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Fusion Family of Mixed Signal FPGAs
Clock Conditioning Circuits
In Fusion devices, the CCCs are used to implement frequency division, frequency multiplication, phase
shifting, and delay operations.

The CCCs are available in six chip locations—each of the four chip corners and the middle of the east
and west chip sides.

Each CCC can implement up to three independent global buffers (with or without programmable delay),
or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to three
global outputs. Unused global outputs of a PLL can be used to implement independent global buffers, up
to a maximum of three global outputs for a given CCC.

A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, and 
CLKC-GLC) of a given CCC.

A PLL macro uses the CLKA CCC input to drive its reference clock. It uses the GLA and, optionally, the
GLB and GLC global outputs to drive the global networks. A PLL macro can also drive the YB and YC
regular core outputs. The GLB (or GLC) global output cannot be reused if the YB (or YC) output is used
(Figure 2-19). Refer to the "PLL Macro" section on page 2-27 for more information.

Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

• 3 dedicated single-ended I/Os using a hardwired connection

• 2 dedicated differential I/Os using a hardwired connection

• The FPGA core

The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or
through an asynchronous interface. This asynchronous interface is dynamically accessible from inside
the Fusion device to permit changes of parameters (such as divide ratios) during device operation. To
increase the versatility and flexibility of the clock conditioning system, the CCC configuration is
determined either by the user during the design process, with configuration data being stored in flash
memory as part of the device programming procedure, or by writing data into a dedicated shift register
during normal device operation. This latter mode allows the user to dynamically reconfigure the CCC
without the need for core programming. The shift register is accessed through a simple serial interface.
Refer to the "UJTAG Applications in Microsemi’s Low-Power Flash Devices" chapter of the Fusion FPGA
Fabric User Guide and the "CCC and PLL Characteristics" section on page 2-28 for more information.
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Device Architecture
All flash memory block input signals are active high, except for RESET.

STATUS[1:0] 2 Out Status of the last operation completed:

00: Successful completion

01: Read-/Unprotect-Page: single error detected and corrected

Write: operation addressed a write-protected page
Erase-Page: protection violation
Program: Page Buffer is unmodified
Protection violation

10: Read-/Unprotect-Page: two or more errors detected

11: Write: attempt to write to another page before programming
current page

Erase-Page/Program: page write count has exceeded the 10-year
retention threshold

UNPROTECTPAGE 1 In When asserted, the page addressed is copied into the Page Buffer
and the Page Buffer is made writable.

WD[31:0] 32 In Write data

WEN 1 In When asserted, stores WD in the page buffer.

Table 2-19 • Flash Memory Block Pin Names  (continued)

Interface Name Width Direction Description
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Device Architecture
RAM4K9 Description

Figure 2-48 • RAM4K9
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Fusion Family of Mixed Signal FPGAs
Analog Block
With the Fusion family, Microsemi has introduced the world's first mixed-mode FPGA solution.
Supporting a robust analog peripheral mix, Fusion devices will support a wide variety of applications. It is
this Analog Block that separates Fusion from all other FPGA solutions on the market today.

By combining both flash and high-speed CMOS processes in a single chip, these devices offer the best
of both worlds. The high-performance CMOS is used for building RAM resources. These high-
performance structures support device operation up to 350 MHz. Additionally, the advanced Microsemi
0.13 µm flash process incorporates high-voltage transistors and a high-isolation, triple-well process. Both
of these are suited for the flash-based programmable logic and nonvolatile memory structures.

High-voltage transistors support the integration of analog technology in several ways. They aid in noise
immunity so that the analog portions of the chip can be better isolated from the digital portions,
increasing analog accuracy. Because they support high voltages, Microsemi flash FPGAs can be
connected directly to high-voltage input signals, eliminating the need for external resistor divider
networks, reducing component count, and increasing accuracy. By supporting higher internal voltages,
the Microsemi advanced flash process enables high dynamic range on analog circuitry, increasing
precision and signal–noise ratio. Microsemi flash FPGAs also drive high-voltage outputs, eliminating the
need for external level shifters and drivers. 

The unique triple-well process enables the integration of high-performance analog features with
increased noise immunity and better isolation. By increasing the efficiency of analog design, the triple-
well process also enables a smaller overall design size, reducing die size and cost.

The Analog Block consists of the Analog Quad I/O structure, RTC (for details refer to the "Real-Time
Counter System" section on page 2-31), ADC, and ACM. All of these elements are combined in the
single Analog Block macro, with which the user implements this functionality (Figure 2-64). 

The Analog Block needs to be reset/reinitialized after the core powers up or the device is programmed.
An external reset/initialize signal, which can come from the internal voltage regulator when it powers up,
must be applied.
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Fusion Family of Mixed Signal FPGAs
Analog Quad
With the Fusion family, Microsemi introduces the Analog Quad, shown in Figure 2-65 on page 2-81, as
the basic analog I/O structure. The Analog Quad is a four-channel system used to precondition a set of
analog signals before sending it to the ADC for conversion into a digital signal. To maximize the
usefulness of the Analog Quad, the analog input signals can also be configured as LVTTL digital input
signals. The Analog Quad is divided into four sections. 

The first section is called the Voltage Monitor Block, and its input pin is named AV. It contains a two-
channel analog multiplexer that allows an incoming analog signal to be routed directly to the ADC or
allows the signal to be routed to a prescaler circuit before being sent to the ADC. The prescaler can be
configured to accept analog signals between –12 V and 0 or between 0 and +12 V. The prescaler circuit
scales the voltage applied to the ADC input pad such that it is compatible with the ADC input voltage
range. The AV pin can also be used as a digital input pin. 

The second section of the Analog Quad is called the Current Monitor Block. Its input pin is named AC.
The Current Monitor Block contains all the same functions as the Voltage Monitor Block with one
addition, which is a current monitoring function. A small external current sensing resistor (typically less
than 1 ) is connected between the AV and AC pins and is in series with a power source. The Current
Monitor Block contains a current monitor circuit that converts the current through the external resistor to
a voltage that can then be read using the ADC. 

AG6 1 Output Analog Quad

AT6 1 Input Analog Quad

ATRETURN67 1 Input Temperature monitor return shared by
Analog Quads 6 and 7

Analog Quad

AV7 1 Input Analog Quad 7 Analog Quad

AC7 1 Input Analog Quad

AG7 1 Output Analog Quad

AT7 1 Input Analog Quad

AV8 1 Input Analog Quad 8 Analog Quad

AC8 1 Input Analog Quad

AG8 1 Output Analog Quad

AT8 1 Input Analog Quad

ATRETURN89 1 Input Temperature monitor return shared by
Analog Quads 8 and 9

Analog Quad

AV9 1 Input Analog Quad 9 Analog Quad

AC9 1 Input Analog Quad

AG9 1 Output Analog Quad

AT9 1 Input Analog Quad

RTCMATCH 1 Output MATCH RTC

RTCPSMMATCH 1 Output MATCH connected to VRPSM RTC

RTCXTLMODE[1:0] 2 Output Drives XTLOSC RTCMODE[1:0] pins RTC

RTCXTLSEL 1 Output Drives XTLOSC MODESEL pin RTC

RTCCLK 1 Input RTC clock input RTC

Table 2-36 • Analog Block Pin Description (continued)

Signal Name
Number 
of Bits Direction Function

Location of 
Details
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Fusion Family of Mixed Signal FPGAs
Gate Driver
The Fusion Analog Quad includes a Gate Driver connected to the Quad's AG pin (Figure 2-74).
Designed to work with external p- or n-channel MOSFETs, the Gate driver is a configurable current sink
or source and requires an external pull-up or pull-down resistor. The AG supports 4 selectable gate drive
levels: 1 µA, 3 µA, 10 µA, and 30 µA (Figure 2-75 on page 2-91). The AG also supports a High Current
Drive mode in which it can sink 20 mA; in this mode the switching rate is approximately 1.3 MHz with
100 ns turn-on time and 600 ns turn-off time. Modeled on an open-drain-style output, it does not output a
voltage level without an appropriate pull-up or pull-down resistor. If 1 V is forced on the drain, the current
sinking/sourcing will exceed the ability of the transistor, and the device could be damaged.

The AG pad is turned on via the corresponding GDONx pin in the Analog Block macro, where x is the
number of the corresponding Analog Quad for the AG pad to be enabled (GDON0 to GDON9). 

The gate-to-source voltage (Vgs) of the external MOSFET is limited to the programmable drive current
times the external pull-up or pull-down resistor value (EQ 5).

Vgs  Ig × (Rpullup or Rpulldown)

EQ 5

Figure 2-74 • Gate Driver
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Device Architecture
This process results in a binary approximation of VIN. Generally, there is a fixed interval T, the sampling
period, between the samples. The inverse of the sampling period is often referred to as the sampling
frequency fS = 1 / T. The combined effect is illustrated in Figure 2-82.

Figure 2-82 demonstrates that if the signal changes faster than the sampling rate can accommodate, or if
the actual value of VIN falls between counts in the result, this information is lost during the conversion.
There are several techniques that can be used to address these issues. 

First, the sampling rate must be chosen to provide enough samples to adequately represent the input
signal. Based on the Nyquist-Shannon Sampling Theorem, the minimum sampling rate must be at least
twice the frequency of the highest frequency component in the target signal (Nyquist Frequency). For
example, to recreate the frequency content of an audio signal with up to 22 KHz bandwidth, the user
must sample it at a minimum of 44 ksps. However, as shown in Figure 2-82, significant post-processing
of the data is required to interpolate the value of the waveform during the time between each sample. 

Similarly, to re-create the amplitude variation of a signal, the signal must be sampled with adequate
resolution. Continuing with the audio example, the dynamic range of the human ear (the ratio of the
amplitude of the threshold of hearing to the threshold of pain) is generally accepted to be 135 dB, and the
dynamic range of a typical symphony orchestra performance is around 85 dB. Most commercial
recording media provide about 96 dB of dynamic range using 16-bit sample resolution. But 16-bit fidelity
does not necessarily mean that you need a 16-bit ADC. As long as the input is sampled at or above the
Nyquist Frequency, post-processing techniques can be used to interpolate intermediate values and
reconstruct the original input signal to within desired tolerances.

If sophisticated digital signal processing (DSP) capabilities are available, the best results are obtained by
implementing a reconstruction filter, which is used to interpolate many intermediate values with higher
resolution than the original data. Interpolating many intermediate values increases the effective number
of samples, and higher resolution increases the effective number of bits in the sample. In many cases,
however, it is not cost-effective or necessary to implement such a sophisticated reconstruction algorithm.
For applications that do not require extremely fine reproduction of the input signal, alternative methods
can enhance digital sampling results with relatively simple post-processing. The details of such
techniques are out of the scope of this chapter; refer to the Improving ADC Results through
Oversampling and Post-Processing of Data white paper for more information.

Figure 2-82 • Conversion Example
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Fusion Family of Mixed Signal FPGAs
Intra-Conversion
Performing a conversion during power-up calibration is possible but should be avoided, since the
performance is not guaranteed, as shown in Table 2-49 on page 2-117. This is described as 
intra-conversion. Figure 2-92 on page 2-113 shows intra-conversion, (conversion that starts during
power-up calibration).

Injected Conversion
A conversion can be interrupted by another conversion. Before the current conversion is finished, a
second conversion can be started by issuing a pulse on signal ADCSTART. When a second conversion
is issued before the current conversion is completed, the current conversion would be dropped and the
ADC would start the second conversion on the rising edge of the SYSCLK. This is known as injected
conversion. Since the ADC is synchronous, the minimum time to issue a second conversion is two clock
cycles of SYSCLK after the previous one. Figure 2-93 on page 2-113 shows injected conversion,
(conversion that starts before a previously started conversion is finished). The total time for calibration
still remains 3,840 ADCCLK cycles.

ADC Example
This example shows how to choose the correct settings to achieve the fastest sample time in 10-bit mode
for a system that runs at 66 MHz. Assume the acquisition times defined in Table 2-44 on page 2-108 for
10-bit mode, which gives 0.549 µs as a minimum hold time.

The period of SYSCLK: tSYSCLK = 1/66 MHz = 0.015 µs

Choosing TVC between 1 and 33 will meet the maximum and minimum period for the ADCCLK
requirement. A higher TVC leads to a higher ADCCLK period. 

The minimum TVC is chosen so that tdistrib and tpost-cal can be run faster. The period of ADCCLK with a
TVC of 1 can be computed by EQ 24.

EQ 24

The STC value can now be computed by using the minimum sample/hold time from Table 2-44 on
page 2-108, as shown in EQ 25. 

EQ 25

You must round up to 3 to accommodate the minimum sample time requirement. The actual sample time,
tsample, with an STC of 3, is now equal to 0.6 µs, as shown in EQ 26

EQ 26

Microsemi recommends post-calibration for temperature drift over time, so post-calibration is enabled.

The post-calibration time, tpost-cal, can be computed by EQ 27. The post-calibration time is 0.24 µs.

EQ 27

The distribution time, tdistrib, is equal to 1.2 µs and can be computed as shown in EQ 28 (N is number of
bits, referring back to EQ 8 on page 2-94).

EQ 28

The total conversion time can now be summated, as shown in EQ 29 (referring to EQ 23 on page 2-109).

tsync_read + tsample + tdistrib + tpost-cal + tsync_write = (0.015 + 0.60 + 1.2 + 0.24 + 0.015) µs = 2.07 µs

EQ 29

tADCCLK 4 1 TVC+  tSYSCLK 4 1 1+  0.015 µs 0.12 µs= = =

STC
tsample

tADCCLK
-------------------- 2–

0.549 µs
0.12 µs
----------------------- 2– 4.575 2– 2.575= = = =

tsample 2 STC+  tADCCLK 2 3+  tADCCLK 5 0.12 µs 0.6 µs= = = =

tpost-cal 2 tADCCLK 0.24 µs= =

tdistrib N tADCCLK 10 0.12 1.2 µs= = =
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Fusion Family of Mixed Signal FPGAs
Figure 2-96 • Temperature Reading Noise When Averaging is Used
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Device Architecture
Electrostatic Discharge (ESD) Protection
Fusion devices are tested per JEDEC Standard JESD22-A114-B.

Fusion devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all
device pads against damage from ESD as well as from excessive voltage transients. 

Each I/O has two clamp diodes. One diode has its positive (P) side connected to the pad and its negative
(N) side connected to VCCI. The second diode has its P side connected to GND and its N side
connected to the pad. During operation, these diodes are normally biased in the Off state, except when
transient voltage is significantly above VCCI or below GND levels. 

By selecting the appropriate I/O configuration, the diode is turned on or off. Refer to Table 2-75 and
Table 2-76 on page 2-143 for more information about I/O standards and the clamp diode.

The second diode is always connected to the pad, regardless of the I/O configuration selected.

Table 2-75 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance Capabilities

I/O Assignment

Clamp Diode Hot Insertion 5 V Input Tolerance 1

Input 
Buffer

Output 
BufferStandard 

I/O
Advanced 

I/O
Standard 

I/O
Advanced 

I/O
Standard 

I/O
Advanced 

I/O

3.3 V LVTTL/LVCMOS No Yes Yes No Yes1 Yes1 Enabled/Disabled

3.3 V PCI, 3.3 V PCI-X N/A Yes N/A No N/A Yes1 Enabled/Disabled

LVCMOS 2.5 V No Yes Yes No No No Enabled/Disabled

LVCMOS 2.5 V / 5.0 V N/A Yes N/A No N/A Yes2 Enabled/Disabled

LVCMOS 1.8 V No Yes Yes No No No Enabled/Disabled

LVCMOS 1.5 V No Yes Yes No No No Enabled/Disabled

Differential,
LVDS/BLVDS/M-
LVDS/ LVPECL 3

N/A Yes N/A No N/A No Enabled/Disabled

Notes:

1. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.
2. Can be implemented with an external resistor and an internal clamp diode.

3. Bidirectional LVPECL buffers are not supported. I/Os can be configured as either input buffers or output buffers.

Table 2-76 • Fusion Pro I/O – Hot-Swap and 5 V Input Tolerance Capabilities

I/O Assignment
Clamp 
Diode 

Hot 
Insertion

5 V Input 
Tolerance Input Buffer Output Buffer

3.3 V LVTTL/LVCMOS No Yes Yes1 Enabled/Disabled

3.3 V PCI, 3.3 V PCI-X Yes No Yes1 Enabled/Disabled

LVCMOS 2.5 V 3 No Yes No Enabled/Disabled

LVCMOS 2.5 V / 5.0 V 3 Yes No Yes2 Enabled/Disabled

LVCMOS 1.8 V No Yes No Enabled/Disabled

LVCMOS 1.5 V No Yes No Enabled/Disabled

Voltage-Referenced Input Buffer No Yes No Enabled/Disabled

Differential, LVDS/BLVDS/M-LVDS/LVPECL4 No Yes No Enabled/Disabled

Notes:

1. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.
2. Can be implemented with an external resistor and an internal clamp diode.

3. In the SmartGen, FlashROM, Flash Memory System Builder, and Analog System Builder User Guide, select the
LVCMOS5 macro for the LVCMOS 2.5 V / 5.0 V I/O standard or the LVCMOS25 macro for the LVCMOS 2.5 V I/O
standard.

4. Bidirectional LVPECL buffers are not supported. I/Os can be configured as either input buffers or output buffers.
2-143 Revision 6
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Fusion Family of Mixed Signal FPGAs
5 V Input Tolerance
I/Os can support 5 V input tolerance when LVTTL 3.3 V, LVCMOS 3.3 V, LVCMOS 2.5 V / 5 V, and
LVCMOS 2.5 V configurations are used (see Table 2-77 on page 2-147 for more details). There are four
recommended solutions (see Figure 2-103 to Figure 2-106 on page 2-146 for details of board and macro
setups) to achieve 5 V receiver tolerance. All the solutions meet a common requirement of limiting the
voltage at the input to 3.6 V or less. In fact, the I/O absolute maximum voltage rating is 3.6 V, and any
voltage above 3.6 V may cause long-term gate oxide failures. 

Solution 1
The board-level design needs to ensure that the reflected waveform at the pad does not exceed the limits
provided in Table 3-4 on page 3-4. This is a long-term reliability requirement.

This scheme will also work for a 3.3 V PCI / PCI-X configuration, but the internal diode should not be
used for clamping, and the voltage must be limited by the two external resistors, as explained below.
Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

The following are some examples of possible resistor values (based on a simplified simulation model
with no line effects and 10  transmitter output resistance, where Rtx_out_high = (VCCI – VOH) / IOH,
Rtx_out_low = VOL / IOL).

Example 1 (high speed, high current):

Rtx_out_high = Rtx_out_low = 10 

R1 = 36  (±5%), P(r1)min = 0.069 

R2 = 82  (±5%), P(r2)min = 0.158 

Imax_tx = 5.5 V / (82 * 0.95 + 36 * 0.95 + 10) = 45.04 mA

tRISE = tFALL = 0.85 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

tRISE = tFALL = 4 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Example 2 (low–medium speed, medium current):

Rtx_out_high = Rtx_out_low = 10 

R1 = 220  (±5%), P(r1)min = 0.018 

R2 = 390  (±5%), P(r2)min = 0.032 

Imax_tx = 5.5 V / (220 * 0.95 + 390 * 0.95 + 10) = 9.17 mA

tRISE = tFALL = 4 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

tRISE = tFALL = 20 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Other values of resistors are also allowed as long as the resistors are sized appropriately to limit the
voltage at the receiving end to 2.5 V < Vin(rx) < 3.6 V when the transmitter sends a logic 1. This range of
Vin_dc(rx) must be assured for any combination of transmitter supply (5 V ± 0.5 V), transmitter output
resistance, and board resistor tolerances.
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Fusion Family of Mixed Signal FPGAs
Table 2-93 • Summary of I/O Timing Characteristics – Software Default Settings 
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = I/O Standard Dependent
Applicable to Advanced I/Os
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3.3 V LVTTL/ 
3.3 V LVCMOS 

12 mA High 35 pF  – 0.49 2.64 0.03 0.90 0.32 2.69 2.11 2.40 2.68 4.36 3.78 ns

2.5 V LVCMOS 12 mA High 35 pF  – 0.49 2.66 0.03 0.98 0.32 2.71 2.56 2.47 2.57 4.38 4.23 ns

1.8 V LVCMOS 12 mA High 35 pF  – 0.49 2.64 0.03 0.91 0.32 2.69 2.27 2.76 3.05 4.36 3.94 ns

1.5 V LVCMOS 12 mA High 35 pF  – 0.49 3.05 0.03 1.07 0.32 3.10 2.67 2.95 3.14 4.77 4.34 ns

3.3 V PCI Per PCI 
spec

High 10 pF 25 2 0.49 2.00 0.03 0.65 0.32 2.04 1.46 2.40 2.68 3.71 3.13 ns

3.3 V PCI-X Per PCI-X 
spec

High 10 pF 25 2 0.49 2.00 0.03 0.62 0.32 2.04 1.46 2.40 2.68 3.71 3.13 ns

LVDS 24 mA High  – – 0.49 1.37 0.03 1.20 N/A N/A N/A N/A N/A N/A N/A ns

LVPECL 24 mA High  – – 0.49 1.34 0.03 1.05 N/A N/A N/A N/A N/A N/A N/A ns

Notes:

1. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values. 
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-123 on page 2-197

for connectivity. This resistor is not required during normal operation. 

Table 2-94 • Summary of I/O Timing Characteristics – Software Default Settings 
Commercial Temperature Range Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, 
Worst-Case VCCI = I/O Standard Dependent
Applicable to Standard I/Os
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3.3 V LVTTL/
3.3 V LVCMOS

8 mA  High  35 pF – 0.49 3.29 0.03 0.75 0.32 3.36 2.80 1.79 2.01 ns

2.5 V LVCMOS 8 mA  High  35pF – 0.49 3.56 0.03 0.96 0.32 3.40 3.56 1.78 1.91 ns

1.8 V LVCMOS 4 mA  High  35pF – 0.49 4.74 0.03 0.90 0.32 4.02 4.74 1.80 1.85 ns

1.5 V LVCMOS 2 mA  High  35pF – 0.49 5.71 0.03 1.06 0.32 4.71 5.71 1.83 1.83 ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values. 
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Fusion Family of Mixed Signal FPGAs
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-138 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear
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Device Architecture
Pin Descriptions

Supply Pins

GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This
minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to
always be connected on the board to GND. Note: In FG256, FG484, and FG676 packages, GNDQ and
GND pins are connected within the package and are labeled as GND pins in the respective package pin
assignment tables.

ADCGNDREF Analog Reference Ground

Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.

GNDA Ground (analog)

Quiet ground supply voltage to the Analog Block of Fusion devices. The use of a separate analog ground
helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V
maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.

GNDAQ Ground (analog quiet)

Quiet ground supply voltage to the analog I/O of Fusion devices. The use of a separate analog ground
helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V
maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.
Note: In FG256, FG484, and FG676 packages, GNDAQ and GNDA pins are connected within the
package and are labeled as GNDA pins in the respective package pin assignment tables. 

GNDNVM Flash Memory Ground

Ground supply used by the Fusion device's flash memory block module(s).

GNDOSC Oscillator Ground

Ground supply for both integrated RC oscillator and crystal oscillator circuit.

VCC15A Analog Power Supply (1.5 V)

1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry.

VCC33A Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.

VCC33N Negative 3.3 V Output

This is the –3.3 V output from the voltage converter. A 2.2 µF capacitor must be connected from this pin
to ground.

VCC33PMP Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw,
VCC33PMP should be powered up simultaneously with or after VCC33A.

VCCNVM Flash Memory Block Power Supply (1.5 V)

1.5 V power supply input used by the Fusion device's flash memory block module(s). To avoid high
current draw, VCC should be powered up before or simultaneously with VCCNVM.

VCCOSC Oscillator Power Supply (3.3 V)

Power supply for both integrated RC oscillator and crystal oscillator circuit. The internal 100 MHz
oscillator, powered by the VCCOSC pin, is needed for device programming, operation of the VDDN33
pump, and eNVM operation. VCCOSC is off only when VCCA is off. VCCOSC must be powered
whenever the Fusion device needs to function.
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Fusion Family of Mixed Signal FPGAs
Calculating Power Dissipation

Quiescent Supply Current

Table 3-8 • AFS1500 Quiescent Supply Current Characteristics

Parameter Description Conditions Temp. Min. Typ. Max. Unit

ICC1 1.5 V quiescent current Operational standby4, 
VCC = 1.575 V

TJ = 25°C 20 40 mA

TJ = 85°C 32 65 mA

TJ = 100°C 59 120 mA

Standby mode5 or Sleep mode6, 
VCC = 0 V

0 0 µA

ICC332 3.3 V analog supplies
current

Operational standby4,
VCC33 = 3.63 V

TJ = 25°C 9.8 13 mA

TJ = 85°C 10.7 14 mA

TJ = 100°C 10.8 15 mA

Operational standby, only Analog
Quad and –3.3 V output ON, 
VCC33 = 3.63 V

TJ = 25°C 0.31 2 mA

TJ = 85°C 0.35 2 mA

TJ = 100°C 0.45 2 mA

Standby mode5, VCC33 = 3.63 V TJ = 25°C 2.9 3.6 mA

TJ = 85°C 2.9 4 mA

TJ = 100°C 3.3 6 mA

Sleep mode6, VCC33 = 3.63 V TJ = 25°C 17 19 µA

TJ = 85°C 18 20 µA

TJ = 100°C 24 25 µA

ICCI3 I/O quiescent current Operational standby4, 
Standby mode, and Sleep Mode6,
VCCIx = 3.63 V

TJ = 25°C 417 649 µA

TJ = 85°C 417 649 µA

TJ = 100°C 417 649 µA

Notes:

1. ICC is the 1.5 V power supplies, ICC and ICC15A.
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V.
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Fusion Family of Mixed Signal FPGAs
Table 3-10 • AFS250 Quiescent Supply Current Characteristics

Parameter Description Conditions Temp. Min Typ Max Unit

ICC1 1.5 V quiescent current Operational standby4, 
VCC = 1.575 V

TJ = 25°C 4.8 10 mA

TJ = 85°C 8.2 30 mA

TJ = 100°C 15 50 mA

Standby mode5 or Sleep
mode6, VCC = 0 V

0 0 µA

ICC332 3.3 V analog supplies
current

Operational standby4, 
VCC33 = 3.63 V

TJ = 25°C 9.8 13 mA

TJ = 85°C 9.8 14 mA

TJ = 100°C 10.8 15 mA

Operational standby, only
Analog Quad and –3.3 V
output ON, VCC33 = 3.63 V

TJ = 25°C 0.29 2 mA

TJ = 85°C 0.31 2 mA

TJ = 100°C 0.45 2 mA

Standby mode5, VCC33 = 3.63V TJ = 25°C 2.9 3.0 mA

TJ = 85°C 2.9 3.1 mA

TJ = 100°C 3.5 6 mA

Sleep mode6, VCC33 = 3.63 V TJ = 25°C 19 18 µA

TJ = 85°C 19 20 µA

TJ = 100°C 24 25 µA

ICCI3 I/O quiescent current Operational standby6, 
VCCIx = 3.63 V

TJ = 25°C 266 437 µA

TJ = 85°C 266 437 µA

TJ = 100°C 266 437 µA

IJTAG JTAG I/O quiescent current Operational standby4, 
VJTAG = 3.63 V

TJ = 25°C 80 100 µA

TJ = 85°C 80 100 µA

TJ = 100°C 80 100 µA

Standby mode5 or Sleep
mode6, VJTAG = 0 V

0 0 µA

Notes:

1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, and ICCI2.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTA G = VPUMP = 0 V.
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DC and Power Characteristics
IPP Programming supply
current

Non-programming mode, 
VPUMP = 3.63 V

TJ = 25°C 37 80 µA

TJ = 85°C 37 80 µA

TJ = 100°C 80 100 µA

Standby mode5 or Sleep
mode6, VPUMP = 0 V

0 0 µA

ICCNVM Embedded NVM current Reset asserted, 
VCCNVM = 1.575 V

TJ = 25°C 10 40 µA

TJ = 85°C 14 40 µA

TJ = 100°C 14 40 µA

ICCPLL 1.5 V PLL quiescent current Operational standby, 
VCCPLL = 1.575 V

TJ = 25°C 65 100 µA

TJ = 85°C 65 100 µA

TJ = 100°C 65 100 µA

Table 3-10 • AFS250 Quiescent Supply Current Characteristics (continued)

Parameter Description Conditions Temp. Min Typ Max Unit

Notes:

1. ICC is the 1.5 V power supplies, ICC, ICCPLL, ICC15A, ICCNVM.
2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, and ICCI2.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is
loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTA G = VPUMP = 0 V.
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DC and Power Characteristics
RC Oscillator Dynamic Contribution—PRC-OSC

Operating Mode

PRC-OSC = PAC19

Standby Mode and Sleep Mode

PRC-OSC = 0 W

Analog System Dynamic Contribution—PAB

Operating Mode

PAB = PAC20

Standby Mode and Sleep Mode

PAB = 0 W

Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the
toggle rate of a net is 100%, this means that the net switches at half the clock frequency. Below are some
examples:

• The average toggle rate of a shift register is 100%, as all flip-flop outputs toggle at half of the clock
frequency.

• The average toggle rate of an 8-bit counter is 25%:

– Bit 0 (LSB) = 100%

– Bit 1 = 50%

– Bit 2 = 25%

– …

– Bit 7 (MSB) = 0.78125%

– Average toggle rate = (100% + 50% + 25% + 12.5% + . . . 0.78125%) / 8.

Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled. When
non-tristate output buffers are used, the enable rate should be 100%.

Table 3-16 • Toggle Rate Guidelines Recommended for Power Calculation

Component Definition Guideline 

1 Toggle rate of VersaTile outputs 10% 

2 I/O buffer toggle rate 10% 

Table 3-17 • Enable Rate Guidelines Recommended for Power Calculation

Component Definition Guideline 

1 I/O output buffer enable rate 100% 

2 RAM enable rate for read operations 12.5% 

3 RAM enable rate for write operations 12.5% 

4 NVM enable rate for read operations 0% 
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Package Pin Assignments
PQ208

Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.microsemi.com/soc/products/solutions/package/default.aspx.

208-Pin PQFP

1
208
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Package Pin Assignments
FG484

Pin 
Number AFS600 Function AFS1500 Function

A1 GND GND

A2 VCC NC

A3 GAA1/IO01PDB0V0 GAA1/IO01PDB0V0

A4 GAB0/IO02NDB0V0 GAB0/IO02NDB0V0

A5 GAB1/IO02PDB0V0 GAB1/IO02PDB0V0

A6 IO07NDB0V1 IO07NDB0V1

A7 IO07PDB0V1 IO07PDB0V1

A8 IO10PDB0V1 IO09PDB0V1

A9 IO14NDB0V1 IO13NDB0V2

A10 IO14PDB0V1 IO13PDB0V2

A11 IO17PDB1V0 IO24PDB1V0

A12 IO18PDB1V0 IO26PDB1V0

A13 IO19NDB1V0 IO27NDB1V1

A14 IO19PDB1V0 IO27PDB1V1

A15 IO24NDB1V1 IO35NDB1V2

A16 IO24PDB1V1 IO35PDB1V2

A17 GBC0/IO26NDB1V1 GBC0/IO40NDB1V2

A18 GBA0/IO28NDB1V1 GBA0/IO42NDB1V2

A19 IO29NDB1V1 IO43NDB1V2

A20 IO29PDB1V1 IO43PDB1V2

A21 VCC NC

A22 GND GND

AA1 VCC NC

AA2 GND GND

AA3 VCCIB4 VCCIB4

AA4 VCCIB4 VCCIB4

AA5 PCAP PCAP

AA6 AG0 AG0

AA7 GNDA GNDA

AA8 AG1 AG1

AA9 AG2 AG2

AA10 GNDA GNDA

AA11 AG3 AG3

AA12 AG6 AG6

AA13 GNDA GNDA

AA14 AG7 AG7

AA15 AG8 AG8

AA16 GNDA GNDA

AA17 AG9 AG9

AA18 VAREF VAREF

AA19 VCCIB2 VCCIB2

AA20 PTEM PTEM

AA21 GND GND

AA22 VCC NC

AB1 GND GND

AB2 VCC NC

AB3 NC IO94NSB4V0

AB4 GND GND

AB5 VCC33N VCC33N

AB6 AT0 AT0

AB7 ATRTN0 ATRTN0

AB8 AT1 AT1

AB9 AT2 AT2

AB10 ATRTN1 ATRTN1

AB11 AT3 AT3

AB12 AT6 AT6

AB13 ATRTN3 ATRTN3

AB14 AT7 AT7

AB15 AT8 AT8

AB16 ATRTN4 ATRTN4

AB17 AT9 AT9

AB18 VCC33A VCC33A

AB19 GND GND

AB20 NC IO76NPB2V0

AB21 VCC NC

AB22 GND GND

B1 VCC NC

B2 GND GND

B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0

B4 GND GND

FG484

Pin 
Number AFS600 Function AFS1500 Function
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