03 3.97 3.70 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
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Methodology
Total Power Consumption—PTOTAL

Operating Mode, Standby Mode, and Sleep Mode

PTOTAL = PSTAT + PDYN

PSTAT is the total static power consumption.

PDYN is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

Operating Mode

PSTAT = PDC1 + (NNVM-BLOCKS * PDC4) + PDC5+ (NQUADS * PDC6) + (NINPUTS * PDC7) + 
(NOUTPUTS * PDC8) + (NPLLS * PDC9)

NNVM-BLOCKS is the number of NVM blocks available in the device.

NQUADS is the number of Analog Quads used in the design.

NINPUTS is the number of I/O input buffers used in the design.

NOUTPUTS is the number of I/O output buffers used in the design.

NPLLS is the number of PLLs available in the device.

Standby Mode

PSTAT = PDC2

Sleep Mode

PSTAT = PDC3

Total Dynamic Power Consumption—PDYN

Operating Mode

PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL + PNVM+ 
PXTL-OSC + PRC-OSC + PAB

Standby Mode

PDYN = PXTL-OSC

Sleep Mode

PDYN = 0 W

Global Clock Dynamic Contribution—PCLOCK

Operating Mode

PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK

NSPINE is the number of global spines used in the user design—guidelines are provided in the
"Spine Architecture" section of the Global Resources chapter in the Fusion and Extended
Temperature Fusion FPGA Fabric User's Guide.

NROW is the number of VersaTile rows used in the design—guidelines are provided in the "Spine
Architecture" section of the Global Resources chapter in the Fusion and Extended Temperature
Fusion FPGA Fabric User's Guide.

FCLK is the global clock signal frequency.

NS-CELL is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Sleep Mode

PCLOCK = 0 W

Sequential Cells Dynamic Contribution—PS-CELL

Operating Mode
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Package Pin Assignments
V3 VCCIB4 VCCIB4

V4 GEA1/IO61PDB4V0 GEA1/IO88PDB4V0

V5 GEA0/IO61NDB4V0 GEA0/IO88NDB4V0

V6 GND GND

V7 VCC33PMP VCC33PMP

V8 NC NC

V9 VCC33A VCC33A

V10 AG4 AG4

V11 AT4 AT4

V12 ATRTN2 ATRTN2

V13 AT5 AT5

V14 VCC33A VCC33A

V15 NC NC

V16 VCC33A VCC33A

V17 GND GND

V18 TMS TMS

V19 VJTAG VJTAG

V20 VCCIB2 VCCIB2

V21 TRST TRST

V22 TDO TDO

W1 NC IO93PDB4V0

W2 GND GND

W3 NC IO93NDB4V0

W4 GEB2/IO59PDB4V0 GEB2/IO86PDB4V0

W5 IO59NDB4V0 IO86NDB4V0

W6 AV0 AV0

W7 GNDA GNDA

W8 AV1 AV1

W9 AV2 AV2

W10 GNDA GNDA

W11 AV3 AV3

W12 AV6 AV6

W13 GNDA GNDA

W14 AV7 AV7

W15 AV8 AV8

FG484

Pin 
Number AFS600 Function AFS1500 Function

W16 GNDA GNDA

W17 AV9 AV9

W18 VCCIB2 VCCIB2

W19 NC IO68PPB2V0

W20 TCK TCK

W21 GND GND

W22 NC IO76PPB2V0

Y1 GEC2/IO60PDB4V0 GEC2/IO87PDB4V0

Y2 IO60NDB4V0 IO87NDB4V0

Y3 GEA2/IO58PDB4V0 GEA2/IO85PDB4V0

Y4 IO58NDB4V0 IO85NDB4V0

Y5 NCAP NCAP

Y6 AC0 AC0

Y7 VCC33A VCC33A

Y8 AC1 AC1

Y9 AC2 AC2

Y10 VCC33A VCC33A

Y11 AC3 AC3

Y12 AC6 AC6

Y13 VCC33A VCC33A

Y14 AC7 AC7

Y15 AC8 AC8

Y16 VCC33A VCC33A

Y17 AC9 AC9

Y18 ADCGNDREF ADCGNDREF

Y19 PTBASE PTBASE

Y20 GNDNVM GNDNVM

Y21 VCCNVM VCCNVM

Y22 VPUMP VPUMP

FG484

Pin 
Number AFS600 Function AFS1500 Function
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W25 NC

W26 GND

Y1 NC

Y2 NC

Y3 GEB1/IO89PDB4V0

Y4 GEB0/IO89NDB4V0

Y5 VCCIB4

Y6 GEA1/IO88PDB4V0

Y7 GEA0/IO88NDB4V0

Y8 GND

Y9 VCC33PMP

Y10 NC

Y11 VCC33A

Y12 AG4

Y13 AT4

Y14 ATRTN2

Y15 AT5

Y16 VCC33A

Y17 NC

Y18 VCC33A

Y19 GND

Y20 TMS

Y21 VJTAG

Y22 VCCIB2

Y23 TRST

Y24 TDO

Y25 NC

Y26 NC

FG676

Pin Number AFS1500 Function
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Datasheet Information
Advance v1.0
(January 2008)

All Timing Characteristics tables were updated. For the Differential I/O Standards,
the Standard I/O support tables are new.

N/A

Table 2-3 • Array Coordinates was updated to change the max x and y values 2-9

Table 2-12 • Fusion CCC/PLL Specification was updated. 2-31

A note was added to Table 2-16 · RTC ACM Memory Map. 2-37

A reference to the Peripheral’s User’s Guide was added to the "Voltage Regulator
Power Supply Monitor (VRPSM)" section.

2-42

In Table 2-25 • Flash Memory Block Timing, the commercial conditions were
updated.

2-55

In Table 2-26 • FlashROM Access Time, the commercial conditions were missing
and have been added below the title of the table.

2-58

In Table 2-36 • Analog Block Pin Description, the function description was updated
for the ADCRESET.

2-82

In the "Voltage Monitor" section, the following sentence originally had ± 10% and it
was changed to +10%.

The Analog Quad inputs are tolerant up to 12 V + 10%. 

In addition, this statement was deleted from the datasheet:

Each I/O will draw power when connected to power (3 mA at 3 V).

2-86

The "Terminology" section is new. 2-88

The "Current Monitor" section was significantly updated. Figure 2-72 • Timing
Diagram for Current Monitor Strobe to Figure 2-74 • Negative Current Monitor and
Table 2-37 • Recommended Resistor for Different Current Range Measurement are
new.

2-90

The "ADC Description" section was updated to add the "Terminology" section. 2-93

In the "Gate Driver" section, 25 mA was changed to 20 mA and 1.5 MHz was
changed to 1.3 MHz. In addition, the following sentence was deleted:

The maximum AG pad switching frequency is 1.25 MHz.

2-94

The "Temperature Monitor" section was updated to rewrite most of the text and add
Figure 2-78, Figure 2-79, and Table 2-38 • Temperature Data Format. 

2-96

In Table 2-38 • Temperature Data Format, the temperature K column was changed
for 85°C from 538 to 358.

2-98

In Table 2-45 • ADC Interface Timing, "Typical-Case" was changed to "Worst-Case." 2-110

The "ADC Interface Timing" section is new. 2-110

Table 2-46 • Analog Channel Specifications was updated. 2-118

The "VCC15A Analog Power Supply (1.5 V)" section was updated. 2-224

The "VCCPLA/B PLL Supply Voltage" section is new. 2-225

In "VCCNVM Flash Memory Block Power Supply (1.5 V)" section, supply was
changed to supply input.

2-224

The "VCCPLA/B PLL Supply Voltage" pin description was updated to include the
following statement:

Actel recommends tying VCCPLX to VCC and using proper filtering circuits to
decouple VCC noise from PLL.

2-225

The "VCOMPLA/B Ground for West and East PLL" section was updated. 2-225
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