

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	27648
Number of I/O	75
Number of Gates	90000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/afs090-fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

Fusion Devices	AFS090	AFS250	AFS600	AFS1500
ARM Cortex-M1 Devices		M1AFS250	M1AFS600	M1AFS1500
Pigeon Point Devices			P1AFS600 ³	P1AFS1500 3
MicroBlade Devices		U1AFS250 ⁴	U1AFS600 ⁴	U1AFS1500 ⁴
QN108 ⁵	C, I	-	-	-
QN180 ⁵	C, I	C, I	-	-
PQ208	-	C, I	C, I	-
FG256	C, I	C, I	C, I	C, I
FG484	-	-	C, I	C, I
FG676	-	_	-	C, I

Notes:

1. C = Commercial Temperature Range: 0°C to 85°C Junction

2. I = Industrial Temperature Range: -40°C to 100°C Junction

3. Pigeon Point devices are only offered in FG484 and FG256.

4. MicroBlade devices are only offered in FG256.

5. Package not available.

Speed Grade and Temperature Grade Matrix

	Std. ¹	-1	-2 ²
C ³	\checkmark	\checkmark	\checkmark
l ⁴	\checkmark	\checkmark	\checkmark

Notes:

1. MicroBlade devices are only offered in standard speed grade.

2. Pigeon Point devices are only offered in –2 speed grade.

3. C = Commercial Temperature Range: 0°C to 85°C Junction

4. I = Industrial Temperature Range: -40°C to 100°C Junction

Contact your local Microsemi SoC Products Group representative for device availability:

http://www.microsemi.com/index.php?option=com_content&id=137&lang=en&view=article.

Cortex-M1, Pigeon Point, and MicroBlade Fusion Device Information

This datasheet provides information for all Fusion (AFS), Cortex-M1 (M1), Pigeon Point (P1), and MicroBlade (U1) devices. The remainder of the document will only list the Fusion (AFS) devices. Please apply relevant information to M1, P1, and U1 devices when appropriate. Please note the following:

- Cortex-M1 devices are offered in the same speed grades and packages as basic Fusion devices.
- Pigeon Point devices are only offered in –2 speed grade and FG484 and FG256 packages.
- MicroBlade devices are only offered in standard speed grade and the FG256 package.

Figure 2-9 • Efficient Long-Line Resources

Global Buffers with No Programmable Delays

The CLKBUF and CLKBUF_LVPECL/LVDS macros are composite macros that include an I/O macro driving a global buffer, hardwired together (Figure 2-20).

The CLKINT macro provides a global buffer function driven by the FPGA core.

The CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are pass-through clock sources and do not use the PLL or provide any programmable delay functionality.

Many specific CLKBUF macros support the wide variety of single-ended and differential I/O standards supported by Fusion devices. The available CLKBUF macros are described in the *IGLOO*, *ProASIC3*, *SmartFusion and Fusion Macro Library Guide*.

Clock Source		Clock Conditioning	Output
			GLA
CLKBUF_LVDS/LVPECL Macro CLKBUF Macro	CLKINT Macro		or
		None	GLB
	A Y		or
			GLC

Figure 2-20 • Global Buffers with No Programmable Delay

Global Buffers with Programmable Delay

The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to delay the clock input using a programmable delay (Figure 2-21 on page 2-25). The CLKDLY macro takes the selected clock input and adds a user-defined delay element. This macro generates an output clock phase shift from the input clock.

The CLKDLY macro can be driven by an INBUF macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.

Many specific INBUF macros support the wide variety of single-ended and differential I/O standards supported by the Fusion family. The available INBUF macros are described in the *IGLOO*, *ProASIC3*, *SmartFusion and Fusion Macro Library Guide*.

The CLKDLY macro can be driven directly from the FPGA core.

The CLKDLY macro can also be driven from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described earlier.

The visual CLKDLY configuration in the SmartGen part of the Libero SoC and Designer tools allows the user to select the desired amount of delay and configures the delay elements appropriately. SmartGen also allows the user to select the input clock source. SmartGen will automatically instantiate the special macro, PLLINT, when needed.

	VAREF		
	ADCGNDREF		
	AV0	DAVOUT0	
	AC0	DACOUT0	
	AT0	DATOUT0	
	•	:	
	ÅV9	DAVOUT9	
	AC9	DACOUT9	
	AT9	DATOUT9	
	ATRETURN01	2/10010	
		AG0	
	ÅTRETURN9	AG0 AG1	
		AGI	
	DENAV0		
	DENAC0	AG9	
	DENAT0		
	•		
	DENAV0		
	DENAC0		
	DENAT0		
	CMSTB0		
	•		
	ĊSMTB9		
	GDON0		
	•		
	ĠDON9		
	TMSTB0		
	•		
	т мѕтв9		
	MODE[3:0]	BUSY	
	TVC[7:0]	CALIBRATE	
	STC[7:0]	DATAVALID	
	CHNUMBER[4:0]	SAMPLE	
	TMSTINT ADCSTART	RESULT[11:0] RTCMATCH	
	VAREFSEL	RTCXTLMODE	
	PWRDWN	RTCXTLSEL	
	ADCRESET	RTCPSMMATCH	
ļ			
	RTCCLK		
	SYSCLK		
	ACMWEN	ACMRDATA[7:0]	
0	ACMRESET		
ĭ	ACMWDATA		
	ACMADDR		
	-		
	ACMCLK		
I.	AE	3	

Figure 2-64 • Analog Block Macro

Table 2-36 describes each pin in the Analog Block. Each function within the Analog Block will be explained in detail in the following sections.

Table 2-36 • Analog Block Pin Description

Signal Name	Number of Bits	Direction	Function	Location of Details
VAREF	1	Input/Output	Voltage reference for ADC	ADC
ADCGNDREF	1	Input	External ground reference	ADC
MODE[3:0]	4	Input	ADC operating mode	ADC
SYSCLK	1	Input	External system clock	
TVC[7:0]	8	Input	Clock divide control	ADC
STC[7:0]	8	Input	Sample time control	ADC
ADCSTART	1	Input	Start of conversion	ADC
PWRDWN	1	Input	ADC comparator power-down if 1. When asserted, the ADC will stop functioning, and the digital portion of the analog block will continue operating. This may result in invalid status flags from the analog block. Therefore, Microsemi does not recommend asserting the PWRDWN pin.	ADC
ADCRESET	1	Input	ADC resets and disables Analog Quad – active high	ADC
BUSY	1	Output	1 – Running conversion	ADC
CALIBRATE	1	Output	1 – Power-up calibration	ADC
DATAVALID	1	Output	1 – Valid conversion result	ADC
RESULT[11:0]	12	Output	Conversion result	ADC
TMSTBINT	1	Input	Internal temp. monitor strobe	ADC
SAMPLE	1	Output	 1 – An analog signal is actively being sampled (stays high during signal acquisition only) 0 – No analog signal is being sampled 	ADC
VAREFSEL	1	Input	0 = Output internal voltage reference (2.56 V) to VAREF	ADC
			1 = Input external voltage reference from VAREF and ADCGNDREF	
CHNUMBER[4:0]	5	Input	Analog input channel select	Input multiplexer
ACMCLK	1	Input	ACM clock	ACM
ACMWEN	1	Input	ACM write enable – active high	ACM
ACMRESET	1	Input	ACM reset – active low	ACM
ACMWDATA[7:0]	8	Input	ACM write data	ACM
ACMRDATA[7:0]	8	Output	ACM read data	ACM
ACMADDR[7:0]	8	Input	ACM address	ACM
CMSTB0 to CMSTB9	10	Input	Current monitor strobe – 1 per quad, active high	Analog Quad

Fusion uses a remote diode as a temperature sensor. The Fusion Temperature Monitor uses a differential input; the AT pin and ATRTN (AT Return) pin are the differential inputs to the Temperature Monitor. There is one Temperature Monitor in each Quad. A simplified block diagram is shown in Figure 2-77.

Figure 2-77 • Block Diagram for Temperature Monitor Circuit

The Fusion approach to measuring temperature is forcing two different currents through the diode with a ratio of 10:1. The switch that controls the different currents is controlled by the Temperature Monitor Strobe signal, TMSTB. Setting TMSTB to '1' will initiate a Temperature reading. The TMSTB should remain '1' until the ADC finishes sampling the voltage from the Temperature Monitor. The minimum sample time for the Temperature Monitor cannot be less than the minimum strobe high time minus the setup time. Figure 2-78 shows the timing diagram.

Note: When the IEEE 1149.1 Boundary Scan EXTEST instruction is executed, the AG pad drive strength ceases and becomes a 1 µA sink into the Fusion device.

Table 2-57 details the settings available to control the prescaler values of the AV, AC, and AT pins. Note that the AT pin has a reduced number of available prescaler values.

Control Lines Bx[2:0]	Scaling Factor, Pad to ADC Input	LSB for an 8-Bit Conversion ¹ (mV)	LSB for a 10-Bit Conversion ¹ (mV)	LSB for a 12-Bit Conversion ¹ (mV)	Full-Scale Voltage in 10-Bit Mode ²	Range Name
000 ³	0.15625	64	16	4	16.368 V	16 V
001	0.3125	32	8	2	8.184 V	8 V
010 ³	0.625	16	4	1	4.092 V	4 V
011	1.25	8	2	0.5	2.046 V	2 V
100	2.5	4	1	0.25	1.023 V	1 V
101	5.0	2	0.5	0.125	0.5115 V	0.5 V
110	10.0	1	0.25	0.0625	0.25575 V	0.25 V
111	20.0	0.5	0.125	0.03125	0.127875 V	0.125 V

Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Notes:

1. LSB voltage equivalences assume VAREF = 2.56 V.

2. Full Scale voltage for n-bit mode: ((2ⁿ) - 1) x (LSB for a n-bit Conversion)

3. These are the only valid ranges for the Temperature Monitor Block Prescaler.

Table 2-58 details the settings available to control the MUX within each of the AV, AC, and AT circuits. This MUX determines whether the signal routed to the ADC is the direct analog input, prescaled signal, or output of either the Current Monitor Block or the Temperature Monitor Block.

Table 2-58 • Analog Multiplexer Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[4]	Control Lines Bx[3]	ADC Connected To
0	0	Prescaler
0	1	Direct input
1	0	Current amplifier temperature monitor
1	1	Not valid

Table 2-59 details the settings available to control the Direct Analog Input switch for the AV, AC, and AT pins.

Table 2-59 • Direct Analog Input Switch Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[5]	Direct Input Switch
0	Off
1	On

Table 2-60 details the settings available to control the polarity of the signals coming to the AV, AC, and AT pins. Note that the only valid setting for the AT pin is logic 0 to support positive voltages.

Table 2-60 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)*

Control Lines Bx[6]	Input Signal Polarity
0	Positive
1	Negative

Note: *The B3[6] signal for the AT pad should be kept at logic 0 to accept only positive voltages.

Figure 2-102 • DDR Output Support in Fusion Devices

Table 2-96 • I/O Output Buffer Maximum Resistances ¹ (continued)

Standard	Drive Strength	R _{PULL-DOWN} (ohms) ²	R _{PULL-UP} (ohms) ³
HSTL (I)	8 mA	50	50
HSTL (II)	15 mA	25	25
SSTL2 (I)	17 mA	27	31
SSTL2 (II)	21 mA	13	15
SSTL3 (I)	16 mA	44	69
SSTL3 (II)	24 mA	18	32
Applicable to Advanced I/O Ba	inks	I	
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
	24 mA	11	22
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
	12 mA	20	22
	16 mA	20	22
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

 These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: http://www.microsemi.com/soc/techdocs/models/ibis.html.

2. R_(PULL-DOWN-MAX) = VOLspec / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

Device Architecture

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	v	IL	v	ІН	VOL	VОН	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Applicable to	Pro I/O Ba	inks		•	•					•		
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	18	16	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	3.6	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	3.6	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	3.6	0.7	1.7	24	24	124	169	10	10
Applicable to	Advanced	I/O Bank	s	•	•					•		
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	2.7	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	2.7	0.7	1.7	24	24	124	169	10	10
Applicable to	Standard	I/O Banks										
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	37	32	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-120 • AC Loading

Table 2-111 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	2.5	1.2	_	35

Note: *Measuring point = Vtrip. See Table 2-90 on page 2-166 for a complete table of trip points.

Table 2-122 • 1.8 V LVCMOS Low Slew

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.66	15.53	0.04	1.31	0.43	14.11	15.53	2.78	1.60	16.35	17.77	ns
	-1	0.56	13.21	0.04	1.11	0.36	12.01	13.21	2.36	1.36	13.91	15.11	ns
	-2 ²	0.49	11.60	0.03	0.98	0.32	10.54	11.60	2.07	1.19	12.21	13.27	ns
4 mA	Std.	0.66	10.48	0.04	1.31	0.43	10.41	10.48	3.23	2.73	12.65	12.71	ns
	-1	0.56	8.91	0.04	1.11	0.36	8.86	8.91	2.75	2.33	10.76	10.81	ns
	-2	0.49	7.82	0.03	0.98	0.32	7.77	7.82	2.41	2.04	9.44	9.49	ns
8 mA	Std.	0.66	8.05	0.04	1.31	0.43	8.20	7.84	3.54	3.27	10.43	10.08	ns
	-1	0.56	6.85	0.04	1.11	0.36	6.97	6.67	3.01	2.78	8.88	8.57	ns
	-2	0.49	6.01	0.03	0.98	0.32	6.12	5.86	2.64	2.44	7.79	7.53	ns
12 mA	Std.	0.66	7.50	0.04	1.31	0.43	7.64	7.30	3.61	3.41	9.88	9.53	ns
	-1	0.56	6.38	0.04	1.11	0.36	6.50	6.21	3.07	2.90	8.40	8.11	ns
	-2	0.49	5.60	0.03	0.98	0.32	5.71	5.45	2.69	2.55	7.38	7.12	ns
16 mA	Std.	0.66	7.29	0.04	1.31	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	-1	0.56	6.20	0.04	1.11	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.98	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Timing Characteristics

Table 2-136 • 3.3 V PCI/PCI-X

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Pro I/Os

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.66	2.81	0.04	1.05	1.67	0.43	2.86	2.00	3.28	3.61	5.09	4.23	ns
-1	0.56	2.39	0.04	0.89	1.42	0.36	2.43	1.70	2.79	3.07	4.33	3.60	ns
-2	0.49	2.09	0.03	0.78	1.25	0.32	2.13	1.49	2.45	2.70	3.80	3.16	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-137 • 3.3 V PCI/PCI-X

Commercial Temperature Range Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/Os

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.66	2.68	0.04	0.86	0.43	2.73	1.95	3.21	3.58	4.97	4.19	0.66	ns
-1	0.56	2.28	0.04	0.73	0.36	2.32	1.66	2.73	3.05	4.22	3.56	0.56	ns
-2	0.49	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	0.49	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Pin Descriptions

Supply Pins

GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to always be connected on the board to GND. Note: In FG256, FG484, and FG676 packages, GNDQ and GND pins are connected within the package and are labeled as GND pins in the respective package pin assignment tables.

ADCGNDREF Analog Reference Ground

Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.

GNDA Ground (analog)

Quiet ground supply voltage to the Analog Block of Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.

GNDAQ Ground (analog quiet)

Quiet ground supply voltage to the analog I/O of Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation. Note: In FG256, FG484, and FG676 packages, GNDAQ and GNDA pins are connected within the package and are labeled as GNDA pins in the respective package pin assignment tables.

GNDNVM Flash Memory Ground

Ground supply used by the Fusion device's flash memory block module(s).

GNDOSC Oscillator Ground

Ground supply for both integrated RC oscillator and crystal oscillator circuit.

VCC15A Analog Power Supply (1.5 V)

1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry.

VCC33A Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.

VCC33N Negative 3.3 V Output

This is the -3.3 V output from the voltage converter. A 2.2 μ F capacitor must be connected from this pin to ground.

VCC33PMP Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw, VCC33PMP should be powered up simultaneously with or after VCC33A.

VCCNVM Flash Memory Block Power Supply (1.5 V)

1.5 V power supply input used by the Fusion device's flash memory block module(s). To avoid high current draw, VCC should be powered up before or simultaneously with VCCNVM.

VCCOSC Oscillator Power Supply (3.3 V)

Power supply for both integrated RC oscillator and crystal oscillator circuit. The internal 100 MHz oscillator, powered by the VCCOSC pin, is needed for device programming, operation of the VDDN33 pump, and eNVM operation. VCCOSC is off only when VCCA is off. VCCOSC must be powered whenever the Fusion device needs to function.

Symbol	Parameter	Commercial	Industrial	Units	
AV, AC	Unpowered, ADC reset asserted or unconfigured	-11.0 to 12.6	-11.0 to 12.0	V	
	Analog input (+16 V to +2 V prescaler range)	-0.4 to 12.6	-0.4 to 12.0	V	
	Analog input (+1 V to +0.125 V prescaler range)	-0.4 to 3.75	-0.4 to 3.75	V	
	Analog input (–16 V to –2 V prescaler range)	-11.0 to 0.4	-11.0 to 0.4	V	
	Analog input (–1 V to –0.125 V prescaler range)	-3.75 to 0.4	-3.75 to 0.4	V	
	Analog input (direct input to ADC)	-0.4 to 3.75	-0.4 to 3.75	V	
	Digital input	-0.4 to 12.6	-0.4 to 12.0	V	
AG	Unpowered, ADC reset asserted or unconfigured	-11.0 to 12.6	-11.0 to 12.0	V	
	Low Current Mode (1 µA, 3 µA, 10 µA, 30 µA)	-0.4 to 12.6	-0.4 to 12.0	V	
	Low Current Mode (–1 μΑ, –3 μΑ, –10 μΑ, –30 μΑ)	-11.0 to 0.4	-11.0 to 0.4	V	
	High Current Mode ³	-11.0 to 12.6	-11.0 to 12.0	V	
AT	Unpowered, ADC reset asserted or unconfigured	-0.4 to 16.0	–0.4 to 15.0	V	
	Analog input (+16 V, 4 V prescaler range)	-0.4 to 16.0	-0.4 to 15.0	V	
	Analog input (direct input to ADC)	-0.4 to 3.75	-0.4 to 3.75	V	
	Digital input	-0.4 to 16.0	-0.4 to 15.0	V	
T _{STG} ⁴	Storage temperature	_65 to +150			
Tj ⁴	Junction temperature	+	-125	°C	

Table 3-1 •	Absolute	Maximum	Ratings	(continued)
-------------	----------	---------	---------	-------------

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.

2. Analog data not valid beyond 3.65 V.

3. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.

4. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-5. For recommended operating limits refer to Table 3-2 on page 3-3.

Methodology

Total Power Consumption—PTOTAL

Operating Mode, Standby Mode, and Sleep Mode

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

Operating Mode

 $\label{eq:pstat} \begin{array}{l} \mathsf{P}_{\mathsf{STAT}} = \mathsf{PDC1} + (\mathsf{N}_{\mathsf{NVM-BLOCKS}} * \mathsf{PDC4}) + \mathsf{PDC5} + (\mathsf{N}_{\mathsf{QUADS}} * \mathsf{PDC6}) + (\mathsf{N}_{\mathsf{INPUTS}} * \mathsf{PDC7}) + (\mathsf{N}_{\mathsf{OUTPUTS}} * \mathsf{PDC8}) + (\mathsf{N}_{\mathsf{PLLS}} * \mathsf{PDC9}) \end{array}$

 $N_{\ensuremath{\mathsf{NVM}}\xspace-BLOCKS}$ is the number of NVM blocks available in the device.

N_{QUADS} is the number of Analog Quads used in the design.

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

N_{PLLS} is the number of PLLs available in the device.

Standby Mode

P_{STAT} = PDC2

Sleep Mode

P_{STAT} = PDC3

Total Dynamic Power Consumption—P_{DYN}

Operating Mode

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL} + P_{NVM}+ P_{XTL-OSC} + P_{RC-OSC} + P_{AB}

Standby Mode

 $P_{DYN} = P_{XTL-OSC}$

Sleep Mode

 $P_{DYN} = 0 W$

Global Clock Dynamic Contribution—P_{CLOCK}

Operating Mode

 $P_{CLOCK} = (PAC1 + N_{SPINE} * PAC2 + N_{ROW} * PAC3 + N_{S-CELL} * PAC4) * F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *Fusion and Extended Temperature Fusion FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *Fusion and Extended Temperature Fusion FPGA Fabric User's Guide*.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Sleep Mode

 $P_{CLOCK} = 0 W$

Sequential Cells Dynamic Contribution—P_{S-CELL}

Operating Mode

	QN180			QN180	
Pin Number	AFS090 Function	AFS250 Function	Pin Number	AFS090 Function	AFS250 Function
B9	XTAL2	XTAL2	B45	GBA2/IO31PDB1V0	GBA2/IO40PDB1V0
B10	GEA0/IO44NDB3V0	GFA0/IO66NDB3V0	B46	GNDQ	GNDQ
B11	GEB2/IO42PDB3V0	IO60NDB3V0	B47	GBA1/IO30RSB0V0	GBA0/IO38RSB0V0
B12	VCC	VCC	B48	GBB1/IO28RSB0V0	GBC1/IO35RSB0V0
B13	VCCNVM	VCCNVM	B49	VCC	VCC
B14	VCC15A	VCC15A	B50	GBC0/IO25RSB0V0	IO31RSB0V0
B15	NCAP	NCAP	B51	IO23RSB0V0	IO28RSB0V0
B16	VCC33N	VCC33N	B52	IO20RSB0V0	IO25RSB0V0
B17	GNDAQ	GNDAQ	B53	VCC	VCC
B18	AC0	AC0	B54	IO11RSB0V0	IO14RSB0V0
B19	AT0	AT0	B55	IO08RSB0V0	IO11RSB0V0
B20	AT1	AT1	B56	GAC1/IO05RSB0V0	IO08RSB0V0
B21	AV1	AV1	B57	VCCIB0	VCCIB0
B22	AC2	AC2	B58	GAB0/IO02RSB0V0	GAC0/IO04RSB0V0
B23	ATRTN1	ATRTN1	B59	GAA0/IO00RSB0V0	GAA1/IO01RSB0V0
B24	AG3	AG3	B60	VCCPLA	VCCPLA
B25	AV3	AV3	C1	NC	NC
B26	AG4	AG4	C2	NC	VCCIB3
B27	ATRTN2	ATRTN2	C3	GND	GND
B28	NC	AC5	C4	NC	GFC2/IO69PPB3V0
B29	VCC33A	VCC33A	C5	GFC1/IO49PDB3V0	GFC1/IO68PDB3V0
B30	VAREF	VAREF	C6	GFA0/IO47NPB3V0	GFB0/IO67NPB3V0
B31	PUB	PUB	C7	VCCIB3	NC
B32	PTEM	PTEM	C8	GND	GND
B33	GNDNVM	GNDNVM	C9	GEA1/IO44PDB3V0	GFA1/IO66PDB3V0
B34	VCC	VCC	C10	GEA2/IO42NDB3V0	GEC2/IO60PDB3V0
B35	ТСК	ТСК	C11	NC	GEA2/IO58PSB3V0
B36	TMS	TMS	C12	NC	NC
B37	TRST	TRST	C13	GND	GND
B38	GDB2/IO41PSB1V0	GDA2/IO55PSB1V0	C14	NC	NC
B39	GDC0/IO38NDB1V0	GDB0/IO53NDB1V0	C15	NC	NC
B40	VCCIB1	VCCIB1	C16	GNDA	GNDA
B41	GCA1/IO36PDB1V0	GCA1/IO49PDB1V0	C17	NC	NC
B42	GCC0/IO34NDB1V0	GCC0/IO47NDB1V0	C18	NC	NC
B43	GCB2/IO33PSB1V0	GBC2/IO42PSB1V0	C19	NC	NC
B44	VCC	VCC	C20	NC	NC

Package Pin Assignments

	PQ208			PQ208	
Pin Number	AFS250 Function	AFS600 Function	Pin Number	AFS250 Function	AFS600 Function
1	VCCPLA	VCCPLA	38	IO60NDB3V0	GEB0/IO62NDB4V0
2	VCOMPLA	VCOMPLA	39	GND	GEA1/IO61PDB4V0
3	GNDQ	GAA2/IO85PDB4V0	40	VCCIB3	GEA0/IO61NDB4V0
4	VCCIB3	IO85NDB4V0	41	GEB2/IO59PDB3V0	GEC2/IO60PDB4V0
5	GAA2/IO76PDB3V0	GAB2/IO84PDB4V0	42	IO59NDB3V0	IO60NDB4V0
6	IO76NDB3V0	IO84NDB4V0	43	GEA2/IO58PDB3V0	VCCIB4
7	GAB2/IO75PDB3V0	GAC2/IO83PDB4V0	44	IO58NDB3V0	GNDQ
8	IO75NDB3V0	IO83NDB4V0	45	VCC	VCC
9	NC	IO77PDB4V0	45	VCC	VCC
10	NC	IO77NDB4V0	46	VCCNVM	VCCNVM
11	VCC	IO76PDB4V0	47	GNDNVM	GNDNVM
12	GND	IO76NDB4V0	48	GND	GND
13	VCCIB3	VCC	49	VCC15A	VCC15A
14	IO72PDB3V0	GND	50	PCAP	PCAP
15	IO72NDB3V0	VCCIB4	51	NCAP	NCAP
16	GFA2/IO71PDB3V0	GFA2/IO75PDB4V0	52	VCC33PMP	VCC33PMP
17	IO71NDB3V0	IO75NDB4V0	53	VCC33N	VCC33N
18	GFB2/IO70PDB3V0	GFC2/IO73PDB4V0	54	GNDA	GNDA
19	IO70NDB3V0	IO73NDB4V0	55	GNDAQ	GNDAQ
20	GFC2/IO69PDB3V0	VCCOSC	56	NC	AV0
21	IO69NDB3V0	XTAL1	57	NC	AC0
22	VCC	XTAL2	58	NC	AG0
23	GND	GNDOSC	59	NC	AT0
24	VCCIB3	GFC1/IO72PDB4V0	60	NC	ATRTN0
25	GFC1/IO68PDB3V0	GFC0/IO72NDB4V0	61	NC	AT1
26	GFC0/IO68NDB3V0	GFB1/IO71PDB4V0	62	NC	AG1
27	GFB1/IO67PDB3V0	GFB0/IO71NDB4V0	63	NC	AC1
28	GFB0/IO67NDB3V0	GFA1/IO70PDB4V0	64	NC	AV1
29	VCCOSC	GFA0/IO70NDB4V0	65	AV0	AV2
30	XTAL1	IO69PDB4V0	66	AC0	AC2
31	XTAL2	IO69NDB4V0	67	AG0	AG2
32	GNDOSC	VCC	68	AT0	AT2
33	GEB1/IO62PDB3V0	GND	69	ATRTN0	ATRTN1
34	GEB0/IO62NDB3V0	VCCIB4	70	AT1	AT3
35	GEA1/IO61PDB3V0	GEC1/IO63PDB4V0	71	AG1	AG3
36	GEA0/IO61NDB3V0	GEC0/IO63NDB4V0	72	AC1	AC3
37	GEC2/IO60PDB3V0	GEB1/IO62PDB4V0	73	AV1	AV3

Package Pin Assignments

	FG484			FG484	
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function
L17	VCCIB2	VCCIB2	N8	GND	GND
L18	IO46PDB2V0	IO69PDB2V0	N9	GND	GND
L19	GCA1/IO45PDB2V0	GCA1/IO64PDB2V0	N10	VCC	VCC
L20	VCCIB2	VCCIB2	N11	GND	GND
L21	GCC0/IO43NDB2V0	GCC0/IO62NDB2V0	N12	VCC	VCC
L22	GCC1/IO43PDB2V0	GCC1/IO62PDB2V0	N13	GND	GND
M1	NC	IO103PDB4V0	N14	VCC	VCC
M2	XTAL1	XTAL1	N15	GND	GND
M3	VCCIB4	VCCIB4	N16	GDB2/IO56PDB2V0	GDB2/IO83PDB2V0
M4	GNDOSC	GNDOSC	N17	NC	IO78PDB2V0
M5	GFC0/IO72NDB4V0	GFC0/IO107NDB4V0	N18	GND	GND
M6	VCCIB4	VCCIB4	N19	IO47NDB2V0	IO72NDB2V0
M7	GFB0/IO71NDB4V0	GFB0/IO106NDB4V0	N20	IO47PDB2V0	IO72PDB2V0
M8	VCCIB4	VCCIB4	N21	GND	GND
M9	VCC	VCC	N22	IO49PDB2V0	IO71PDB2V0
M10	GND	GND	P1	GFA1/IO70PDB4V0	GFA1/IO105PDB4V0
M11	VCC	VCC	P2	GFA0/IO70NDB4V0	GFA0/IO105NDB4V0
M12	GND	GND	P3	IO68NDB4V0	IO101NDB4V0
M13	VCC	VCC	P4	IO65PDB4V0	IO96PDB4V0
M14	GND	GND	P5	IO65NDB4V0	IO96NDB4V0
M15	VCCIB2	VCCIB2	P6	NC	IO99NDB4V0
M16	IO48NDB2V0	IO70NDB2V0	P7	NC	IO97NDB4V0
M17	VCCIB2	VCCIB2	P8	VCCIB4	VCCIB4
M18	IO46NDB2V0	IO69NDB2V0	P9	VCC	VCC
M19	GCA0/IO45NDB2V0	GCA0/IO64NDB2V0	P10	GND	GND
M20	VCCIB2	VCCIB2	P11	VCC	VCC
M21	GCB0/IO44NDB2V0	GCB0/IO63NDB2V0	P12	GND	GND
M22	GCB1/IO44PDB2V0	GCB1/IO63PDB2V0	P13	VCC	VCC
N1	NC	IO103NDB4V0	P14	GND	GND
N2	GND	GND	P15	VCCIB2	VCCIB2
N3	IO68PDB4V0	IO101PDB4V0	P16	IO56NDB2V0	IO83NDB2V0
N4	NC	IO100NPB4V0	P17	NC	IO78NDB2V0
N5	GND	GND	P18	GDA1/IO54PDB2V0	GDA1/IO81PDB2V0
N6	NC	IO99PDB4V0	P19	GDB1/IO53PDB2V0	GDB1/IO80PDB2V0
N7	NC	IO97PDB4V0	P20	IO51NDB2V0	IO73NDB2V0

Revision	Changes	Page					
v2.0, Revision 1 (continued)	The data in the 2.5 V LCMOS and LVCMOS 2.5 V / 5.0 V rows were updated in Table 2-75 \bullet Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance Capabilities.	2-143					
	In Table 2-78 • Fusion Standard I/O Standards—OUT_DRIVE Settings, LVCMOS 1.5 V, for OUT_DRIVE 2, was changed from a dash to a check mark.	2-152					
	The "VCC15A Analog Power Supply (1.5 V)" definition was changed from "A 1.5 V analog power supply input should be used to provide this input" to "1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry."	2-223					
	In the "VCC33PMP Analog Power Supply (3.3 V)" pin description, the following text was changed from "VCC33PMP should be powered up before or simultaneously with VCC33A" to "VCC33PMP should be powered up simultaneously with or after VCC33A."						
	The "VCCOSC Oscillator Power Supply (3.3 V)" section was updated to include information about when to power the pin.	2-223					
	the "128-Bit AES Decryption" section, FIPS-192 was incorrect and changed to IPS-197.						
	ne note in Table 2-84 • Fusion Standard and Advanced I/O Attributes vs. I/O andard Applications was updated.						
	For 1.5 V LVCMOS, the VIL and VIH parameters, 0.30 * VCCI was changed to 0.35 * VCCI and 0.70 * VCCI was changed to 0.65 * VCCI in Table 2-86 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions, Table 2-87 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions, and Table 2-88 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions, and Table 2-88 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions, and Table 2-88 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions.	2-164 to 2-165					
	In Table 2-87 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions, the VIH max column was updated.						
	Table 2-89 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions was updated to include notes 3 and 4. The temperature ranges were also updated in notes 1 and 2.	2-165					
	The titles in Table 2-92 • Summary of I/O Timing Characteristics – Software Default Settings to Table 2-94 • Summary of I/O Timing Characteristics – Software Default Settings were updated to "VCCI = I/O Standard Dependent."	2-167 to 2-168					
	Below Table 2-98 • I/O Short Currents IOSH/IOSL, the paragraph was updated to change 110°C to 100°C and three months was changed to six months.	2-172					
	Table 2-99 • Short Current Event Duration before Failure was updated to remove 110°C data.	2-174					
	In Table 2-101 • I/O Input Rise Time, Fall Time, and Related I/O Reliability, LVTTL/LVCMOS rows were changed from 110°C to 100°C.	2-174					
	VCC33PMP was added to Table 3-1 • Absolute Maximum Ratings. In addition, conditions for AV, AC, AG, and AT were also updated.	3-1					
	VCC33PMP was added to Table 3-2 • Recommended Operating Conditions1. In addition, conditions for AV, AC, AG, and AT were also updated.	3-3					
	Table 3-5 • FPGA Programming, Storage, and Operating Limits was updated to include new data and the temperature ranges were changed. The notes were removed from the table.	3-5					

Fusion Family of Mixed Signal FPGAs

Revision	Changes	Page
Advance v0.6 (continued)	The "Analog-to-Digital Converter Block" section was updated with the following statement: "All results are MSB justified in the ADC."	2-99
	The information about the ADCSTART signal was updated in the "ADC Description" section.	2-102
	Table 2-46 · Analog Channel Specifications was updated.	2-118
	Table 2-47 · ADC Characteristics in Direct Input Mode was updated.	2-121
	Table 2-51 • ACM Address Decode Table for Analog Quad was updated.	2-127
	In Table 2-53 • Analog Quad ACM Byte Assignment, the Function and Default Setting for Bit 6 in Byte 3 was updated.	2-130
	The "Introduction" section was updated to include information about digital inputs, outputs, and bibufs.	2-133
	In Table 2-69 • Fusion Pro I/O Features, the programmable delay descriptions were updated for the following features: Single-ended receiver	2-137
	Voltage-referenced differential receiver	
	LVDS/LVPECL differential receiver features	
	The "User I/O Naming Convention" section was updated to include "V" and "z" descriptions	2-159
	The "VCC33PMP Analog Power Supply (3.3 V)" section was updated to include information about avoiding high current draw.	2-224
	The "VCCNVM Flash Memory Block Power Supply (1.5 V)" section was updated to include information about avoiding high current draw.	2-224
	The "VMVx I/O Supply Voltage (quiet)" section was updated to include this statement: VMV and VCCI must be connected to the same power supply and V_{CCI} pins within a given I/O bank.	2-185
	The "PUB Push Button" section was updated to include information about leaving the pin floating if it is not used.	2-228
	The "PTBASE Pass Transistor Base" section was updated to include information about leaving the pin floating if it is not used.	2-228
	The "PTEM Pass Transistor Emitter" section was updated to include information about leaving the pin floating if it is not used.	2-228
	The heading was incorrect in the "208-Pin PQFP" table. It should be AFS250 and not AFS090.	3-8