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Fusion Device Family Overview
Instant On
Flash-based Fusion devices are Level 0 Instant On. Instant On Fusion devices greatly simplify total
system design and reduce total system cost by eliminating the need for CPLDs. The Fusion Instant On
clocking (PLLs) replaces off-chip clocking resources. The Fusion mix of Instant On clocking and analog
resources makes these devices an excellent choice for both system supervisor and system management
functions. Instant On from a single 3.3 V source enables Fusion devices to initiate, control, and monitor
multiple voltage supplies while also providing system clocks. In addition, glitches and brownouts in
system power will not corrupt the Fusion device flash configuration. Unlike SRAM-based FPGAs, the
device will not have to be reloaded when system power is restored. This enables reduction or complete
removal of expensive voltage monitor and brownout detection devices from the PCB design. 
Flash-based Fusion devices simplify total system design and reduce cost and design risk, while
increasing system reliability. 

Firm Errors
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. Another
source of radiation-induced firm errors is alpha particles. For an alpha to cause a soft or firm error, its
source must be in very close proximity to the affected circuit. The alpha source must be in the package
molding compound or in the die itself. While low-alpha molding compounds are being used increasingly,
this helps reduce but does not entirely eliminate alpha-induced firm errors.

Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not occur in Fusion flash-based FPGAs. Once it is programmed,
the flash cell configuration element of Fusion FPGAs cannot be altered by high-energy neutrons and is
therefore immune to errors from them. 

Recoverable (or soft) errors occur in the user data SRAMs of all FPGA devices. These can easily be
mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power
Flash-based Fusion devices exhibit power characteristics similar to those of an ASIC, making them an
ideal choice for power-sensitive applications. With Fusion devices, there is no power-on current surge
and no high current transition, both of which occur on many FPGAs.

Fusion devices also have low dynamic power consumption and support both low power standby mode
and very low power sleep mode, offering further power savings.

Advanced Flash Technology
The Fusion family offers many benefits, including nonvolatility and reprogrammability through an
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design
techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows very high logic utilization (much
higher than competing SRAM technologies) without compromising device routability or performance.
Logic functions within the device are interconnected through a four-level routing hierarchy.
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Fusion Family of Mixed Signal FPGAs
Advanced Architecture
The proprietary Fusion architecture provides granularity comparable to standard-cell ASICs. The Fusion
device consists of several distinct and programmable architectural features, including the following
(Figure 1-1 on page 1-5):

• Embedded memories

– Flash memory blocks

– FlashROM 

– SRAM and FIFO

• Clocking resources

– PLL and CCC

– RC oscillator

– Crystal oscillator

– No-Glitch MUX (NGMUX)

• Digital I/Os with advanced I/O standards

• FPGA VersaTiles

• Analog components 

– ADC

– Analog I/Os supporting voltage, current, and temperature monitoring 

– 1.5 V on-board voltage regulator 

– Real-time counter 

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
lookup table (LUT) equivalent or a D-flip-flop or latch (with or without enable) by programming the
appropriate flash switch interconnections. This versatility allows efficient use of the FPGA fabric. The
VersaTile capability is unique to the Microsemi families of flash-based FPGAs. VersaTiles and larger
functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core
utilization is possible for virtually any design. 

In addition, extensive on-chip programming circuitry allows for rapid (3.3 V) single-voltage programming
of Fusion devices via an IEEE 1532 JTAG interface.

Unprecedented Integration

Integrated Analog Blocks and Analog I/Os
Fusion devices offer robust and flexible analog mixed signal capability in addition to the high-
performance flash FPGA fabric and flash memory block. The many built-in analog peripherals include a
configurable 32:1 input analog MUX, up to 10 independent MOSFET gate driver outputs, and a
configurable ADC. The ADC supports 8-, 10-, and 12-bit modes of operation with a cumulative sample
rate up to 600 k samples per second (Ksps), differential nonlinearity (DNL) < 1.0 LSB, and Total
Unadjusted Error (TUE) of 0.72 LSB in 10-bit mode. The TUE is used for characterization of the
conversion error and includes errors from all sources, such as offset and linearity. Internal bandgap
circuitry offers 1% voltage reference accuracy with the flexibility of utilizing an external reference voltage.
The ADC channel sampling sequence and sampling rate are programmable and implemented in the
FPGA logic using Designer and Libero SoC software tool support.

Two channels of the 32-channel ADCMUX are dedicated. Channel 0 is connected internally to VCC and
can be used to monitor core power supply. Channel 31 is connected to an internal temperature diode
which can be used to monitor device temperature. The 30 remaining channels can be connected to
external analog signals. The exact number of I/Os available for external connection signals is device-
dependent (refer to the "Fusion Family" table on page I for details). 
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2 – Device Architecture

Fusion Stack Architecture
To manage the unprecedented level of integration in Fusion devices, Microsemi developed the Fusion
technology stack (Figure 2-1). This layered model offers a flexible design environment, enabling design
at very high and very low levels of abstraction. Fusion peripherals include hard analog IP and hard and
soft digital IP. Peripherals communicate across the FPGA fabric via a layer of soft gates—the Fusion
backbone. Much more than a common bus interface, this Fusion backbone integrates a micro-sequencer
within the FPGA fabric and configures the individual peripherals and supports low-level processing of
peripheral data. Fusion applets are application building blocks that can control and respond to
peripherals and other system signals. Applets can be rapidly combined to create large applications. The
technology is scalable across devices, families, design types, and user expertise, and supports a 
well-defined interface for external IP and tool integration.

At the lowest level, Level 0, are Fusion peripherals. These are configurable functional blocks that can be
hardwired structures such as a PLL or analog input channel, or soft (FPGA gate) blocks such as a UART
or two-wire serial interface. The Fusion peripherals are configurable and support a standard interface to
facilitate communication and implementation.

Connecting and controlling access to the peripherals is the Fusion backbone, Level 1. The backbone is a
soft-gate structure, scalable to any number of peripherals. The backbone is a bus and much more; it
manages peripheral configuration to ensure proper operation. Leveraging the common peripheral
interface and a low-level state machine, the backbone efficiently offloads peripheral management from
the system design. The backbone can set and clear flags based upon peripheral behavior and can define
performance criteria. The flexibility of the stack enables a designer to configure the silicon, directly
bypassing the backbone if that level of control is desired.

One step up from the backbone is the Fusion applet, Level 2. The applet is an application building block
that implements a specific function in FPGA gates. It can react to stimuli and board-level events coming
through the backbone or from other sources, and responds to these stimuli by accessing and
manipulating peripherals via the backbone or initiating some other action. An applet controls or responds
to the peripheral(s). Applets can be easily imported or exported from the design environment. The applet
structure is open and well-defined, enabling users to import applets from Microsemi, system developers,
third parties, and user groups.

Note: Levels 1, 2, and 3 are implemented in FPGA logic gates.

Figure 2-1 • Fusion Architecture Stack
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Fusion Family of Mixed Signal FPGAs
Clock Aggregation
Clock aggregation allows for multi-spine clock domains. A MUX tree provides the necessary flexibility to
allow long lines or I/Os to access domains of one, two, or four global spines. Signal access to the clock
aggregation system is achieved through long-line resources in the central rib, and also through local
resources in the north and south ribs, allowing I/Os to feed directly into the clock system. As Figure 2-14
indicates, this access system is contiguous.

There is no break in the middle of the chip for north and south I/O VersaNet access. This is different from
the quadrant clocks, located in these ribs, which only reach the middle of the rib. Refer to the Using
Global Resources in Actel Fusion Devices application note.

Figure 2-14 • Clock Aggregation Tree Architecture
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Fusion Family of Mixed Signal FPGAs
Flash Memory Block Diagram
A simplified diagram of the flash memory block is shown in Figure 2-33.

The logic consists of the following sub-blocks:

• Flash Array

Contains all stored data. The flash array contains 64 sectors, and each sector contains 33 pages
of data.

• Page Buffer

A page-wide volatile register. A page contains 8 blocks of data and an AUX block.

• Block Buffer

Contains the contents of the last block accessed. A block contains 128 data bits.

• ECC Logic

The FB stores error correction information with each block to perform single-bit error correction and
double-bit error detection on all data blocks.

Figure 2-33 • Flash Memory Block Diagram
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Fusion Family of Mixed Signal FPGAs
RAM512X18 Description

Figure 2-49 • RAM512X18
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Device Architecture
Table 2-32 • RAM512X18 
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tAS Address setup time 0.25 0.28 0.33 ns 

tAH Address hold time 0.00 0.00 0.00 ns 

tENS REN, WEN setup time 0.09 0.10 0.12 ns 

tENH REN, WEN hold time 0.06 0.07 0.08 ns 

tDS Input data (WD) setup time 0.18 0.21 0.25 ns 

tDH Input data (WD) hold time 0.00 0.00 0.00 ns 

tCKQ1 Clock High to new data valid on RD (output retained) 2.16 2.46 2.89 ns 

tCKQ2 Clock High to new data valid on RD (pipelined) 0.90 1.02 1.20 ns 

tC2CRWH
1 Address collision clk-to-clk delay for reliable read access after write on

same address—Applicable to Opening Edge
0.50 0.43 0.38 ns 

tC2CWRH
1 Address collision clk-to-clk delay for reliable write access after read on

same address—Applicable to Opening Edge
0.59 0.50 0.44 ns 

tRSTBQ
1 

RESET Low to data out Low on RD (flow-through) 0.92 1.05 1.23 ns 

RESET Low to data out Low on RD (pipelined) 0.92 1.05 1.23 ns 

tREMRSTB RESET removal 0.29 0.33 0.38 ns 

tRECRSTB RESET recovery 1.50 1.71 2.01 ns 

tMPWRSTB RESET minimum pulse width 0.21 0.24 0.29 ns 

tCYC Clock cycle time 3.23 3.68 4.32 ns 

FMAX Maximum frequency 310 272 231 MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-
Based cSoCs and FPGAs.

2. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.
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Device Architecture
The AEMPTY flag is asserted when the difference between the write address and the read address is
less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY
flag will be asserted when a read causes the difference between the write address and the read address
to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be
configured with different read and write widths; in this case, the AFVAL setting is based on the number of
write data entries and the AEVAL setting is based on the number of read data entries. For aspect ratios of
512×9 and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The number
of words must be multiplied by 8 and 16, instead of 9 and 18. The SmartGen tool automatically uses the
proper values. To avoid halfwords being written or read, which could happen if different read and write
aspect ratios are specified, the FIFO will assert FULL or EMPTY as soon as at least a minimum of one
word cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read,
the FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not
completely empty, because in this case, a complete word cannot be read. The same is applicable in the
full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The
FULL flag will remain asserted because a complete word cannot be written at this point.
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Fusion Family of Mixed Signal FPGAs
The diode’s voltage is measured at each current level and the temperature is calculated based on EQ 7.

EQ 7

where

ITMSLO is the current when the Temperature Strobe is Low, typically 100 µA

ITMSHI is the current when the Temperature Strobe is High, typically 10 µA

VTMSLO is diode voltage while Temperature Strobe is Low

VTMSHI is diode voltage while Temperature Strobe is High

n is the non-ideality factor of the diode-connected transistor. It is typically 1.004 for the Microsemi-
recommended transistor type 2N3904. 

K = 1.3806 x 10-23 J/K is the Boltzman constant

Q = 1.602 x 10-19 C is the charge of a proton

When ITMSLO / ITMSHI = 10, the equation can be simplified as shown in EQ 8.

EQ 8

In the Fusion TMB, the ideality factor n for 2N3904 is 1.004 and V is amplified 12.5 times by an internal
amplifier; hence the voltage before entering the ADC is as given in EQ 9.

EQ 9

This means the temperature to voltage relationship is 2.5 mV per degree Kelvin. The unique design of
Fusion has made the Temperature Monitor System simple for the user. When the 10-bit mode ADC is
used, each LSB represents 1 degree Kelvin, as shown in EQ 10. That is, e. 25°C is equal to 293°K and is
represented by decimal 293 counts from the ADC.

EQ 10

If 8-bit mode is used for the ADC resolution, each LSB represents 4 degrees Kelvin; however, the
resolution remains as 1 degree Kelvin per LSB, even for 12-bit mode, due to the Temperature Monitor
design. An example of the temperature data format for 10-bit mode is shown in Table 2-38.

VTMSLO VTMSHI– n
kT
q
------- ln

ITMSLO

ITMSHI
----------------- 

 =

V VTMSLO VTMSHI– 1.986 10
4– nT= =

VADC V 12.5 2.5 mV K T = =

1K 2.5 mV
2

10

2.56 V
----------------- 1 LSB= =

Table 2-38 • Temperature Data Format

Temperature Temperature (K) Digital Output (ADC 10-bit mode)

–40°C 233 00 1110 1001

–20°C 253 00 1111 1101

0°C 273 01 0001 0001

1°C 274 01 0001 0010

10 °C 283 01 0001 1011

25°C 298 01 0010 1010

50 °C 323 01 0100 0011

85 °C 358 01 0110 0110
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Fusion Family of Mixed Signal FPGAs
Analog-to-Digital Converter Block
At the heart of the Fusion analog system is a programmable Successive Approximation Register (SAR)
ADC. The ADC can support 8-, 10-, or 12-bit modes of operation. In 12-bit mode, the ADC can resolve
500 ksps. All results are MSB-justified in the ADC. The input to the ADC is a large 32:1 analog input
multiplexer. A simplified block diagram of the Analog Quads, analog input multiplexer, and ADC is shown
in Figure 2-79. The ADC offers multiple self-calibrating modes to ensure consistent high performance
both at power-up and during runtime. 

Figure 2-79 • ADC Block Diagram
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Fusion Family of Mixed Signal FPGAs
TUE – Total Unadjusted Error
TUE is a comprehensive specification that includes linearity errors, gain error, and offset error. It is the
worst-case deviation from the ideal device performance. TUE is a static specification (Figure 2-87).

ADC Operation 
Once the ADC has powered up and been released from reset, ADCRESET, the ADC will initiate a
calibration routine designed to provide optimal ADC performance. The Fusion ADC offers a robust
calibration scheme to reduce integrated offset and linearity errors. The offset and linearity errors of the
main capacitor array are compensated for with an 8-bit calibration capacitor array. The offset/linearity
error calibration is carried out in two ways. First, a power-up calibration is carried out when the ADC
comes out of reset. This is initiated by the CALIBRATE output of the Analog Block macro and is a fixed
number of ADC_CLK cycles (3,840 cycles), as shown in Figure 2-89 on page 2-111. In this mode, the
linearity and offset errors of the capacitors are calibrated. 

To further compensate for drift and temperature-dependent effects, every conversion is followed by post-
calibration of either the offset or a bit of the main capacitor array. The post-calibration ensures that, over
time and with temperature, the ADC remains consistent. 

After both calibration and the setting of the appropriate configurations, as explained above, the ADC is
ready for operation. Setting the ADCSTART signal high for one clock period will initiate the sample and
conversion of the analog signal on the channel as configured by CHNUMBER[4:0]. The status signals
SAMPLE and BUSY will show when the ADC is sampling and converting (Figure 2-91 on page 2-112).
Both SAMPLE and BUSY will initially go high. After the ADC has sampled and held the analog signal,
SAMPLE will go low. After the entire operation has completed and the analog signal is converted, BUSY
will go low and DATAVALID will go high. This indicates that the digital result is available on the
RESULT[11:0] pins.

DATAVALID will remain high until a subsequent ADCSTART is issued. The DATAVALID goes low on the
rising edge of SYSCLK as shown in Figure 2-90 on page 2-112. The RESULT signals will be kept
constant until the ADC finishes the subsequent sample. The next sampled RESULT will be available
when DATAVALID goes high again. It is ideal to read the RESULT when DATAVALID is '1'. The RESULT
is latched and remains unchanged until the next DATAVLAID rising edge.

Figure 2-87 • Total Unadjusted Error (TUE)
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Device Architecture
Selectable Skew between Output Buffer Enable/Disable Time
The configurable skew block is used to delay the output buffer assertion (enable) without affecting
deassertion (disable) time.

Figure 2-107 • Block Diagram of Output Enable Path

Figure 2-108 • Timing Diagram (option1: bypasses skew circuit)

Figure 2-109 • Timing Diagram (option 2: enables skew circuit)
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Device Architecture
Table 2-88 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and 
Industrial Conditions
Applicable to Standard I/Os

I/O Standard
Drive 

Strength
Slew 
Rate

VIL VIH VOL VOH IOL IOH

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

3.3 V LVTTL /
3.3 V LVCMOS 

8 mA  High   –0.3   0.8   2   3.6   0.4   2.4  8 8

 2.5 V LVCMOS 8 mA  High   –0.3   0.7   1.7   3.6   0.7   1.7  8 8

 1.8 V LVCMOS 4 mA  High   –0.3   0.35 * VCCI  0.65 * VCCI  3.6   0.45   VCCI – 0.45  4 4

 1.5 V LVCMOS 2 mA  High   –0.3   0.35 * VCCI  0.65 * VCCI  3.6   0.25 * VCCI  0.75 * VCCI 2 2

Note: Currents are measured at 85°C junction temperature.

Table 2-89 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial 
Conditions
Applicable to All I/O Bank Types

DC I/O Standards

Commercial1 Industrial2

IIL3 IIH4 IIL3 IIH4

µA µA µA µA

3.3 V LVTTL / 3.3 V LVCMOS  10  10  15  15 

 2.5 V LVCMOS  10  10  15  15 

 1.8 V LVCMOS  10  10  15  15 

 1.5 V LVCMOS  10  10  15  15 

 3.3 V PCI  10  10  15  15 

 3.3 V PCI-X  10  10  15  15 

 3.3 V GTL  10  10  15  15 

 2.5 V GTL  10  10  15  15 

 3.3 V GTL+  10  10  15  15 

 2.5 V GTL+  10  10  15  15 

 HSTL (I)  10  10  15  15 

 HSTL (II)  10  10  15  15 

 SSTL2 (I)  10  10  15  15 

 SSTL2 (II)  10  10  15  15 

 SSTL3 (I)  10  10  15  15 

 SSTL3 (II)  10  10  15  15 

Notes:

1. Commercial range (0°C < TJ < 85°C)
2. Industrial range (–40°C < TJ < 100°C)

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
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Fusion Family of Mixed Signal FPGAs
SSTL2 Class II
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class
II. This provides a differential amplifier input buffer and a push-pull output buffer.   

Timing Characteristics

Table 2-159 • Minimum and Maximum DC Input and Output Levels

SSTL2 Class II VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive Strength
Min.

V
Max.

V
Min.

V
Max.

V
Max.

V
Min.

V mA mA
Max.
mA3

Max.
mA3 µA4 µA4

18 mA –0.3 VREF – 0.2 VREF + 0.2 3.6 0.35 VCCI – 0.43 18 18 124 169 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-131 • AC Loading

Table 2-160 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)

VREF – 0.2 VREF + 0.2 1.25 1.25 1.25 30

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Test Point

30 pF

25

25

SSTL2
Class II

VTT

Table 2-161 • SSTL 2 Class II
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = 2.3 V, VREF = 1.25 V

Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

 Std. 0.66 2.17 0.04 1.33 0.43 2.21 1.77 4.44 4.01 ns

 –1 0.56 1.84 0.04 1.14 0.36 1.88 1.51 3.78 3.41 ns

 –2 0.49 1.62 0.03 1.00 0.32 1.65 1.32 3.32 2.99 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-9.
Revision 6 2-206



Fusion Family of Mixed Signal FPGAs
connected to the internal core logic I/O tile and the input, output, and control ports of an I/O buffer to
capture and load data into the register to control or observe the logic state of each I/O.

Figure 2-146 • Boundary Scan Chain in Fusion

Table 2-185 • Boundary Scan Opcodes

Hex Opcode

EXTEST 00

HIGHZ 07

USERCODE 0E

SAMPLE/PRELOAD 01

IDCODE 0F

CLAMP 05

BYPASS FF

Device
Logic

T
D

I
T

C
K

T
M

S
T

R
S

T
T

D
O

I/OI/OI/O I/OI/O

I/OI/OI/O I/OI/O

I/O
I/O

I/O
I/O

Bypass Register

Instruction
Register

TAP
Controller

Test Data
Registers
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DC and Power Characteristics
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset 
(Commercial and Industrial)
Sophisticated power-up management circuitry is designed into every Fusion device. These circuits
ensure easy transition from the powered off state to the powered up state of the device. The many
different supplies can power up in any sequence with minimized current spikes or surges. In addition, the
I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 3-1
on page 3-6. 

There are five regions to consider during power-up. 

Fusion I/Os are activated only if ALL of the following three conditions are met:

1. VCC and VCCI are above the minimum specified trip points (Figure 3-1). 

2. VCCI > VCC – 0.75 V (typical). 

3. Chip is in the operating mode.

VCCI Trip Point: 

Ramping up: 0.6 V < trip_point_up < 1.2 V

Ramping down: 0.5 V < trip_point_down < 1.1 V 

VCC Trip Point: 

Ramping up: 0.6 V < trip_point_up < 1.1 V

Ramping down: 0.5 V < trip_point_down < 1 V 

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically
built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

• During programming, I/Os become tristated and weakly pulled up to VCCI.

• JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O
behavior.

Internal Power-Up Activation Sequence
1. Core

2. Input buffers 

3. Output buffers, after 200 ns delay from input buffer activation

PLL Behavior at Brownout Condition
Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-
up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout
activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 3-1 on page 3-6
for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels
(0.75 V ± 0.25 V), the PLL output lock signal goes low and/or the output clock is lost.  

Table 3-5 • FPGA Programming, Storage, and Operating Limits

Product 
Grade

Storage 
Temperature Element

Grade Programming 
Cycles Retention

Commercial Min. TJ = 0°C FPGA/FlashROM 500 20 years

Max. TJ = 85°C Embedded Flash < 1,000 20 years

< 10,000 10 years

< 15,000 5 years

Industrial Min. TJ = –40°C FPGA/FlashROM 500 20 years

Max. TJ = 100°C Embedded Flash < 1,000 20 years

< 10,000 10 years

< 15,000 5 years
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Fusion Family of Mixed Signal FPGAs
Theta-JA
Junction-to-ambient thermal resistance (JA) is determined under standard conditions specified by
JEDEC (JESD-51), but it has little relevance in actual performance of the product. It should be used with
caution but is useful for comparing the thermal performance of one package to another.

A sample calculation showing the maximum power dissipation allowed for the AFS600-FG484 package
under forced convection of 1.0 m/s and 75°C ambient temperature is as follows:

EQ 4

where  

EQ 5

The power consumption of a device can be calculated using the Microsemi power calculator. The
device's power consumption must be lower than the calculated maximum power dissipation by the
package. If the power consumption is higher than the device's maximum allowable power dissipation, a
heat sink can be attached on top of the case, or the airflow inside the system must be increased.

Theta-JB
Junction-to-board thermal resistance (JB) measures the ability of the package to dissipate heat from the
surface of the chip to the PCB. As defined by the JEDEC (JESD-51) standard, the thermal resistance
from junction to board uses an isothermal ring cold plate zone concept. The ring cold plate is simply a
means to generate an isothermal boundary condition at the perimeter. The cold plate is mounted on a
JEDEC standard board with a minimum distance of 5.0 mm away from the package edge.

Theta-JC
Junction-to-case thermal resistance (JC) measures the ability of a device to dissipate heat from the
surface of the chip to the top or bottom surface of the package. It is applicable for packages used with
external heat sinks. Constant temperature is applied to the surface in consideration and acts as a
boundary condition. This only applies to situations where all or nearly all of the heat is dissipated through
the surface in consideration. 

Calculation for Heat Sink 
For example, in a design implemented in an AFS600-FG484 package with 2.5 m/s airflow, the power
consumption value using the power calculator is 3.00 W. The user-dependent Ta and Tj are given as
follows:

From the datasheet:  

EQ 6

JA = 19.00°C/W (taken from Table 3-6 on page 3-7). 

TA = 75.00°C 

TJ = 100.00°C

TA = 70.00°C

JA = 17.00°C/W

JC = 8.28°C/W

Maximum Power Allowed
TJ(MAX) TA(MAX)–

JA
---------------------------------------------=

Maximum Power Allowed
100.00°C 75.00°C–

19.00°C/W
---------------------------------------------------- 1.3 W= =

P
TJ TA–

JA
------------------- 100°C 70°C–

17.00 W
------------------------------------ 1.76 W= = =
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Fusion Family of Mixed Signal FPGAs
Table 3-10 • AFS250 Quiescent Supply Current Characteristics

Parameter Description Conditions Temp. Min Typ Max Unit

ICC1 1.5 V quiescent current Operational standby4, 
VCC = 1.575 V

TJ = 25°C 4.8 10 mA

TJ = 85°C 8.2 30 mA

TJ = 100°C 15 50 mA

Standby mode5 or Sleep
mode6, VCC = 0 V

0 0 µA

ICC332 3.3 V analog supplies
current

Operational standby4, 
VCC33 = 3.63 V

TJ = 25°C 9.8 13 mA

TJ = 85°C 9.8 14 mA

TJ = 100°C 10.8 15 mA

Operational standby, only
Analog Quad and –3.3 V
output ON, VCC33 = 3.63 V

TJ = 25°C 0.29 2 mA

TJ = 85°C 0.31 2 mA

TJ = 100°C 0.45 2 mA

Standby mode5, VCC33 = 3.63V TJ = 25°C 2.9 3.0 mA

TJ = 85°C 2.9 3.1 mA

TJ = 100°C 3.5 6 mA

Sleep mode6, VCC33 = 3.63 V TJ = 25°C 19 18 µA

TJ = 85°C 19 20 µA

TJ = 100°C 24 25 µA

ICCI3 I/O quiescent current Operational standby6, 
VCCIx = 3.63 V

TJ = 25°C 266 437 µA

TJ = 85°C 266 437 µA

TJ = 100°C 266 437 µA

IJTAG JTAG I/O quiescent current Operational standby4, 
VJTAG = 3.63 V

TJ = 25°C 80 100 µA

TJ = 85°C 80 100 µA

TJ = 100°C 80 100 µA

Standby mode5 or Sleep
mode6, VJTAG = 0 V

0 0 µA

Notes:

1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, and ICCI2.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTA G = VPUMP = 0 V.
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Datasheet Information
v2.0, Revision 1
(continued)

Table 3-6 • Package Thermal Resistance was updated to include new data. 3-7

In EQ 4 to EQ 6, the junction temperature was changed from 110°C to 100°C. 3-8 to 3-8

Table 3-8 • AFS1500 Quiescent Supply Current Characteristics through Table 3-11 •
AFS090 Quiescent Supply Current Characteristics are new and have replaced the
Quiescent Supply Current Characteristics (IDDQ) table.

3-10 to 
3-16

In Table 3-14 • Different Components Contributing to the Dynamic Power
Consumption in Fusion Devices, the power supply for PAC9 and PAC10 were
changed from VMV/VCC to VCCI.

3-22

In Table 3-15 • Different Components Contributing to the Static Power Consumption
in Fusion Devices, the power supply for PDC7 and PDC8 were changed from
VMV/VCC to VCCI. PDC1 was updated from TBD to 18.

3-23

The "QN108" table was updated to remove the duplicates of pins B12 and B34. 4-2

Preliminary v1.7
(October 2008)

The version number category was changed from Advance to Preliminary, which
means the datasheet contains information based on simulation and/or initial
characterization. The information is believed to be correct, but changes are possible.

For the VIL and VIH parameters, 0.30 * VCCI was changed to 0.35 * VCCI and 0.70
* VCCI was changed to 0.65 * VCCI in Table 2-126 • Minimum and Maximum DC
Input and Output Levels.

2-193

The version number category was changed from Advance to Preliminary, which
means the datasheet contains information based on simulation and/or initial
characterization. The information is believed to be correct, but changes are possible. 

N/A

The following updates were made to Table 2-141 • Minimum and Maximum DC Input
and Output Levels:

Temperature Digital Output

213 00 1111 1101

283 01 0001 1011

358 01 0110 0110 – only the digital output was updated.
Temperature 358 remains in the temperature column.

2-200

In Advance v1.2, the "VAREF Analog Reference Voltage" pin description was
significantly updated but the change was not noted in the change table.

2-225

Advance v1.6
(August 2008)

The title of the datasheet changed from Actel Programmable System Chips to Actel
Fusion Mixed Signal FPGAs. In addition, all instances of programmable system chip
were changed to mixed signal FPGA.

N/A

The references to the Peripherals User’s Guide in the "No-Glitch MUX (NGMUX)"
section and "Voltage Regulator Power Supply Monitor (VRPSM)" section were
changed to Fusion Handbook.

2-32, 2-42

Advance v1.5
(July 2008)

The following bullet was updated from High-Voltage Input Tolerance: ±12 V to High-
Voltage Input Tolerance: 10.5 V to 12 V.

I

The following bullet was updated from Programmable 1, 3, 10, 30 µA and 25 mA
Drive Strengths to Programmable 1, 3, 10, 30 µA and 20 mA Drive Strengths.

I

Revision Changes Page
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Datasheet Information
Datasheet Categories

Categories
In order to provide the latest information to designers, some datasheet parameters are published before
data has been fully characterized from silicon devices. The data provided for a given device, as
highlighted in the "Fusion Device Status" table, is designated as either "Product Brief," "Advance,"
"Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains general
product information. This document gives an overview of specific device and family information.

Advance
This version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production. This label only applies to the
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not
been fully characterized.

Preliminary
The datasheet contains information based on simulation and/or initial characterization. The information is
believed to be correct, but changes are possible.

Production
This version contains information that is considered to be final.

Export Administration Regulations (EAR) 
The products described in this document are subject to the Export Administration Regulations (EAR).
They could require an approved export license prior to export from the United States. An export includes
release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications 
Policy

The products described in this advance status document may not have completed the Microsemi
qualification process. Products may be amended or enhanced during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the responsibility of
each customer to ensure the fitness of any product (but especially a new product) for a particular
purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications.
Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating
to life-support applications. A reliability report covering all of the SoC Products Group’s products is
available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety
of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for
additional reliability information.
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